## Equation Sheet

Waves: $\mathrm{v}=\lambda \cdot \mathrm{f} \quad$ linear mass: $\quad \mu=\frac{\mathrm{m}}{\mathrm{L}} \quad \mathrm{v}=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{\text { Tension }}{\mu}}$
sound: $\quad \mathrm{v}=343 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=331 \mathrm{~m} / \mathrm{s} \sqrt{\frac{\mathrm{T}}{278 \mathrm{~K}}}$
$I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \quad \mathrm{I}=\frac{\mathrm{E}}{\mathrm{t} \cdot \mathrm{A}} \quad \mathrm{I}=\frac{\mathrm{P}}{4 \pi \mathrm{R}^{2}} \quad \beta=10 \mathrm{~dB} \log \frac{\mathrm{I}}{\mathrm{I}_{0}} \quad \beta_{2}-\beta_{1}=10 \mathrm{~dB} \log \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \mathrm{f}=f_{0} \frac{\mathrm{v}_{\text {sound }} \pm \mathrm{v}_{\mathrm{d}}}{\mathrm{v}_{\text {sound }} \mp \mathrm{v}_{\mathrm{s}}}$
standing waves: on string and in open pipe at both ends: $n=1,2,3 ., \quad f=\frac{v}{2 L} n \quad \lambda=\frac{2 L}{n}$
in pipe closed at one end: $\mathrm{n}=1,3,5, \ldots \quad \mathrm{f}=\frac{\mathrm{v}}{4 \mathrm{~L}} \mathrm{n} \quad \lambda=\frac{4 \mathrm{~L}}{\mathrm{n}}$
interference: constructive: $\mathrm{d}_{2}-\mathrm{d}_{1}=\mathrm{n} \lambda \quad \mathrm{f}=\frac{\mathrm{v}}{\mathrm{d}_{2}-\mathrm{d}_{1}} \mathrm{n} \quad$ destructive: $\mathrm{d}_{2}-\mathrm{d}_{1}=(\mathrm{n}+1 / 2) \lambda \quad \mathrm{f}=\frac{\mathrm{v}}{\mathrm{d}_{2}-\mathrm{d}_{1}}(\mathrm{n}+1 / 2)$

Electric charge: $\quad \mathrm{q}=\mathrm{Ne} \quad \mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} \quad \mathrm{E}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{2}} \quad \mathrm{~F}=\mathrm{qE} \quad \mathrm{qE}=\mathrm{ma}$
$\mathrm{k}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \quad \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad$ Circuits: $\quad \mathrm{R}=\rho \frac{\mathrm{L}}{\mathrm{A}} ;$
$\mathrm{R}=\mathrm{R}_{0}\left[1+\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)\right] ; \quad \mathrm{V}=\mathrm{I} * \mathrm{R} \quad \mathrm{I}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}=\frac{\mathrm{Ne}}{\mathrm{t}} ; \quad \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T} \quad \mathrm{P}=\frac{\mathrm{E}}{\Delta \mathrm{t}} \quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
$P=\frac{V^{2}}{R} \quad P=I^{*} V ; \quad$ in series : $R_{\text {eq }}=R_{1}+R_{2}+\ldots+R_{n} \quad$ in parallel: $1 / R_{e q}=1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}$

