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1. Standing sound waves in a tube — an analog tajaantum
mechanical particle in a box

Objective: For a simple tube, use an oscilloscope to comp@rsedund input by a speaker at one
end to the sound received by a microphone at ther @nd.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi€@leh & Aluminum Cylinders
Sine wave generator capable of producing 1-50 kiz avpeak-to-peak voltage of 0.50 V
Two-Channel Oscilloscope

Setup:

Make a tube using the tube-pieces. Put the erckpigth the speaker on one end and the end-
piece with the microphone on the other. Attach MCBsplitter to SNE WAVE INPUT on the
Controller. Connect the output of your sine waeeegator to one side of the splitter. Use a BNC
cable to send the sound signal to the Channelt wipyour oscilloscope. Plug the lead from the
speaker end of your experimental tuberBAKER OUTPUT on the Controller. The same sine wave
now goes to both the speaker and Channel 1. Cotimeemicrophone output of the tube array to
MICROPHONE INPUT. ConnectAC MONITOR on the Controller to Channel 2 of the oscilloscope
Channel 2 will display the sound signal receivedhs microphone. Trigger the oscilloscope on
Channel 1. Use thertENUATOR dial on the Controller to keep the signal on Cleg2nfrom going

off scale. The signal is at maximum when ATeENUATOR dial is at 0. The signal gets weaker as
the dial number increases. (Appendix 1 describeguhction of each part of the Controller.)

Experiment:
Start at low frequency (100 Hz or less), and slowtyease the frequency.

Question:

What are you observing? How can you tell that gmiat a resonance? Did you notice the phase-
shift when going through a resonance? (Note tha, to unknown phase shifts in the speaker,

microphone, and electronics, the absolute phasseket input and output channel can not be

interpreted.)

Experiment:

Change the length of the tube and repeat the expati

Question:
Do the resonance frequencies change? Are theyiiglver when the tube is longer/shorter?

ADVISOR INFORMATION:

The shorter the tube, the higher the resonance frequencies.

Take a full set of data for one tube length:

Measure and record the length of the tube. Meakerérst 20 resonance frequencies. Assign the
lowest resonance frequency the index number nand plot the resonance frequengp$
function of its index number, n.
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ADVISORS INFORMATION: (ENTIRE PAGE)

In a tube of 8 x 75 mm = 600 mm, the first resonance is found at about 290 Hz. A phase
shift of about 180° degrees is observed when sweeping through the resonance. The highest
rate of change of phase appears at the resonance frequency, where the amplitude has its
maximum. Typical screen-shots of the oscilloscope are shown below.

Further resonances are found at about 573 Hz, 859 Hz, 1144 Hz, 1427 Hz, and so on. The
exact position of the resonances is temperature dependent since speed of sound is
temperature dependent.

Channel 1 (upper) Frequency generator
Channel 2 (lower) AC-Monitor
10 Hz below first resonance (279 Hz)
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ADVISOR INFORMATION:
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Resonance frequency as function of resonance index number n.
The data was measured in a 600 mm long tube.

The linear fit has a slope of Af /An = 287.5 Hz.

This corresponds to a speed of sound ¢ = 2L*f = 345 m/s

Background:

A resonance occurs when a standing sound wavedvatoged in the tube. The sound emitted by
the speaker is reflected back and forth betweervtbhenard end-walls of the tube. The resonance
develops when, after a round trip in the tube sitvend wave is in phase with the wave emitted by
the speaker. In this case, the emitted sound eresfwith the reflected sound constructively. The
condition for resonance is fulfilled when:

2L=n%=n/l

with the length of the tubg, the speed of sound the frequency, the wavelengtih and an
integer numben=1,2,...0. Resonances are observed when the tube lengthinseger multiple of
A2,

Analyze the data:

From the resonance frequencies plotted as funcofidineir indexn, you can calculate the speed of
soundc. Make a linear fit for your data. Calculatérom the slope and determine the uncertainty
of your measurement.
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Differential equation for sound and boundary conditons:
The propagation of sound waves in air can be destioy differential equations.
On one hand, there is the linearized Euler’s equati

oi_ 1

— =—-—grad 1.1
3 pg p (1.1)

with the velocity of the aili, the mass density of the @rand the pressuge

On the other hand, the continuity equation hastéubilled.
0p -
— =-pdivd 1.2
a P (1.2)

Additionally, representing compressibilityashe density and the pressure of
the air are connected by

op_1 (1.3)
00 Kp

These equations can be combined to a wave equatitime pressure
°p _ 1
—=—A 1.4
o oK p (1.4)

with the Laplace operatdy. In this wave equation, however, the phase midtetween velocity
and pressure of the wave is lost, since the vgid@s been eliminated. We need to refer to the
velocity again, since the boundary conditions &t tiard wall can be formulated best with the
velocity. It is obvious that, at the surface o thall, the velocity perpendicular to the wall has

be zero. (The air can not move into or out ofwladl.) From eqn. (1.1), it also follows that, bet
surface of the wall, the derivative of the pressarthe direction perpendicular to the wall is zero
This combination of boundary conditions is callétdNaumann boundary condition”.

For frequencies lower than about 16 kHz, the amotsmoving perpendicular to the symmetry-axis
(x-axis) of the tube. Thusy () =0, u,(r) =0, u, () =u,(x)and p(r) = p(x) .

The problem has now been reduced to a quasi onendional problem and we can make a one-
dimensional ansatz for the solution in the form:

p(xX) = P, Coskx -t +a) (1.5)

Here, p, represents the amplitude of the wave and musb@&abnfused with the background air

pressure of about 1000 mban = 277f is the angular frequency akd 277/1 is the wave vector.
This function describes a wave propagating in tbsitive x-direction. In the tube we find a
superposition of right and left (positive and negatx-direction) propagating waves, since the
waves are reflected at the ends of the tube. Thefwaction is therefore given by

P(X) =3 P, COSKX—at +a) + 3 P, COSEKX—at —a) (1.6)



Adv. Man. Rev 2.0, 12/09

This can be rewritten as
p(x) = p,coskx+ a) cosu) @a.7)

Solutions of the differential equation are thosevevdunctionsp(x) that fulfill the boundary
conditions for a certain tube lendthat all times. From the boundary conditionédat(0) = 0 and
dp/dx(L) = O, we can easily derive the parameters ta bed andk =n 77/L.

Dispersion of sound waves:

Redraw your graph of frequency as function of resae-index fi vs. n) to show angular
frequency as function of wave vectafk). This new graph shows the dispersion relation of
sound waves.

Analogy to a quantum mechanical particle in a box:

The sound wave in the tube can serve as an analaduantum mechanical particle in a one-
dimensional square potential well. The differenteqjuation that describes the particle is
Schrddinger’s equation

ihi(//(r“,t) = —ﬁAw(F,tHV(F)(/I(F,t) (1.8)
ot 2m

with the wave functiony (r,t) , the particle mass), and a scalar potentigr).

In the case of a one-dimensional square potentdll with infinitely high potential barriers at
both ends, an¥f = 0 in the space between the ends, the equatiluces to

1 ity =~ Ap(x) (1.9)
ot 2m ’ '

This differential equation has as a solution complaves that are scattered back and forth
between the ends of the well. The probabilityinéling the particle at a certain positigin the

well is given by the probability densiW(x,t)|2. When multiplied by the elementary chagyé
represents the charge density inside the well.

Most of the solutions of egn. (1.9) result in tichependent charge densities. These, however,
would emit electromagnetic waves, since chargeasing. On the other hand, there are certain
solutions that have a time independent charge geridiey can be found by solving the time-
independent Schrodinger equation

I S o
Ey(r) = —ﬁAw(r) +V (M) y(r) (1.10)
In our casefor the one-dimensional square potential well,@éggation simplifies to
hZ
Eg(x) = -Z—Al//(X) (1.11)
m
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This equation can be solved for certain eigenvatdenergye. We make an ansatz with standing
waves of the form

Y(x) = Asinkx+a) (1.12)

At the ends of the box, where the potential isnitdly high, the wave function has to be zero
(Dirichlet boundary condition). These boundaryditions, ¢0) = 0 andi(L) = 0, are fulfilled if
a = 0 andk = n 77/L wheren is an integer. The total probability of findirget particle anywhere

in the box has to be one. This determines thaamhglitude of the wave functionAs=+/2/L .

The solution of Schrodinger’s time-dependent eguaflL.9) is obtained from the solution (1.12)
by multiplying it with a time dependent phase facto

W(xt) = Asinkx+a) e’ (1.13)

You can convince yourself that, for this solutic}¢,(x,t)|2 is indeed time-independent. The

angular frequency in this expression is giverwbyE/7%. Note that in quantum mechanics the
energy is in general connected with the frequency b

E=hf=ha (1.14)
We can now calculate the eigenvalues of energyaiteagiven by
WK? Pt
Ek) = = 1.15
() 2m  2ml? (1.15)

This is the dispersion relation of the quantum naeatal particle in a box.

What is analogous, what is different?

The classical sound wave in a tube and the quantaahanical electron in a square potential well
are similar in many respects, but some detailddferent. Both the sound wave and the wave-
function of the electron are solutions of a waveampn describing a delocalized object. The
particular aspect being described, however, isedifit. In the classical casp(xt) is the

amplitude of the signal picked up by a microphooeated at this position. In the quantum

mechanical case, the squared amplittlz/jex,t)|2at a certain position gives the probability of
finding the electron at this position.

Both of the differential equations have the Laplaperator on the right side (second derivatives
with respect to space). However, with respecine tthey are different. In the classical case, we
have a second derivative with respect to time thats to wave-solutions. In the quantum
mechanical case, the combination of the complexbmum and a first-order derivative with
respect to time leads to wave solutions. But tlvesees-solutions are complex due to this special
form. It is also the first-order time-derivativieat results in a parabolic dispersiB(k) of the
electron. In contrast, the sound wave has a linkspersion due to the second-order time-
derivative. Schroédinger’s equation includes, iniidd, a potentiaV (r) that can not be simulated
by the sound wave experiment. However, the reflecit a hard wall can be used to function as
an analog to an infinitely high potential barriem later experiments, we will use irises as an
analog for finite potential barriers with certagflection and transmission probability.
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In both cases, eigenstates are found in a welt.c&dain wavelengths, standing waves are found,
and in both cases the wavevector of these wavgises byk = n 77/L. However, the position of
the nodes is different, because the boundary donditare not the same. In the quantum
mechanical case, the wave function must be zetiweaboundary. In the case of sound waves, we
have physical quantities that we use to describevdive. One is the pressure and the other is the
air-velocity. Like the quantum mechanical wavedtion, the velocity has a node at the boundary,
but the velocity is a vector. The pressure hascallmaximum at the boundary and is a scalar
quantity. As an analog to tisealar quantum mechanical wave function, we thereforéeprine
scalar pressure, even though it has an opposite bourtengition. A scalar “velocity potential”
could also be used to describe the wave, but & do¢ help much, since its nodes are at the same
position as those for the pressure. You shoulaviee of this difference.

To each eigenstate, an eigenfrequengyis assigned. In quantum mechanics, it is founthén
time dependent phase fact@“ . In the case of sound waves, the eigenfrequenisiniply the
frequency of the sound itseli=277f. In quantum mechanics, the frequency is diredlgted to

an energy by the equatio =7« . This has no direct analog in the sound experisaefVhen
working with sound, we look at the frequency of 8wnd and not at an energy. We therefore
consider energy-levels in quantum mechanics agylsalogous to the “frequency-levels” in the
sound experiments that are given by the sharp aesenfrequencies. The dispersi&(k),
discussed in quantum mechanics, can be comparbdufid) in classical mechanics.

Another little difference is related to the abselphase. The microphone can measure the phase
of the sound wave, but in quantum mechanics thelatesphase of a state can not be measured.
Relative phases between two wavefunctions can lesuned in quantum mechanics and we can
measure the phase of an acoustic wave functionffatet locations and determine the relative
phase to compare with a quantum mechanical syst®ou should be aware that the sound
experiments provide an experimentalist with morformation about the system than can be
extracted from an analogous quantum mechanicayst
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1.2 Measure a spectrum in the tube using an osciioope

Objective:  In this experiment, the independent variablehis frequency provided by the
generator, and the dependent variable is the amdplitof the sound wave reaching the
microphone. First, we will examine the amplituddh®e sound-wave received at the microphone
as a function of the frequency of the sound. Thea,will determine how the spectrum (the
pattern) observed depends on the length of thedobéucting the sound.

Setup:

With the tube, speaker and microphone arrangecetsd) connect the output of the sine wave
generator t@NE WAVE INPUT on the Controller and the wire from the speakesPEaKER OUPUT.
Connect the microphone on the experimental tul@drOPHONE INPUT.

Locate theFREQUENCY-TO-VOLTAGE CONVERTER module on the Controller and set the toggle switch
to oN.  With the oscilloscope in the xy-mode, connéetic-ouTPuT of the converter moduli®
Channel 1, the x-axis. The converter provides Hage proportional to the instantaneous
frequency. The calibration is 1 V per 1 kHz andah be used for frequencies up to 10 kHz (or,
with offsets, up to 20 kHz).

ConnectdbETECTOR OUTPUT to Channel 2, the y-axis of the oscilloscope. DHEECTOR OUTPUT
connection provides a dc signal that is proporfidnathe amplitude of the sound wave at the
microphone. You have now set up the oscilloscopgltd the amplitude of the sound at the
microphone as a function of the frequency of thenslo Set the image persistence time on the
oscilloscope to infinite. Now, sweep the frequebgyhand. As you change the frequency, the
oscilloscope will plot a spectrum with peaks. Yan use thec-oFrFseT knob to center the image
on the oscilloscope screen. Use N@ENUATOR dial on the Controller to keep the signal from
going off scale. (With an attenuator, a higherdne@ on the dial gives a smaller signal.
Appendix 1 describes the function of each parhef€ontroller)

Experiment:
Take spectra for different tube lengths and comgam with the results you found in section one.

ADVISOR INFORMATION:
Typical screen shots of the oscilloscope are shown below.
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1.3 Measure a spectrum with the computer and comparit to the spectrum found with the
oscilloscope.

Objective: This experiment uses a computer soand both to generate the sound wave and to
sweep its frequency. We will use the oscillosctipebserve the actual sine wave signals both
going into the speaker and coming from the microgho Simultaneously, we will use the
computer to display a spectrum which shows the naa of the signal from the microphone as
a function of the frequency of the sound.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi€@leh & Aluminum Cylinders
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égsl'SpectrumSLC.exe” running

WARNING: The BNC-to-3.5-mm adapter cables are provideal @snvenient way to couple
signals between the Controller and sound card.ottinfately, they could also provide a way
for excessive external voltage sources to damageuad card. Most sound cards are
somewhat protected against excessive inputsit lmithe user's responsibility to ensure tha
adapter cable voltages are kept BELOMWOolts peak-to-peak

The maximum peak-to-peak value for optimum perfarogaof the Quantum Analogs system
depends on your sound card and can vary from 50@a@WV.

Setup:

Using the tube-pieces, make a tube with the enceptentaining the speaker on one end and the
end-piece with the microphone on the other.

Now, using connectors on the Controller, you walhd the sound card signal to both the speaker
and Channel 1 of the oscilloscope, and the microphsgnal to both the microphone input of
the computer and to Channel 2 of the oscilloscope.

First, make sure that theATTENUATOR knob on the Controller is set at 10.0 (out of 1Gurns.

Let's start with the sound signal. Attach a BNditsgy or “tee” to SINE WAVE INPUT on the
Controller. Using the adapter cable, connect thgput of the sound card to one arm of the
splitter. With a BNC cable, convey the sound cgigthal from the splitter to Channel 1 of your
oscilloscope. Plug the lead from the speaker énmuar experimental tube t8PEAKER OUTPUT

on the Controller. The sound card signal is nomgado both the speaker and Channel 1.

The microphone signal will also be sent two différplaces. Connect the microphone on your
experimental tube t®ICROPHONE INPUT on the Controller. Put a BNC splitter on the Colter
connector labeledc-moNITOR. From the splitter, use an adapter cable to seadnicrophone
signal to the microphone input on the computer datard. Use a BNC cable to send the same
signal to Channel @f the oscilloscope to show the actual signal cgnfiiom the microphone.

The computer will plot the instantaneous frequegewperated by the sound card on the x-axis
and the amplitude of the microphone input signalhany-axis.
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The next job is to adjust the magnitude of both thespeaker and microphone signals so that
you will have maximum signal while keeping the miasphone input to the computer from
saturating. Peak-to-peak signals to the microphone input heje to be limited to 0.50 to 2.0
volts depending upon your sound card.

Once the program, SpectrumSLC.exe., is running, gau configure the computer. Go to the
menu at the top of the screen and choose Configurgut Channel/Volume At this point,

chooselLine In, if it is available; otherwise chooddicrophone. On this screen, set the
microphone volume slider to the middle of its range

To set the speaker volume, use Argplitude Output Sgnal on the lower left of the computer
screen. That slider should also be set to midulige.

The microphone signal coming from the apparatist fiasses through a built-in amplifier, and
then through theTTENUATOR, before reaching thec-MONITOR connector. The ten-turn knob on

the attenuatodecreases the incoming signal by a factor ranging from ze&rd00. For example,

a setting of 9.0 turns (out of the 10 turns posgilstands for an attenuation of 9/10 or 90%
attenuation of the signal. (A higher setting meassnaller signal.)

After taking an initial wide range spectrum, choasgection that includes the highest peak and a
smaller one next to it. Readjust the scan to cuadrthis portion. Using the option that allows
you to keep successive spectra visible, take Specty, 2, 3, etc. with the attenuator knob set at
9.9,9.8,9.7, ... turns (out of ten). The meptieights of the peaks will tell you whether ot no
the system is behaving in a linear fashion. CQummito go lower on the 10-turn dial setting until
the computer program flashes ‘saturation’. You @al$o have visual evidence of saturation — a
flat section on the tallest peak or a smaller “mgStspacing. (See Appendix 2 or 3 for details.)

Once you have reached saturation, drop back irtditkear range. Now you can operate with
confidence that the signals you see really are @tmmal to the amplitude of the sound wave
you are studying.

ADVISOR INFORMATION:

For efficiency, some laboratory instructors may choose to give the students a set of parameters
for the speaker, microphone settings on the computer and for the attenuator on the Controller.

Take care that the sound is not filtered by any software-filters provided by the sound-card drivers.
Switch off all these filters. Alternatively, a computer controlled frequency-generator can be used.
The program SpectrumSLC.exe can control a HAMEG 8131-2 digital function generator via the
serial port using a null-modem cable. In case you are using this function generator, its output is
connected to SINE WAVE INPUT and to the oscilloscope instead of the sound card output. In the
program SpectrumSLC.exe you can choose the serial port in the menu under “configure” - “serial
port”. If “none” is chosen, the serial port is not used.

Experiment:

Now you can use the computer to collect an ovensgpectrum from about 100 to 10,000 Hz.
You can use coarse steps (~10 Hz) and a shortpenstep (~50 ms) for this investigation. As
the frequency is changing, watch the trace on Hudloscope. How is the oscilloscope showing
the change in frequency? What is happening t@thglitude of the signal? How is this related
to the trace being created on the computer?

Compare the spectrum recorded on the computeretoesults you found using the oscilloscope
in the first experiment.
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ADVISORS INFORMATION:

The diagram below is for the ADVISOR ONLY.
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Linewidth:
Lifetime of quantum mechanical states

In most cases eigenstates do not last foreveclabsical physics there is decay due to dissipation
of energy by friction. In quantum mechanics orfig ground state lasts forever. Excited states
with higher energy decay into the ground state,ctvhs the eigenstate of the system with the
lowest energy. These effects are not includechen differential equations. However, we can

introduce the decay easily into the wave functibpgeplacing the time dependent factors in the

wave functioncost) and €', respectively, with a factor that is oscillatingdaexponentially
damped. With a damping constanit results in e * cos@t )ande ™", respectively.
In the case of finite lifetime, the wave functioanoiot be assigned to a single angular frequency

) but contains a spectrum of angular frequendiest we can determine by Fourier-
transformation. Let’s write the wave function igeneral way as

W(xt) = f(x) e (1.16)

with an arbitrary spatial dependerfdgx). For t< 0, the wave function is assumed to be zero. By
performing a Fourier-transformation we obtain thecalled spectral functiody(«), that describes
the amplitude as function of angular frequentyhe classical case. In the quantum mechanical

case,|A(a))|2 is the probability of measuring the particle tovédéhe energyE =%a. Performing
the Fourier-transformation

1 < o i
Aw) =—— e d“ dt 1.17
(@=7 j (1.17)
we obtain the spectral function

1

— Vo
N@_ﬁﬂﬁfﬁ' (1.18)

The absolute squared is a so-called Lorentzian peak
1
Aw) =—2 1.19
| ( )| (%_a))2+A2 ( )

The width of the peak is directly related to tHetimet of the eigenstate. The lifetime denotes the
time after that the amplitude of the state has beenced to 1/e. From the half width at half
maximum of the peak the damping constantan be read directly. In quantum mechanics the
width in energy” of a metastable state lis= 74

7

r== (1.20)
T

The spectral functioA(«) is complex, which can be written as the abso|IA(e))| multiplied by a

complex phase factorA(a)):|A(a))|e“". Both amplitude and phase depend on the angular
frequency.
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Linewidth of the resonances in the sound experiment

In the sound experiments the situation is a lkitedifferent, but the result looks almost the same
as in quantum mechanics. The sound wave close éiganstate can be seen as a damped, driven
harmonic oscillator described by the linear différal equation

d?p
dt?
This driving force is represented by the speakat th driving the standing sound wave. The

resonance frequency under consideration has thalaanfyequencyy,. The solution of this

differential equation is a superposition of a tianssolution that is a solution of the homogenous
differential equation (first part of eqn. 1.22)daa steady-state solution (second part of eqn.)1.22
that is of interest here.

p(t) = Ae” cos@t + @,) + Acost + @) (1.22)
For our experiment, we can assume that the transwution has already damped out, so that we
are detecting only the steady state amplitude,fAh® sound wave. This amplitude depends on

the frequencyw of the driving force compared to the eigen-frequyemy of the oscillator. It is
given by

+ y +a)0p K cosit) (1.22)

- K (1.23)
J(6f - ) + 2y’
The phase between driving force and oscillatingsagiiven by
¢= arctanﬂ . (1.24)

of —of
Using the complex exponential functioime result can be written even more simply.
For this purpose we write the differential equatiothe form

if dp + a)o p= Ke'® (1.25)
dt
and the steady-state solution as
p.(t) = AP (1.26)
The complex amplitudA as function of angular frequeneycan then be written as
i
A= aﬁ—aKfe+2iyw' (1.27)
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If only single resonance existed in the tube, tieephone would measure the amplitude

| ke?
A | - +2iyw

K
V(@ ~a?) + 2ye)”
In reality, however, there are a number of resoegnall of which are simultaneously excited.

The superposition is coherent because there isxead fphase-relation between the different
resonances.

(1.28)

The entire spectrum is therefore a superpositioallodfomplex amplitudes. That can be written
as:

|Al=| K,e” + K,e”™ + Kye® +
W +2Ayw - +2iy,w - +2y,w
1 2 2 3

K, &? |

|A(w)| = ;af_a)z+2i%w| (1.29)

In this notation, we are using four fitting parasrstto model each peak in the spectrum. They
areK,, w,y,¢,. In our simplified theoretical model we descrthe resonances in the tube by

independent damped, driven oscillators with paramdaken from the experiment. The coupling
of the speaker to the standing wave depends on geprand can be different for different
resonances, which results in differ&nts. The friction depends on a different parametdrich

results in differenty;’s. Finally, the phase between driving force arstiltating air is also
different for different resonances. Therefore,gthaseg, is also fitted as a parameter.

In a spectrum measured with an oscilloscope ordmputer,|A(w)| is plotted. The connector
markedDbc-oUTPUT on the Quantum Analogs Controller gives a voltageportional t¢A(a))|.
The linewidth of an acoustic resonance is smallganed to its frequencyy << w,. In this case
we can make the approximation
W+w=2w = - =20(w,-w)
and rewrite the absolute value of Amplitude as
Ké?

N~ Gy i)
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Sincewcan be assumed to be almost constant in the fnegueterval across the peak (within the
approximatiory << wj),

1

Aw)—————
y+i(w-aw,)

The resonance peak(«) in a classical driven, damped oscillator has shene shape as the
spectral function of quantum mechanical eigenstatte finite lifetime (eqn. 1.18).

In the following figure the two line-shapes

2w
Alw)| = o
A V(@ - a?)? + (2yw)’

and
1

Al =
A Jiwy -w)? + 2

are plotted for comparison with the paramedgr= 271000 aHd y =A =271[20Hz. The full

width at half maximum of the peaksfi& = 231 andAf = é)l , respectively.
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The better known Lorentzian-shape for the samenpeatex looks as follows
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Objective: In this experiment, we will use the computer toorelca spectrum of eight or fewer
peaks. We will then use the software program piedito demonstrate that the data generated
by Quantum Analogs can be fit to the theoreticatiel®.

Setup:

Create a short tube and set the computer parantetpreduce a spectrum with eight or fewer
peaks. One possible configuration would be a 1850 long tube, a sweep from 5000 Hz to
14000 Hz, 5 Hz steps, and 50 ms per step.

Experiment:

Generate a spectrum of eight or fewer peaks. Afesrerating your spectrum, open the fitting
window in the software via the sequence: Menu »dbdivs > Fit. In the fitting window that
opens, your first task is to give the software taoenitial estimates for the location and heigfit

up to eight resonances. In the ‘Peak Number’ nagribe upper left of the window, select Peak 1.
Now, point your mouse to the top of the lowest freracy peak, and left-click your mouse. You
will see (in blue) the theoretical resonance witd tenter and height matching the peak you have
selected. The blue curve also has a default Valueridth. If you have a mouse wheel, you may
use the wheel to adjust the width estimate to mgtehr data. Perfection is not required in these
initial estimates.

When you are done with Peak 1, right-click your se@and the selection in the Peak Number
menu will change to Peak 2. Now locate and lattkcthe second peak. Repeat this initial-
estimate procedure for it and each subsequent peak.

After using the mouse to put in the initial estiggafor all of the peaks, you will see a blue curve
showing a first approximation of the theoreticaldab Now click the button for 'Start Fit', and
the software will use your estimates to optimize thatch between the data curve (red) and the
theoretical model (blue), by adjusting the fittipgrameters. If one of the model's peaks 'escapes
from the data of the spectrum during this fittingpgedure, you can stop the fit and readjust
manually. After you've reset that peak's estima@meters, just restart the automatic fit.

When the automatic fitting is done, you can useRbak Number menu (at the window's upper
left) to select any peak. The software then shthgsvalues of the parameters for that peak that
best-fit your data.

You can now check the repeatability of your dafa. do this, first record the parameters for one
of your peaks. Next, acquire a fresh set of d&kapeat the fitting procedure, and look again for
the center location of your chosen peak. (Prefmabe very impressed!)

You can save the fitting parameters that you geeéras an ASCII file. The best-fit theoretical
function can be saved either as a data file onreage file.
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ADVISORS INFORMATION:

All of the information on the last two pages is for the ADVISOR ONLY
Here are typical results that were measured with the parameters suggested:

Amplitude

I
13000 14000

L 1 L L 1
5000 Q000 10000 11000 12000
Frequency [Hz]

Spectrum measured in a tube of length 2 x 75 mm = 150 mm.

I I
&000 Fooo

The figure on the following page shows the fit and the fit parameters.
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Amplitude
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Fit to the spectrum measured in a 2 x 75mm = 150mm long tube (blue line: fit, red line: data).

The fit-parameters are shown in the chart below:

1. Peak:

Frequency [Hz] =5745.173
Amplitude [a.u.] = 31.877
Width [Hz] =15.246
Phase [degrees] =-64.144

2. Peak:

Frequency [Hz] = 6886.800
Amplitude [a.u.] = 24.452
Width [Hz] =16.957
Phase [degrees] =-29.514

3. Peak:

Frequency [Hz] = 8032.668
Amplitude [a.u.] = 19.478
Width [Hz] =19.140
Phase [degrees] = 12.260

4. Peak:

Frequency [Hz] =9174.970
Amplitude [a.u.] = 14.923
Width [Hz] =21.754
Phase [degrees] =54.007

5. Peak:

Frequency [Hz] = 10320.091
Amplitude [a.u.] = 12.572
Width [Hz] =22.936
Phase [degrees] = 121.176

6. Peak:

Frequency [Hz] = 11456.553
Amplitude [a.u.] = 9.024
Width [Hz] =27.552
Phase [degrees] =-0.317

7. Peak:

Frequency [Hz] = 12600.503
Amplitude [a.u.] = 6.041
Width [Hz] =34.381
Phase [degrees] =-67.036

8. Peak:

Frequency [Hz] = 13724.593
Amplitude [a.u.] = 4.803
Width [Hz] =39.503
Phase [degrees] =53.198

The width of the peaks increases with increasing frequency, which can be explained by
stronger friction of the air with the tube wall at higher frequencies. The amplitude as
function of frequency can not be interpreted, since the transmission function of speaker
and microphone is not taken into account. The absolute phase of the peaks is set
arbitrarily during the automatic fitting procedure. However, the relative phase of one peak
with respect to another peak has a physical meaning and is important for the overall
shape of the spectrum



