Waves: $\mathrm{v}=\lambda \cdot \mathrm{f} \quad$ linear mass: $\quad \mu=\frac{\mathrm{m}}{\mathrm{L}} \quad \mathrm{v}=\sqrt{\frac{F}{\mu}}=\sqrt{\frac{\text { Tension }}{\mu}}$
sound: $\quad \mathrm{v}=343 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=331 \mathrm{~m} / \mathrm{s} \quad \sqrt{\frac{T}{273 K}}$
$I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \quad \mathrm{I}=\frac{\mathrm{E}}{\mathrm{t} \cdot \mathrm{A}} \quad \mathrm{I}=\frac{\mathrm{P}}{4 \pi \mathrm{R}^{2}} \quad \beta=10 \mathrm{~dB} \log \frac{\mathrm{I}}{\mathrm{I}_{0}} \quad \beta_{2}-\beta_{1}=10 \mathrm{~dB} \log \frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \mathrm{f}=f_{0} \frac{\mathrm{v}_{\text {sound }} \pm \mathrm{v}_{\mathrm{d}}}{\mathrm{v}_{\text {sound }} \mp \mathrm{v}_{\mathrm{s}}}$
standing waves: on string and in open pipe at both ends: $n=1,2,3 ., \quad f=\frac{v}{2 L} n \quad \lambda=\frac{2 L}{n}$
in pipe closed at one end: $\mathrm{n}=1,3,5, \ldots \quad \mathrm{f}=\frac{\mathrm{v}}{4 \mathrm{~L}} \mathrm{n} \quad \lambda=\frac{4 \mathrm{~L}}{\mathrm{n}}$
interference: constructive: $\mathrm{d}_{2}-\mathrm{d}_{1}=\mathrm{n} \lambda \quad \mathrm{f}=\frac{\mathrm{v}}{\mathrm{d}_{2}-\mathrm{d}_{1}} \mathrm{n} \quad$ destructive: $\mathrm{d}_{2}-\mathrm{d}_{1}=(\mathrm{n}+1 / 2) \lambda \quad \mathrm{f}=\frac{\mathrm{v}}{\mathrm{d}_{2}-\mathrm{d}_{1}}(\mathrm{n}+1 / 2)$

Electric charge: $\quad \mathrm{q}=\mathrm{Ne} \quad \mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} \quad \mathrm{E}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{2}} \quad \mathrm{~F}=\mathrm{qE} \quad \mathrm{qE}=\mathrm{ma}$ $\mathrm{k}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \quad \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \quad$ Circuits: $\quad \mathrm{R}=\rho \frac{\mathrm{L}}{\mathrm{A}} ;$
$\mathrm{R}=\mathrm{R}_{0}\left[1+\alpha\left(\mathrm{T}-\mathrm{T}_{0}\right)\right] ; \quad \mathrm{V}=\mathrm{I} * \mathrm{R} \quad \mathrm{I}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}=\frac{\mathrm{Ne}}{\mathrm{t}} ; \quad \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T} \quad \mathrm{P}=\frac{\mathrm{E}}{\Delta \mathrm{t}} \quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
$P=\frac{V^{2}}{R} \quad P=I * V ; \quad$ in series : $R_{e q}=R_{1}+R_{2}+\ldots+R_{n} \quad$ in parallel: $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}$

NAME \qquad
Honors Code Pledge: As an NJIT student I \qquad pledge to comply with the provisions of the NJIT Academic Honor Code. I assert that I have not violated the NJIT Academic Honor Code.

1. A sound wave in air has a frequency of 500 Hz and a wavelength of 0.68 m . What is the air temperature?
a. $-18^{\circ} \mathrm{C}$
b. $0^{\circ} \mathrm{C}$
c. $15^{\circ} \mathrm{C}$
d. $27^{\circ} \mathrm{C}$
e. $-8^{\circ} \mathrm{C}$
2. What is the intensity of a sound with a measured intensity level of 84 dB ? $\left(I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right)$
a. $8.4 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$
b. $2.5 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
c. $1.2 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$
d. $7.4 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
e. $0.4 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$
3. What sound level change corresponds to a factor of two change in intensity?
a. 0.5 dB
b. 2 dB
c. 3 dB
d. 5 dB
e. 8 dB
4. A sound source of frequency 1000 Hz moves at $50.0 \mathrm{~m} / \mathrm{s}$ toward a listener who is at rest. What is the apparent frequency heard by the listener? (speed of sound $=340 \mathrm{~m} / \mathrm{s}$)
a. 553 Hz
b. 872 Hz
c. 2150 Hz
d. 1170 Hz
e. 1450 Hz
5. An open pipe shown resonates at 1080 Hz . What is the length of the pipe? Speed of the sound is $343 \mathrm{~m} / \mathrm{s}$
a. 48 cm
b. 61 cm
c. 15 cm
d. 88 cm
e. 24 cm

6. A violin string 15.0 cm long and fixed at both ends oscillates in its $\mathrm{n}=1$ mode. The speed of the waves on the string is $240 \mathrm{~m} / \mathrm{s}$ and the speed of the sound in air is $343 \mathrm{~m} / \mathrm{s}$. The wavelength of the emitted sound wave is closest to
a. 0.002 m
b. 0.082 m
c. 0.170 m
d. 0.246 m
e. $\mathbf{0 . 4 3 0} \mathrm{m}$
7. A $2-\mathrm{m}$ long string of linear mass $3.5 \mathrm{~g} / \mathrm{m}$ vibrates with a frequency of 601 Hz according to pattern shown in the figure below. Find the mass of the hanging block.

8. A metallic object holds a charge of $-3.8 \times 10^{-6} \mathrm{C}$. What total number of electrons does this represent? ($e=1.6 \times 10^{-19} \mathrm{C}$ is the magnitude of the electronic charge.)
a. 4.2×10^{14}
b. 6.1×10^{13}
c. 2.4×10^{13}
d. 1.6×10^{14}
9. An electron with a charge value of $1.6 \times 10^{-19} \mathrm{C}$ is moving in the presence of an electric field of 400 N / C. What force does the electron experience?
a. $2.3 \times 10^{-22} \mathrm{~N}$
b. $1.9 \times 10^{-21} \mathrm{~N}$
c. $6.4 \times 10^{-17} \mathrm{~N}$
d. $4.9 \times 10^{-17} \mathrm{~N}$
e. $1.2 \times 10^{-15} \mathrm{~N}$
10. In x-ray machines, electrons are subjected to electric fields as great as $6.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$. Find an electron's acceleration in this field. $\left(m_{e}=9.11 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}\right)$
a. $1.1 \times 10^{17} \mathrm{~m} / \mathrm{s}^{2}$
b. $5.4 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}$
c. $4.6 \times 10^{10} \mathrm{~m} / \mathrm{s}^{2}$
d. $3.6 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
e. $2.5 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}$
11. The current in an electron beam in a cathode-ray tube is measured to be $70 \mu \mathrm{~A}$. How many electrons hit the screen in $5.0 \mathrm{~s} ?\left(e=1.6 \times 10^{-19} \mathrm{C}\right)$
a. 2.2×10^{11} electrons
b. 8.8×10^{13} electrons
c. 2.2×10^{15} electrons
d. 8.8×10^{18} electrons
e. 2.2×10^{14} electrons
12. Number 10 copper wire (radius $=1.3 \mathrm{~mm}$) is commonly used for electrical installations in homes. What is the voltage drop in 40 m of $\# 10$ copper wire if it carries a current of 10 A ? (The resistivity of copper is $1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$.)
a. 1.3 V
b. 0.77 V
c. 0.50 V
d. 0.13 V
e. 2.2 V
13. If a $500-\mathrm{W}$ heater carries a current of 4.00 A , what is the resistance of the heating element?
a. 85.7Ω
b. 42.8Ω
c. 31.3Ω
d. 11.2Ω
e. 65.0Ω
14. An electric clothes dryer draws 15 A at 220 V . If the clothes put into the dryer have a mass of 7.0 kg when wet and 4.0 kg dry, how long does it take to dry the clothes? (Assume all heat energy goes into vaporizing water, $L_{v}=2.26 \times 10^{6}$ J / kg).
a. 55 min
b. 34 min
c. 20 min
d. 16 min
e. 5 min
15. A water pump draws about 3.8 A when connected to 240 V . What is the cost (with electrical energy at 9 cents per kWh) of running the pump for 10 h ?
a. 8.0 cents
b. 15 cents
c. 82 cents
d. 95 cents
e. 28 cents
16. A solar panel measures $80 \mathrm{~cm} \times 50 \mathrm{~cm}$. In direct sunlight, the panel delivers 3.2 A at 15 V . If the intensity of sunlight is $1000 \mathrm{~W} / \mathrm{m}^{2}$, what is the efficiency of the solar panel in converting solar energy into electrical energy?
a. 24%
b. 18%
c. 12\%
d. 6.0%
e. 2.0%
17. Resistors of values $8.0 \Omega, 12.0 \Omega$, and 24.0Ω are connected in series across a 110 V battery. What is the power dissipated in the 12.0Ω resistor?
a. 75 W
b. 55 W
c. 35 W
d. 15 W
e. 0.5 W
