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3. Broken symmetry in the spherical resonator and  
 modeling a molecule 
 
3.1  Lifting the degeneracy of states with different magnetic quantum numbers 
 
Objective:  In this series of experiments we will break the symmetry of the spherical cavity and 
study the resulting splitting of the resonance peaks.  This is analogous to the splitting of quantum 
states. 
 
Equipment Required:    
 

TeachSpin Quantum Analog System:  Controller, Hemispheres, Accessories 
Computer with sound card installed and Quantum Analogs “SpectrumSLC.exe” running 
Two adapter cables (BNC - 3.5 mm plug)  
Two-Channel Oscilloscope 
 

WARNING:   The BNC-to-3.5-mm adapter cables are provided as a convenient way to couple 
signals between the Controller and sound card.  Unfortunately, they could also provide a way 
for excessive external voltage sources to damage a sound card.  It is the user's responsibility 
to ensure that these adapter cables are NOT used with signals greater than 5 Volts peak-to-
peak.  The maximum peak-to-peak value for optimum performance of the Quantum Analogs 
system depends on your sound card and can vary from 500 mV to 2 V.  

 
Setup: 
 

First, set the ATTENUATOR knob on the Controller at 10 (out of 10) turns. 
 

Attach a BNC splitter or “tee” to SINE WAVE INPUT on the Controller.  Using an adaptor cable, 
connect the output of your computer sound card to one side of the splitter.  Use a BNC cable to 
send the sound signal to Channel 1 of the oscilloscope.  Plug the lead from the speaker on the 
lower hemisphere to SPEAKER OUTPUT on the Controller.  The same sine wave now goes to both 
the speaker and Channel 1.   
 

Use a BNC cable to connect the microphone output from the upper hemisphere to MICROPHONE 

INPUT.  Connect AC MONITOR on the Controller to Channel 2 of the oscilloscope to display the 
sound signal received by the microphone.  Trigger the oscilloscope on Channel 1. 
 

Important Note:   You will need to adjust the magnitude of both the speaker and 
microphone signals to keep the microphone input to the computer from saturating.   
Refer to Appendix 2, titled ‘Recognizing and Correcting Saturation’, for instructions.    
 
Experiment: 
 

Measure a spectrum in the spherical resonator including only the lower three resonances.   
 

Now put the 3 mm spacer ring between the upper and lower hemisphere.  Measure the spectrum 
again. What do you observe?   
 

Measure the spectrum again using the 6 mm spacer ring, and using both rings (9 mm). 
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Analyze the data: 
 

For the l = 1 resonance, you can now plot the frequency splitting as function of spacer ring 
thickness.  What relationship do you find? 
 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::        
 

In the spectra, a splitting of the peaks is observed. This is due to a lifting of the degeneracy 
of the magnetic quantum numbers m, which belong to each angular quantum number l. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Spectrum measured in the sphere with α = θ = 180°.   Eigenstates with different m are 
degenerate. 

 
 

Spectrum measured with spacer ring 3 mm.   Splitting of the peaks due to broken spherical 
symmetry is clearly visible. The peaks belong to different quantum numbers m.  
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::        continuedcontinuedcontinuedcontinued    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Spectrum measured with spacer ring 6 mm. Splitting of the peaks is increased 
proportionally to the space ring thickness. 

 

 
 

Spectrum measured with spacer ring 9 mm.  
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End of Advisor Information 

 
 

Splitting of the l = 1 resonance as function of the spacer ring thickness.  

The splitting is proportional to the ring thickness with a slope of 18.7 Hz/mm. 
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Background: 
In a spherical resonator, each resonance with angular quantum number l is (2l+1)-fold 
degenerate. These states with quantum numbers m = -l, …, 0, …, l  all have the same resonance 
frequency.  In the spherical resonator, we have seen that the quantization axis (z-axis) is 
determined by the position of the speaker.  The only wavefunction that has a non-zero 
amplitude on the z-axis is the one with m = 0.  This is the reason why the m = 0 resonance is 
exited in the sphere, exclusively. 
 

When a spacer ring is introduced, the spherical symmetry is broken and the degeneracy of the 
eigenstates is lifted.  The quantization axis (z-axis) is now determined by the symmetry axis of 
the resonator, which is the vertical axis.  The speaker, which has a θ=45° position with respect to 
the symmetry axis, can now excite all states with different quantum numbers m.  The sketches in 
Figure 3.1 will help you to visualize the change in the direction of the quantization axis. 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The degeneracy is not lifted completely because the states with positive and negative magnetic 
quantum number ±m are still degenerate.  States with positive and negative m belong to waves 
in the resonator circulating around the quantization axis in right-handed and left-handed 
directions, respectively.  Both of these waves are excited by the speaker and have the same 
amplitude for each m.  A superposition of such two waves results in a standing wave with 
respect to the azimuthal angle ϕ. 

 )cos(2 ϕϕϕ mee imim =+ −        (3.1) 

   
 

Fig. 3.1a: In the spherical resonator, the quantization axis is determined by the position of 
the speaker because it is the only part that breaks symmetry 
 

             
              m = 0                                    m = 1                                    m = 2 
 

Fig. 3.1b: In the resonator elongated by spacer rings, the quantization axis is given by the 
symmetry axis of the resonator.  The degeneracy of the states with different m is lifted. 
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In quantum chemistry, the superposition of the positive and negative versions of the magnetic 
quantum number m is used to form orbitals.  Examples of the way these are labeled are: px, py, 
dxz, dyz for m=1 and dxy, dx²-y² for m=2. 
 

In the sense of perturbation theory, the eigenfunctions in broken symmetry are modified only 
slightly compared to the eigenfunctions of the spherical symmetric case, as long as the 
perturbation is small.  We can therefore expect wavefunctions very similar to the spherical 
harmonics.  
 

In the next experiments you can measure the azimuthal dependence of the wavefunctions and 
identify the magnetic quantum number of the peaks. 
 
Experiment: 
 

Using in turn the 3 mm, 6 mm and 9 mm spacer rings, acquire a high-resolution spectrum of the 
l = 1 resonance that resolves the two peaks attributable to m = 0 and m = ±1. 
 

ADVISOR INFORMATION : 

 

 

 

 

 

 

 

 

 

 

 

 

 
Experiment: 
 

Now we will measure the amplitude as function of the azimuthal angle ϕ.  We will then identify 
which m belongs to each peak.  Click the left mouse button on top of a peak to choose this 
particular frequency.  Then, open the window to measure the wavefunction (> Windows > 
Measure Wave Function).  Check the box labeled “Lifted degeneracy” to tell the program that the 
quantization axis is now vertical and that the angle α on the scale is equal to the azimuthal angle 
ϕ.  In this mode the wavefunction is displayed in green.   
 

Now you can measure the amplitude of the peak as function of azimuthal angle ϕ.  Repeat the 
same measurement for the other peak.  Use the oscilloscope to determine how changing the 
azimuth angle affects the sign of the microphone signal. 
 

Alternatively, you can measure the amplitude by hand.  Read the amplitude from the oscilloscope 
and the azimuthal angle ϕ = α from the scale. 

 
Highly resolved spectrum with 3 mm (red), 6 mm (green) and 9 mm (pink) spacer rings 

of the l = 1 resonance that is split into the two peaks with m = 0 and m = ±1. 
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Analyze the data: 
 

Identify the magnetic quantum number for each of the peaks.  Compare your results for the 
amplitude as function of ϕ with the theoretical prediction )cos()( ϕϕ mA = . 
 
ADVISOR INFORMATION : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
From the shape of the wavefunctions, the magnetic quantum numbers can be identified 
easily. If the splitting is smaller than the width of the peaks, a superposition of both 
wavefunctions is measured.  The shape depends on the frequency chosen.  It may be 
different for frequencies on top of the peak and on the left or right shoulder, respectively. 

Experiment     Calculation 

     
 

Left: Measurement of the amplitude as function of the azimuthal angle ϕ for the left 
resonance at 2073 Hz. Right: calculated angular dependence cos(mϕ ) with m=0. 

 

Experiment     Calculation 

     
 

Left: Measurement of the amplitude as function of the azimuthal angle ϕ  for the right 
resonance at 2240 Hz. Right: calculated angular dependence cos(mϕ ) with m=1. 
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Experiment: 
 

Choose the frequency of the l = 1 and m = 0 resonance and measure the phase of the microphone 
signal in the upper hemisphere at α = 180°.  Then, connect the cable to the microphone in the 
lower hemisphere and measure the phase again.  Repeat the same experiment with the m = 1 
resonance.  
 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::            

 

 

 

 

 

 

 

 

 

 

 
 
 

The signal of the m = 0 resonance has different sign (phase shift 180°) in the upper and 
lower hemispheres, respectively.  The phase of the m = 1 resonance is the same in upper 

and lower hemisphere.  It changes sign when α is changed from 180° to 0°. 

 
Spectrum of the l = 1 doublet labeled with magnetic quantum number m. 

m = 0    m = ±1 

           
The sign of wavefunction is different in the upper / lower hemisphere for m = 0 but the same 

for the m = ±1 states. In the latter case sign changes from left to the right (α=0° and α=180°, 
respectively. The left one corresponds to a pz-orbital, the right one to a py-orbital. 
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Experiment: 
 

Measure a highly resolved spectrum with 3 mm, 6 mm and 9 mm spacer rings of the l = 2 
resonance.   It will split into three peaks with m = 0,  m = ±1 and m = ±2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment: 

For each of the three peaks, measure the amplitude as function of azimuthal angle ϕ and identify 
the magnetic quantum numbers. 

 
    

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::            
The m = 1 and m = 2 wavefunctions look very similar to the theoretical prediction. The m = 0 peak, 
however, overlaps strongly with the m = 1 peak, which results in a superposition of the m = 0 and 
m = 1 wavefunctions.  The m = 1 state corresponds to a dxz-orbital, the m = 0 state to a dz²-orbital 
and the m = 2 state to a dx²-y²-orbital. 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    
 

 
 

Highly resolved spectrum with 9 mm spacer rings of the l = 2 resonance that is 

split into three peaks with m = 0, m = ±1 and m = ±2. 
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ADVISOR INFORMATION continuedADVISOR INFORMATION continuedADVISOR INFORMATION continuedADVISOR INFORMATION continued    

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment     Calculation 

     
Left: Measurement of the amplitude as function of the azimuthal angle ϕ for the left resonance at 
3448 Hz.  Right: calculated angular dependence cos(mϕ ) with m = 1. 

Experiment     Calculation 

     
Left: Measurement of the amplitude as function of the azimuthal angle ϕ for the middle resonance at 

3470 Hz.  Right: calculated angular dependence cos(mϕ ) with m = 0. 

Experiment     Calculation 

     
 

Left: Measurement of the amplitude as function of the azimuthal angle ϕ for the right resonance at 
3620 Hz.  Right: calculated angular dependence cos(mϕ ) with m = 2. 
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Experiment: 
 

You may measure the splitting of states with higher l, but the increasing overlapping of several 
peaks with different magnetic quantum number makes an identification of m more and more 
difficult.   

One possible way to overcome this problem is to measure spectra for all angles ϕ and use the 
peak fitting procedure to determine the peak amplitudes.  With this technique the overlapping of 
the peaks becomes irrelevant.   

Another possibility is to measure at certain angles ϕ for which nodes in the wavefunction are 
expected for particular magnetic quantum numbers.  If one of the peaks in the spectrum 
disappears at the nodes of a certain magnetic quantum number, its number has been identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION:::: 
 

 
 

Highly resolved spectrum with 9 mm spacer rings of the n = 1, l = 4 resonance (left part) and the  
n = 2,  l = 1 resonance (right part).  Some of the peaks have been identified with respect to their 

magnetic quantum number. 
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3.2 Modeling a molecule 
 
Objective:  We will use a pair of spheres to create an analog of a hydrogen molecule. 
 
Equipment needed: 
 

TeachSpin Quantum Analogs System:  Controller, 4 hemispheres, irises  
Computer with sound card installed and Quantum Analogs “SpectrumSLC.exe” running 
Two-Channel Oscilloscope 
Two BNC – 3.5 mm plug adaptors 
 
Setup: 
 

Set a hemisphere with a hole on top of the hemisphere with the speaker.  Through this hole, the 
sound in the lower sphere will couple to a second sphere.  The strength of the coupling can be 
adjusted by choice of the iris diameter.  Choose one of the irises and put it in place.  (Iris 
diameters are 5 mm, 10 mm 15 mm or 20 mm.)  Set the hole in the next hemisphere against the 
iris.   Use the hemisphere with the microphone to complete the upper sphere.    
Put BNC splitters on both the SINE WAVE INPUT and the AC-MONITOR of the Controller box.  Using 
a BNC to 3.5 mm jack converter, connect the output of the computer’s sound card to one side of 
the BNC splitter on SINE WAVE INPUT.  Connect the other side to Channel 1 of the oscilloscope.  
Connect the speaker cable from the lower hemisphere to SPEAKER OUTPUT on the Controller.  (The 
sound card signal now goes to both the speaker and the ‘scope.) 
 

Use a BNC cable to connect the microphone in the top-hemisphere to MICROPHONE INPUT.   Use a 
BNC cable to send the microphone signal from one side of the splitter on AC-MONITOR to Channel 
2 of the oscilloscope.   Use an adaptor cable to connect the other arm of the splitter on AC-
MONITOR to the microphone line-in of your sound card. 
 

Important Note:   You will need to adjust the magnitude of both the speaker and 
microphone signals to keep the microphone input to the computer from saturating.  Refer 
to the Appendix titled ‘Recognizing and Correcting Saturation’ for instructions.    
 
Experiment: 
 

Measure a spectrum in the “molecule” (two coupled spherical resonators) of the resonance at 
2300 Hz.  Repeat the measurement with the different irises.  Compare with a measurement of this 
peak in the “atom” (spherical resonator). 
 
Open questions: 
 

Why does the peak split?  What is lifting the degeneracy?  Which quantum numbers can we use 
to label the peaks in the molecule?  What do the molecular orbitals look like?  Let’s answer these 
questions step by step. 
 
Experiment: 
 

Measure a spectrum in the frequency range from 0 Hz to 1000 Hz first in the “atom” and then in 
the “molecule”.  Repeat the measurement with the other irises. 
 
Analyze the data:  Make a plot of the resonance-frequency as function of iris diameter. 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::            
    

At frequencies between 200 Hz and 500 Hz, depending on the iris diameter, a new state is 
observed that has not been observed in the atom.  The resonance is derived from the 1s 
state, which cannot be observed in the “atom” since its frequency is zero.  In the molecule, 
the 1s state splits into a bonding and an antibonding state.  The bonding state has the 
frequency zero, but the antibonding state can be observed as a new resonance peak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Antibonding state derived from the 1s state measured with the irises 5 mm (red), 
10mm (green), 15 mm (pink) and 20 mm (black). The state belongs to the “molecular 

orbital” σu[1s]. 

 

 
 

Frequency of the “molecular orbital” σu[1s] as function of iris diameter. 



Adv. Man. Rev 2.0 12/09 

 3 - 14 

Experiment: 
 

Use one of the bigger irises and choose exactly the frequency of the resonance.  This can be done 
by clicking the left mouse-button on the top of the peak.  For the upper sphere, measure the phase 
of the microphone signal (AC-MONITOR connected to Channel 2 of the oscilloscope) with respect 
to the SINE WAVE INPUT signal (Channel 1 of the oscilloscope).  Now connect the microphone in 
the lower sphere to the amplifier and repeat the measurement. 
 
Question: 
 

What is the phase difference between upper and lower sphere? 
 
AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::         
The phase difference is 180°.    

 
Experiment: 
 

In the upper sphere, you can measure the azimuthal dependence of amplitude to identify the 
symmetry of the wavefunction.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADVISOR INFORMATION: 
 

It has s-wave symmetry with respect to the symmetry axis of the molecule: 

 

 
 

Amplitude as function of azimuthal angle α = ϕ  measured with the 20 mm iris at 

440 Hz. 
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Background: 

The two, coupled spherical resonators model a diatomic molecule with two identical nuclei, a so-
called homonuclear diatomic molecule.  The simplest example of such a molecule is H2

+.  Since 
this molecule has only one single electron moving in the potential of two protons, it is an ideal 
model system to discuss quantum mechanical effects in molecules.  Many of the observations can 
be transferred to molecules like H2, O2, N2 and F2.  

Diatomic molecules have cylindrical symmetry with respect to the axis going through the nuclei.  
Due to this symmetry, we expect that m is a good quantum number for the molecule, just as it is 
in the atom.  The quantum number l, however, cannot be used in molecules.  In the sense of 
perturbation theory, we expect a continuous change from the atomic orbitals into the molecular 
orbitals as function of the nuclear distance.  We will therefore label the molecular states 
additionally by the atomic states from which they are derived in square brackets (for example: 
1σu[1s] ). 

For a small coupling of the two atoms (a large inter-nuclear distance), a superposition of atomic 
orbitals is a fairly good approximation for the molecular orbitals.  In general, the two atomic 
orbitals can be superimposed in two different ways to produce a molecular orbital: with the same 
sign or with different signs (phase shift 180°).  Depending on the sign, the molecular orbital is 
labeled with an index: g for the German word gerade = even, when the signs are the same and u 
for the German word ungerade = odd, when the signs are different.  

The quantum number m is labeled with Greek letters σ, π, and δ for m = 0, m = 1, and m = 2, 
respectively.  This corresponds to the way the Latin letters s, p, d are used in the atom for the 
quantum number l.  Additionally, a principal quantum number is used to number states with the 
same symmetry but with increasing energy.  In this sense, the state 1σu[1s] describes a molecular 
orbital derived from two 1s atomic states that have been superimposed with different sign.  It has 
the magnetic quantum number m = 0 and is the first state with this symmetry.  

In the following figure, the molecular orbitals derived from 1s states are plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        
                  1s                                1σg                                    1s                              1σu 
 

Fig. 3.2: Atomic 1s orbitals for two atoms with large distance and corresponding molecular 
orbitals calculated by superposition of 1s atomic orbitals.   
The color indicates the sign: red = positive, blue = negative 
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Molecular orbitals with a high probability of finding the electron between the two nuclei are 
called bonding states, because they form a molecular bond.  States that have a node between the 
nuclei, resulting in much lower electron density between the nuclei, are called anti-bonding.  If 
they are occupied by electrons, it weakens the bond strength between two atoms. In the case 
shown in Fig. 3.2, as in most cases, the even state 1σg[1s] is bonding and the odd state 1σu[1s] is 
anti-bonding. 
 
What is analogous, what is different? 
 

In the acoustic analog, we have a situation very similar to that of the real molecule.  The two, 
coupled spheres with same diameter correspond to the two identical nuclei that are coupled 
through the iris between them. The diameter of the iris determines the coupling strength, which 
corresponds to the internuclear distance of the real molecule. The symmetry is cylindrical, as it is 
in the real molecule.  Therefore, we can use the same quantum numbers and labeling of states as 
in the real molecule.  Due to different boundary conditions, and the absence of a potential, the 
eigenstates have a different order than in real molecules.  The eigenstates can be identified 
experimentally by the “atomic” states from which they are derived by the quantum number m and 
by the phase of the wave function in the two spheres. 

The eigenstate with a wave function that has no node at all (equal phase everywhere in space) has 
the frequency zero in the acoustic case.  This is due to Neuman’s boundary conditions that would 
result, for this case, in a constant amplitude of pressure everywhere.  It cannot oscillate.  In the 
case of a molecule this state is the 1σg[1s] state, the ground state of the H2

+-molecule.  It cannot 
be observed as resonance in the acoustic analog. 
 

The state with lowest frequency in the acoustic analog is the 1σu[1s].  It is derived from 1s states 
of the uncoupled “atoms”, even though the 1s states of the uncoupled atoms cannot be observed 
because, for both, the frequency is zero.  With increasing coupling strength, the frequency of this 
state increases, as you observed in the experiment above.  Since the state is odd, the phase of the 
wave function has different sign in both spheres.  You observed this on the oscilloscope when 
you measured the signal at the two different microphone locations in the two spheres.  The state 
is a σ-state since the amplitude is constant as function of ϕ  = α as you observed by rotating the 
top hemisphere.  For higher m,  the amplitude would show a dependence as cos(mϕ). 
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ππππ and δδδδ orbitals 
 

From atomic p orbitals, we derive molecular orbitals that can have magnetic quantum numbers m 
= 0 (σ) and m = 1 (π).  Due to even and odd superposition, this results in four different molecular 
orbitals: σg , σu, πg , πu .  In the case of atomic d-orbitals the number of derived molecular orbitals 
is six: σg , σu, πg , πu, δg , δu .  The following figure shows the molecular orbitals along with the 
atomic orbitals they are derived from.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

                               
                 

   2pz (m=0)                    2σg                              2pz (m=0)                   2σu 
                                                bonding                                                       antibonding 
 
Fig. 3.3a: Molecular σ-orbitals derived from the atomic 2p-orbital. 
 

                               
 

               2py (m=±1)                  1πg                             2py (m=±1)                  1πu 
                                             antibonding                                                       bonding 
 
Fig. 3.3b: Molecular π-orbitals derived from the atomic 2p-orbital. 
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Experiment 
 

Let us now investigate the molecular orbitals derived from the first atomic p-state that is observed 
at about 2300 Hz.   

Measure a resonance spectrum in the “atom” for reference and then take a measurement in the 
“molecule”.  Use the 20 mm iris to produce the maximum splitting of the peaks.   

Before measuring, press down firmly on top of the pile of hemispheres.  Good contact is 
necessary to resolve peaks that are close to each other.  You should scan slower than 50 ms/Hz.   

Take spectra at different azimuthal angles. 
 
    

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::         
 

With azimuth α = 180°, there will 
be three peaks at about 2288 Hz, 
2298 Hz, and 2447 Hz.  
 

With azimuth α = 0° there are also 
three peaks, but the middle one is 
observed at 2295 Hz. This makes it 
clear that there are actually four 
peaks present, corresponding to  

σg , σu, πg , πu.  
 
At different azimuth angles, the 
peaks interfere differently with 
each other, which produces very 
different line shapes.  In the 
following figures, the spectra for 
the resonance in the “atom” and in 
the “molecule” are shown.  
Measurements should be taken 
with sufficiently slow scanning 
speed to make the small splitting 
visible. 
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Experiment  
 

Now we want to identify the peaks in the spectra.  In addition to the peak at about 2450 Hz there 
are three peaks around 2300 Hz, even though it looks like a double-peak structure.   

You can measure the phase difference between the upper and lower spheres for the different 
peaks. Note that it is only in the α = 180° position that the microphone positions are equivalent 
for the upper and lower hemisphere.  For all other α, you have to take the azimuthal dependence 
into account.   

In the case of strongly overlapping peaks, it is difficult to measure the phase directly.  Here you 
may observe how the amplitude develops as function of azimuth. 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
 

The following figure shows the double-peak structure at 2300 Hz measured in the α = 0° position 
(red) and in the α = 180° position (green).  It is clearly visible that there are actually four peak 
positions with 2288 Hz, 2295 Hz, 2298 Hz and 2447 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left peak shows a constant amplitude as function of azimuth, indicating that it is a σ-state. It has 
the same phase in the upper and lower sphere.  It is therefore identified as σg.  The peak at 2447 Hz 
also has a constant amplitude as function of azimuth, but shows a 180°-phase difference between 

the spheres (different sign in amplitude).  It is therefore identified as σu.    

The remaining peaks are obviously πg , πu.  In the α = 0° position the peak at 2295 Hz interferes 
constructively with the σg-state while the peak at 2298Hz interferes destructively. This is a hint that 

the sign of wave function at the microphone position is the same as for σg. In the α=180° position 
the situation is opposite. As consequence the peak at 2295Hz would belong to πu and the peak at 

2298Hz to πg. However, a unique identification of the π-states is difficult. 

 
Double-peak structure at 2300Hz measured in the α = 0° position (red)  
and in the α = 180° position (green). 

σg 

σu 

πu 

πg 


