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1.  Standing sound waves in a tube – an analog to a quantum 
mechanical particle in a box 

 
Objective:  For a simple tube, use an oscilloscope to compare the sound input by a speaker at one 
end to the sound received by a microphone at the other end. 
 
Equipment Required:   
 

TeachSpin Quantum Analog System:  Controller, V-Channel & Aluminum Cylinders 
Sine wave generator capable of producing 1-50 kHz with a peak-to-peak voltage of 0.50 V  
Two-Channel Oscilloscope 
 

Setup:  
  

Make a tube using the tube-pieces.  Put the end-piece with the speaker on one end and the end-
piece with the microphone on the other.  Attach a BNC splitter to SINE WAVE INPUT on the 
Controller.  Connect the output of your sine wave generator to one side of the splitter.  Use a BNC 
cable to send the sound signal to the Channel 1 input of your oscilloscope.  Plug the lead from the 
speaker end of your experimental tube to SPEAKER OUTPUT on the Controller.  The same sine wave 
now goes to both the speaker and Channel 1.  Connect the microphone output of the tube array to 
MICROPHONE INPUT.  Connect AC MONITOR on the Controller to Channel 2 of the oscilloscope.  
Channel 2 will display the sound signal received by the microphone.  Trigger the oscilloscope on 
Channel 1.  Use the ATTENUATOR dial on the Controller to keep the signal on Channel 2 from going 
off scale.  The signal is at maximum when the ATTENUATOR dial is at 0.  The signal gets weaker as 
the dial number increases. (Appendix 1 describes the function of each part of the Controller.) 
 

Experiment: 
 

Start at low frequency (100 Hz or less), and slowly increase the frequency.  
 

Question: 
 

What are you observing?  How can you tell that you are at a resonance?  Did you notice the phase-
shift when going through a resonance?  (Note that, due to unknown phase shifts in the speaker, 
microphone, and electronics, the absolute phase between input and output channel can not be 
interpreted.)   
 

Experiment: 
 

Change the length of the tube and repeat the experiment.  
 

Question: 
 

Do the resonance frequencies change? Are they higher/lower when the tube is longer/shorter?  
    

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    
 

The shorter the tube, the higher the resonance frequencies. 

    

Take a full set of data for one tube length: 
 

Measure and record the length of the tube.  Measure the first 20 resonance frequencies.  Assign the 
lowest resonance frequency the index number n = 1, and plot the resonance frequency fn as 
function of its index number, n. 
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AAAADVISORS DVISORS DVISORS DVISORS IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::        (E(E(E(ENTIRE NTIRE NTIRE NTIRE PPPPAGEAGEAGEAGE))))    
    

In a tube of 8 x 75 mm = 600 mm, the first resonance is found at about 290 Hz.  A phase 
shift of about 180° degrees is observed when sweeping through the resonance.  The highest 
rate of change of phase appears at the resonance frequency, where the amplitude has its 
maximum. Typical screen-shots of the oscilloscope are shown below. 

Further resonances are found at about 573 Hz, 859 Hz, 1144 Hz, 1427 Hz, and so on.  The 
exact position of the resonances is temperature dependent since speed of sound is 
temperature dependent. 
 
 

Channel 1 (upper) Frequency generator 
Channel 2 (lower) AC-Monitor 
10 Hz below first resonance (279 Hz) 

 

Channel 1 (upper) Frequency generator 
Channel 2 (lower) AC-Monitor 
On top of resonance (289 Hz) 

 

Channel 1 (upper) Frequency generator 
Channel 2 (lower) AC-Monitor 
10Hz above resonance (299 Hz) 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Background: 
 
A resonance occurs when a standing sound wave has developed in the tube. The sound emitted by 
the speaker is reflected back and forth between the two hard end-walls of the tube. The resonance 
develops when, after a round trip in the tube, the sound wave is in phase with the wave emitted by 
the speaker. In this case, the emitted sound interferes with the reflected sound constructively. The 
condition for resonance is fulfilled when: 

 λn
f

c
nL ==2  

with the length of the tube L, the speed of sound c, the frequency f, the wavelength λ and an 
integer number n=1,2,...∞. Resonances are observed when the tube length is an integer multiple of 
λ/2.  
 
Analyze the data: 
 

From the resonance frequencies plotted as function of their index n, you can calculate the speed of 
sound c.  Make a linear fit for your data.  Calculate c from the slope and determine the uncertainty 
of your measurement. 

 
Resonance frequency as function of resonance index number n.   
The data was measured in a 600 mm long tube.  
The linear fit has a slope of ∆f /∆n = 287.5 Hz. 
This corresponds to a speed of sound c = 2L*f = 345 m/s 
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Differential equation for sound and boundary conditions: 
 

The propagation of sound waves in air can be described by differential equations.  

On one hand, there is the linearized Euler’s equation 

  p
t

u
 grad

1

ρ
−=

∂
∂r

      (1.1) 

with the velocity of the air u
r

, the mass density of the air ρ and the pressure p. 
On the other hand, the continuity equation has to be fulfilled.  

    u
t

r
 divρρ −=

∂
∂

      (1.2) 

Additionally, representing compressibility asκ, the density and the pressure of 
the air are connected by  

    
κρρ
1=

∂
∂p

       (1.3) 

These equations can be combined to a wave equation for the pressure 

    p
t

p ∆=
∂
∂

ρκ
1

2

2

       (1.4) 

with the Laplace operator ∆.  In this wave equation, however, the phase relation between velocity 
and pressure of the wave is lost, since the velocity has been eliminated.  We need to refer to the 
velocity again, since the boundary conditions at the hard wall can be formulated best with the 
velocity.  It is obvious that, at the surface of the wall, the velocity perpendicular to the wall has to 
be zero.  (The air can not move into or out of the wall.)  From eqn. (1.1), it also follows that, at the 
surface of the wall, the derivative of the pressure in the direction perpendicular to the wall is zero. 
This combination of boundary conditions is called a “Neumann boundary condition”. 

For frequencies lower than about 16 kHz, the air is not moving perpendicular to the symmetry-axis 
(x-axis) of the tube. Thus, 0)( =ru y

r
, 0)( =ruz

r
, )()( xuru xx =r

and )()( xprp =r
. 

The problem has now been reduced to a quasi one-dimensional problem and we can make a one-
dimensional ansatz for the solution in the form: 

   )cos()( 0 αω +−= txkpxp       (1.5) 

Here, 0p  represents the amplitude of the wave and must not be confused with the background air 

pressure of about 1000 mbar.  ω = 2π f  is the angular frequency and k = 2π /λ is the wave vector. 
This function describes a wave propagating in the positive x-direction. In the tube we find a 
superposition of right and left (positive and negative x-direction) propagating waves, since the 
waves are reflected at the ends of the tube. The wavefunction is therefore given by 

   )cos()cos()( 02
1

02
1 αωαω −−−++−= txkptxkpxp   (1.6) 
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This can be rewritten as 

   )cos()cos()( 0 txkpxp ωα+=      (1.7) 

Solutions of the differential equation are those wave functions p(x) that fulfill the boundary 
conditions for a certain tube length L at all times.  From the boundary conditions dp/dx(0) = 0 and 
dp/dx(L) = 0, we can easily derive the parameters to be α = 0 and k = n π /L. 

 

Dispersion of sound waves: 
Redraw your graph of frequency as function of resonance-index (fn vs. n) to show angular 
frequency as function of wave vector ω(k).  This new graph shows the dispersion relation of 
sound waves. 
 
Analogy to a quantum mechanical particle in a box: 
 

The sound wave in the tube can serve as an analog for a quantum mechanical particle in a one-
dimensional square potential well. The differential equation that describes the particle is 
Schrödinger’s equation: 

  ),()(),(
2

),(
2

trrVtr
m

tr
t

i
rrrhr

h ψψψ +∆−=
∂
∂

    (1.8) 

with the wave function ),( tr
rψ , the particle mass m, and a scalar potential V(r).   

In the case of a one-dimensional square potential well with infinitely high potential barriers at 
both ends, and V = 0 in the space between the ends, the equation reduces to 

  ),(
2

),(
2

tx
m

tx
t

i ψψ ∆−=
∂
∂ h

h       (1.9) 

This differential equation has as a solution complex waves that are scattered back and forth 
between the ends of the well.  The probability of finding the particle at a certain position x in the 

well is given by the probability density 
2

),( txψ .  When multiplied by the elementary charge e, it 

represents the charge density inside the well.   

Most of the solutions of eqn. (1.9) result in time-dependent charge densities.  These, however, 
would emit electromagnetic waves, since charge is moving. On the other hand, there are certain 
solutions that have a time independent charge density. They can be found by solving the time-
independent Schrödinger equation 

  )()()(
2

)(
2

rrVr
m

rE
rrrhr ψψψ +∆−=      (1.10) 

In our case, for the one-dimensional square potential well, the equation simplifies to 

  )(
2
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2

x
m

xE ψψ ∆−= h
      (1.11) 
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This equation can be solved for certain eigenvalues of energy E.  We make an ansatz with standing 
waves of the form 

  )sin()( αψ += xkAx        (1.12) 

At the ends of the box, where the potential is infinitely high, the wave function has to be zero 
(Dirichlet boundary condition).  These boundary conditions, ψ(0) = 0 and ψ(L) = 0, are fulfilled if 
α = 0 and k = n π /L where n is an integer.  The total probability of finding the particle anywhere 

in the box has to be one.  This determines that the amplitude of the wave function is LA /2= . 

The solution of Schrödinger’s time-dependent equation (1.9) is obtained from the solution (1.12) 
by multiplying it with a time dependent phase factor  

  tiexkAtx ωαψ −+= )sin(),(       (1.13) 

You can convince yourself that, for this solution, 
2

),( txψ  is indeed time-independent.  The 

angular frequency in this expression is given by h/E=ω .  Note that in quantum mechanics the 
energy is in general connected with the frequency by 

  ωh== fhE         (1.14) 

We can now calculate the eigenvalues of energy that are given by 

  
2

22222

22
)(

Lm

n

m

k
kE

πhh ==       (1.15) 

This is the dispersion relation of the quantum mechanical particle in a box. 

 

What is analogous, what is different? 

The classical sound wave in a tube and the quantum mechanical electron in a square potential well 
are similar in many respects, but some details are different.  Both the sound wave and the wave-
function of the electron are solutions of a wave equation describing a delocalized object.  The 
particular aspect being described, however, is different.  In the classical case, p(x,t) is the 
amplitude of the signal picked up by a microphone located at this position.  In the quantum 

mechanical case, the squared amplitude 
2

),( txψ at a certain position gives the probability of 

finding the electron at this position. 

Both of the differential equations have the Laplace operator on the right side (second derivatives 
with respect to space).  However, with respect to time they are different.  In the classical case, we 
have a second derivative with respect to time that leads to wave-solutions.  In the quantum 
mechanical case, the combination of the complex number i and a first-order derivative with 
respect to time leads to wave solutions.  But these wave-solutions are complex due to this special 
form.  It is also the first-order time-derivative that results in a parabolic dispersion E(k) of the 
electron.  In contrast, the sound wave has a linear dispersion due to the second-order time-
derivative. Schrödinger’s equation includes, in addition, a potential )(rV

r
 that can not be simulated 

by the sound wave experiment.  However, the reflection at a hard wall can be used to function as 
an analog to an infinitely high potential barrier.  In later experiments, we will use irises as an 
analog for finite potential barriers with certain reflection and transmission probability. 



Adv. Man. Rev 2.0, 12/09 

 1 - 7 

In both cases, eigenstates are found in a well.  For certain wavelengths, standing waves are found, 
and in both cases the wavevector of these waves is given by k = n π /L.  However, the position of 
the nodes is different, because the boundary conditions are not the same.  In the quantum 
mechanical case, the wave function must be zero at the boundary. In the case of sound waves, we 
have physical quantities that we use to describe the wave.  One is the pressure and the other is the 
air-velocity.  Like the quantum mechanical wave function, the velocity has a node at the boundary, 
but the velocity is a vector.  The pressure has a local maximum at the boundary and is a scalar 
quantity.  As an analog to the scalar quantum mechanical wave function, we therefore prefer the 
scalar pressure, even though it has an opposite boundary condition.  A scalar “velocity potential” 
could also be used to describe the wave, but it does not help much, since its nodes are at the same 
position as those for the pressure.  You should be aware of this difference. 

To each eigenstate, an eigenfrequency, ω, is assigned.  In quantum mechanics, it is found in the 
time dependent phase factor, tie ω .  In the case of sound waves, the eigenfrequency is simply the 
frequency of the sound itself, ω=2π f.  In quantum mechanics, the frequency is directly related to 
an energy by the equation ωh=E .  This has no direct analog in the sound experiments.  When 
working with sound, we look at the frequency of the sound and not at an energy.  We therefore 
consider energy-levels in quantum mechanics as being analogous to the “frequency-levels” in the 
sound experiments that are given by the sharp resonance frequencies. The dispersion E(k), 
discussed in quantum mechanics, can be compared with ω (k) in classical mechanics. 

Another little difference is related to the absolute phase.  The microphone can measure the phase 
of the sound wave, but in quantum mechanics the absolute phase of a state can not be measured.  
Relative phases between two wavefunctions can be measured in quantum mechanics and we can 
measure the phase of an acoustic wave function at different locations and determine the relative 
phase to compare with a quantum mechanical system.  You should be aware that the sound 
experiments provide an experimentalist with more information about the system than can be 
extracted from an analogous quantum mechanical system.  
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1.2 Measure a spectrum in the tube using an oscilloscope 

 
Objective:   In this experiment, the independent variable is the frequency provided by the 
generator, and the dependent variable is the amplitude of the sound wave reaching the 
microphone.  First, we will examine the amplitude of the sound-wave received at the microphone 
as a function of the frequency of the sound.  Then, we will determine how the spectrum (the 
pattern) observed depends on the length of the tube conducting the sound. 
 
Setup: 
 

With the tube, speaker and microphone arranged as before, connect the output of the sine wave 
generator to SINE WAVE INPUT on the Controller and the wire from the speaker to SPEAKER  OUPUT.  
Connect the microphone on the experimental tube to MICROPHONE INPUT.   
 

Locate the FREQUENCY-TO-VOLTAGE CONVERTER module on the Controller and set the toggle switch 
to ON.   With the oscilloscope in the xy-mode, connect the DC-OUTPUT of the converter module to 
Channel 1, the x-axis.  The converter provides a voltage proportional to the instantaneous 
frequency.  The calibration is 1 V per 1 kHz and it can be used for frequencies up to 10 kHz (or, 
with offsets, up to 20 kHz). 
 

Connect DETECTOR OUTPUT to Channel 2, the y-axis of the oscilloscope.  The DETECTOR OUTPUT 
connection provides a dc signal that is proportional to the amplitude of the sound wave at the 
microphone. You have now set up the oscilloscope to plot the amplitude of the sound at the 
microphone as a function of the frequency of the sound.  Set the image persistence time on the 
oscilloscope to infinite.  Now, sweep the frequency by hand.  As you change the frequency, the 
oscilloscope will plot a spectrum with peaks.  You can use the DC-OFFSET knob to center the image 
on the oscilloscope screen.  Use the ATTENUATOR dial on the Controller to keep the signal from 
going off scale.  (With an attenuator, a higher reading on the dial gives a smaller signal.   
Appendix 1 describes the function of each part of the Controller) 
 

Experiment: 
 

Take spectra for different tube lengths and compare them with the results you found in section one. 
 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    
 

Typical screen shots of the oscilloscope are shown below. 
 

 

 
 

Spectrum in a 8 x 75 mm = 600 mm tube 
 

 

Spectrum in a 6 x 75 mm = 450 mm tube 
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1.3 Measure a spectrum with the computer and compare it to the spectrum found with the 
oscilloscope. 

 
Objective:  This experiment uses a computer sound card both to generate the sound wave and to 
sweep its frequency.  We will use the oscilloscope to observe the actual sine wave signals both 
going into the speaker and coming from the microphone.  Simultaneously, we will use the 
computer to display a spectrum which shows the amplitude of the signal from the microphone as 
a function of the frequency of the sound.   
 
Equipment Required:   
 

TeachSpin Quantum Analog System:  Controller, V-Channel & Aluminum Cylinders 
Two-Channel Oscilloscope 
Two adapter cables (BNC - 3.5 mm plug)  
Computer with sound card installed and Quantum Analogs “SpectrumSLC.exe” running 
 

WARNING:   The BNC-to-3.5-mm adapter cables are provided as a convenient way to couple 
signals between the Controller and sound card.  Unfortunately, they could also provide a way 
for excessive external voltage sources to damage a sound card.  Most sound cards are 
somewhat protected against excessive inputs, but it is the user's responsibility to ensure that 
adapter cable voltages are kept BELOW 5 Volts peak-to-peak.   
The maximum peak-to-peak value for optimum performance of the Quantum Analogs system 
depends on your sound card and can vary from 500 mV to 2 V.  

 
Setup: 
 

Using the tube-pieces, make a tube with the end-piece containing the speaker on one end and the 
end-piece with the microphone on the other.   
 

Now, using connectors on the Controller, you will send the sound card signal to both the speaker 
and Channel 1 of the oscilloscope, and the microphone signal to both the microphone input of 
the computer and to Channel 2 of the oscilloscope. 
 

First, make sure that the ATTENUATOR knob on the Controller is set at 10.0 (out of 10) turns. 
 

Let’s start with the sound signal.  Attach a BNC splitter or “tee” to SINE WAVE INPUT on the 
Controller.  Using the adapter cable, connect the output of the sound card to one arm of the 
splitter.  With a BNC cable, convey the sound card signal from the splitter to Channel 1 of your 
oscilloscope.  Plug the lead from the speaker end of your experimental tube to SPEAKER OUTPUT 
on the Controller.  The sound card signal is now going to both the speaker and Channel 1. 
 

The microphone signal will also be sent two different places.  Connect the microphone on your 
experimental tube to MICROPHONE INPUT on the Controller.  Put a BNC splitter on the Controller 
connector labeled AC-MONITOR.  From the splitter, use an adapter cable to send the microphone 
signal to the microphone input on the computer sound card.  Use a BNC cable to send the same 
signal to Channel 2 of the oscilloscope to show the actual signal coming from the microphone.   
 

The computer will plot the instantaneous frequency generated by the sound card on the x-axis 
and the amplitude of the microphone input signal on the y-axis. 
 



Adv. Man. Rev 2.0, 12/09 

 1 - 10 

The next job is to adjust the magnitude of both the speaker and microphone signals so that 
you will have maximum signal while keeping the microphone input to the computer from 
saturating.  Peak-to-peak signals to the microphone input may have to be limited to 0.50 to 2.0 
volts depending upon your sound card. 
 

Once the program, SpectrumSLC.exe., is running, you can configure the computer.  Go to the 
menu at the top of the screen and choose Configure > Input Channel/Volume   At this point, 
choose Line In, if it is available; otherwise choose Microphone.  On this screen, set the 
microphone volume slider to the middle of its range. 
 

To set the speaker volume, use the Amplitude Output Signal on the lower left of the computer 
screen.  That slider should also be set to middle range. 
 

The microphone signal coming from the apparatus first passes through a built-in amplifier, and 
then through the ATTENUATOR, before reaching the AC-MONITOR connector.  The ten-turn knob on 
the attenuator decreases the incoming signal by a factor ranging from zero to 100.  For example, 
a setting of 9.0 turns (out of the 10 turns possible) stands for an attenuation of 9/10 or 90% 
attenuation of the signal.  (A higher setting means a smaller signal.) 
 

After taking an initial wide range spectrum, choose a section that includes the highest peak and a 
smaller one next to it.  Readjust the scan to cover just this portion.  Using the option that allows 
you to keep successive spectra visible, take Spectrum 1, 2, 3, etc. with the attenuator knob set at 
9.9, 9.8, 9.7, . . . turns (out of ten).  The nesting heights of the peaks will tell you whether or not 
the system is behaving in a linear fashion.   Continue to go lower on the 10-turn dial setting until 
the computer program flashes ‘saturation’.  You will also have visual evidence of saturation – a 
flat section on the tallest peak or a smaller “nesting” spacing.  (See Appendix 2 or 3 for details.) 
 

Once you have reached saturation, drop back into the linear range.  Now you can operate with 
confidence that the signals you see really are proportional to the amplitude of the sound wave 
you are studying. 
 
AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
 

For efficiency, some laboratory instructors may choose to give the students a set of parameters 
for the speaker, microphone settings on the computer and for the attenuator on the Controller.    
 
Take care that the sound is not filtered by any software-filters provided by the sound-card drivers. 
Switch off all these filters. Alternatively, a computer controlled frequency-generator can be used.  
The program SpectrumSLC.exe can control a HAMEG 8131-2 digital function generator via the 
serial port using a null-modem cable.  In case you are using this function generator, its output is 
connected to SINE WAVE INPUT and to the oscilloscope instead of the sound card output.  In the 
program SpectrumSLC.exe you can choose the serial port in the menu under “configure” – “serial 
port”.  If “none” is chosen, the serial port is not used. 

 
Experiment: 
 

Now you can use the computer to collect an overview spectrum from about 100 to 10,000 Hz. 
You can use coarse steps (~10 Hz) and a short time per step (~50 ms) for this investigation.  As 
the frequency is changing, watch the trace on the oscilloscope.  How is the oscilloscope showing 
the change in frequency?  What is happening to the amplitude of the signal?  How is this related 
to the trace being created on the computer? 
 

Compare the spectrum recorded on the computer to the results you found using the oscilloscope 
in the first experiment. 
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AAAADVISORS DVISORS DVISORS DVISORS IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 
The diagram below is for the ADVISOR ONLY. 
 

 

 
 

Spectrum measured in a tube of length 8 x 75 mm = 600 mm    
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Linewidth: 

Lifetime of quantum mechanical states 

In most cases eigenstates do not last forever.  In classical physics there is decay due to dissipation 
of energy by friction.  In quantum mechanics only the ground state lasts forever. Excited states 
with higher energy decay into the ground state, which is the eigenstate of the system with the 
lowest energy.  These effects are not included in the differential equations. However, we can 
introduce the decay easily into the wave functions by replacing the time dependent factors in the 
wave function )cos( tω  and tie ω , respectively, with a factor that is oscillating and exponentially 

damped.  With a damping constant λ it results in  )cos( te t ωλ−  and tite ωλ −− , respectively. 

In the case of finite lifetime, the wave function cannot be assigned to a single angular frequency 

0ω  but contains a spectrum of angular frequencies that we can determine by Fourier-
transformation.  Let’s write the wave function in a general way as 

  tiexftx )( 0)(),( ωλψ +−=       (1.16) 

with an arbitrary spatial dependence f (x).  For t < 0, the wave function is assumed to be zero. By 
performing a Fourier-transformation we obtain the so-called spectral function, A(ω), that describes 
the amplitude as function of angular frequency in the classical case.  In the quantum mechanical 

case, 
2

)(ωA  is the probability of measuring the particle to have the energy ωh=E .  Performing 

the Fourier-transformation 
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ω      (1.17)   

we obtain the spectral function 
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A  .       (1.18) 

The absolute squared is a so-called Lorentzian peak 

22
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2
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λωω
ω π

+−
=A .      (1.19) 

The width of the peak is directly related to the lifetime τ of the eigenstate. The lifetime denotes the 
time after that the amplitude of the state has been reduced to 1/e. From the half width at half 
maximum of the peak the damping constant λ can be read directly. In quantum mechanics the 
width in energy Γ of a metastable state is λh=Γ  

  
τ
h=Γ          (1.20) 

The spectral function A(ω) is complex, which can be written as the absolute )(ωA  multiplied by a 

complex phase factor ϕωω ieAA )()( = . Both amplitude and phase depend on the angular 

frequency.  
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Linewidth of the resonances in the sound experiment 
 

In the sound experiments the situation is a little bit different, but the result looks almost the same 
as in quantum mechanics. The sound wave close to an eigenstate can be seen as a damped, driven 
harmonic oscillator described by the linear differential equation 

  )cos(2 2
02

tKp
t

p

t

p ωωγ =++
d
d

d

d2

     (1.21) 

This driving force is represented by the speaker that is driving the standing sound wave.  The 
resonance frequency under consideration has the angular frequency 0ω .  The solution of this 

differential equation is a superposition of a transient solution that is a solution of the homogenous 
differential equation (first part of eqn. 1.22), and a steady-state solution (second part of eqn. 1.22) 
that is of interest here.  

  )cos()cos()( 111 ϕωϕωγ +++= − tAteAtp t     (1.22) 
For our experiment, we can assume that the transient solution has already damped out, so that we 
are detecting only the steady state amplitude, A, of the sound wave.  This amplitude depends on 
the frequency ω of the driving force compared to the eigen-frequency 0ω of the oscillator.  It is 

given by 

2222
0 )2()( ωγωω +−

= K
A  .      (1.23)  

The phase between driving force and oscillating air is given by 
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ωγϕ

−
= .       (1.24) 

Using the complex exponential function, the result can be written even more simply.  
For this purpose we write the differential equation in the form  

  tiKep
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      (1.25) 

and the steady-state solution as 

  )()( ϕω += ti
s Aetp .       (1.26) 

The complex amplitude A as function of angular frequency ω can then be written as 
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If only single resonance existed in the tube, the microphone would measure the amplitude 
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In reality, however, there are a number of resonances, all of which are simultaneously excited.  
The superposition is coherent because there is a fixed phase-relation between the different 
resonances.   

The entire spectrum is therefore a superposition of all complex amplitudes.  That can be written 
as: 
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 (1.29) 

 
In this notation, we are using four fitting parameters to model each peak in the spectrum.  They 
are iK , iω , iγ , iϕ .  In our simplified theoretical model we describe the resonances in the tube by 

independent damped, driven oscillators with parameters taken from the experiment.  The coupling 
of the speaker to the standing wave depends on geometry and can be different for different 
resonances, which results in differentiK ’s.  The friction depends on a different parameter, which 

results in different iγ ’s.  Finally, the phase between driving force and oscillating air is also 

different for different resonances.  Therefore, the phase iϕ  is also fitted as a parameter. 

 
In a spectrum measured with an oscilloscope or by computer, )(ωA  is plotted.  The connector 

marked DC-OUTPUT on the Quantum Analogs Controller gives a voltage proportional to )(ωA .  

The linewidth of an acoustic resonance is small compared to its frequency; 0ωγ << .  In this case 
we can make the approximation  

  )(22 0
22

00 ωωωωωωωω −≈−⇒≈+   

and rewrite the absolute value of Amplitude as 
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Since ω can be assumed to be almost constant in the frequency interval across the peak (within the 
approximation 0ωγ << ),  
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−+
∝

i
A  

The resonance peak A(ω) in a classical driven, damped oscillator has the same shape as the 
spectral function of quantum mechanical eigenstate with finite lifetime (eqn. 1.18). 
In the following figure the two line-shapes  
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and  
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λωω
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are plotted for comparison with the parameter Hz100020 ⋅= πω and Hz202 ⋅== πλγ . The full 

width at half maximum of the peaks is λω 32=∆  and λ
π
3=∆f , respectively. 

 

 

 

 

Figure Lorentzian, lifetime tau, relation Lambda and tau, FWHM etc. 

 

 

 

 

 

 

 

 

At higher frequencies the difference in the line-shapes is almost invisible 
Line-shape of a classical resonance (green line) and for a quantum mechanical eigenstate 
with finite lifetime (red line) for comparison (parameter see text). 
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The better known Lorentzian-shape for the same parameter looks as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A comparison of the line-shape of a classical resonance (green line) and a quantum 
mechanical eigenstate with finite lifetime (red line). 
Parameters: Hz500020 ⋅= πω and Hz202 ⋅== πλγ . 

 
Lorentzian line-shape (squared amplitude) of a quantum mechanical eigenstate with finite 
lifetime  
Parameters: Hz500020 ⋅= πω and Hz202 ⋅== πλγ  
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Objective:  In this experiment, we will use the computer to record a spectrum of eight or fewer 
peaks.  We will then use the software program provided to demonstrate that the data generated 
by Quantum Analogs can be fit to the theoretical models. 
 
Setup: 
 

Create a short tube and set the computer parameters to produce a spectrum with eight or fewer 
peaks.  One possible configuration would be a 150 mm long tube, a sweep from 5000 Hz to 
14000 Hz, 5 Hz steps, and 50 ms per step.   
 
Experiment: 
 

Generate a spectrum of eight or fewer peaks.  After generating your spectrum, open the fitting 
window in the software via the sequence:  Menu > Windows > Fit.  In the fitting window that 
opens, your first task is to give the software a set of initial estimates for the location and height of 
up to eight resonances.  In the ‘Peak Number’ menu at the upper left of the window, select Peak 1.  
Now, point your mouse to the top of the lowest frequency peak, and left-click your mouse.  You 
will see (in blue) the theoretical resonance with the center and height matching the peak you have 
selected.  The blue curve also has a default value for width.  If you have a mouse wheel, you may 
use the wheel to adjust the width estimate to match your data.  Perfection is not required in these 
initial estimates. 
 

When you are done with Peak 1, right-click your mouse and the selection in the Peak Number 
menu will change to Peak 2.  Now locate and left-click the second peak.  Repeat this initial-
estimate procedure for it and each subsequent peak. 
 

After using the mouse to put in the initial estimates for all of the peaks, you will see a blue curve 
showing a first approximation of the theoretical model.  Now click the button for 'Start Fit', and 
the software will use your estimates to optimize the match between the data curve (red) and the 
theoretical model (blue), by adjusting the fitting parameters.  If one of the model's peaks 'escapes' 
from the data of the spectrum during this fitting procedure, you can stop the fit and readjust 
manually.  After you've reset that peak's estimated parameters, just restart the automatic fit. 
 

When the automatic fitting is done, you can use the Peak Number menu (at the window's upper 
left) to select any peak.  The software then shows the values of the parameters for that peak that 
best-fit your data.   
 

You can now check the repeatability of your data.  To do this, first record the parameters for one 
of your peaks.  Next, acquire a fresh set of data.  Repeat the fitting procedure, and look again for 
the center location of your chosen peak.  (Prepare to be very impressed!) 
 

You can save the fitting parameters that you generated as an ASCII file.  The best-fit theoretical 
function can be saved either as a data file or an image file. 
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AAAADVISORS DVISORS DVISORS DVISORS IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
    
All of the information on the last two pages is for the ADVISOR ONLY 

Here are typical results that were measured with the parameters suggested: 

 

 
Spectrum measured in a tube of length 2 x 75 mm = 150 mm. 

 

The The The The figure on the figure on the figure on the figure on the following following following following page page page page shows the fitshows the fitshows the fitshows the fit and the fit parameters and the fit parameters and the fit parameters and the fit parameters....    
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 Fit to the spectrum measured in a 2 x 75mm = 150mm long tube (blue line: fit, red line: data). 
 
The fit-parameters are shown in the chart below: 
 
1. Peak: 
Frequency [Hz]   = 5745.173 
Amplitude [a.u.] = 31.877 
Width [Hz]       = 15.246 
Phase [degrees]  = -64.144 
 
2. Peak: 
Frequency [Hz]   = 6886.800 
Amplitude [a.u.] = 24.452 
Width [Hz]       = 16.957 
Phase [degrees]  = -29.514 
 
3. Peak: 
Frequency [Hz]   = 8032.668 
Amplitude [a.u.] = 19.478 
Width [Hz]       = 19.140 
Phase [degrees]  = 12.260 
 

4. Peak: 
Frequency [Hz]   = 9174.970 
Amplitude [a.u.] = 14.923 
Width [Hz]       = 21.754 
Phase [degrees]  = 54.007 
 
5. Peak: 
Frequency [Hz]   = 10320.091 
Amplitude [a.u.] = 12.572 
Width [Hz]       = 22.936 
Phase [degrees]  = 121.176 
 
6. Peak: 
Frequency [Hz]   = 11456.553 
Amplitude [a.u.] = 9.024 
Width [Hz]       = 27.552 
Phase [degrees]  = -0.317 
 

7. Peak: 
Frequency [Hz]   = 12600.503 
Amplitude [a.u.] = 6.041 
Width [Hz]       = 34.381 
Phase [degrees]  = -67.036 
 
8. Peak: 
Frequency [Hz]   = 13724.593 
Amplitude [a.u.] = 4.803 
Width [Hz]       = 39.503 
Phase [degrees]  = 53.198 
 
 

 

The width of the peaks increases with increasing frequency, which can be explained by 
stronger friction of the air with the tube wall at higher frequencies.  The amplitude as 
function of frequency can not be interpreted, since the transmission function of speaker 
and microphone is not taken into account.  The absolute phase of the peaks is set 
arbitrarily during the automatic fitting procedure.  However, the relative phase of one peak 
with respect to another peak has a physical meaning and is important for the overall 
shape of the spectrum 


