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identification of goals

What Is It You are Trying to Accomplish with an Alignment? Some 
of the disagreement over alignment approaches comes from differences 
in objectives among investigators. Are the data merely meant to 
distinguish target DNA from contaminants in a BLAST search? Or is 
there a specifi c node on a cladogram you wish to test? Are you aligning 
genomes or genes? Are the data protein-coding, structural RNAs or 
noncoding sequences? Do you consider phylogenetics to be a process of 
inference or estimation? Would you rather be more consistent or more 
accurate? Are you studying the performance of your selected programs 
or the relationships among your taxa? Different answers to each of these 
questions could likely lead to legitimate alternate alignment approaches. 
Morrison (2006) reviewed the many uses of alignment programs, and 
distinguished phylogenetic alignments as a special subset that requires 
attention to biological processes. Hypša (2006) reached a similar 
conclusion and emphasized the importance of adding complexity to 
multiple sequence alignments and phylogeny estimation. This chapter 
is devoted to discussing the alignment of structural RNAs, or ribosomal 
RNA (rRNA) and transfer RNA (tRNA) sequences, for phylogenetic 
analysis (although our thesis applies to other smaller RNAs, such as 
tmRNAs, RNase Ps, and group I and group II introns). We seek to have 
our phylogenetic hypotheses be predictive and accurate, even if accuracy 
is diffi cult (or impossible) to demonstrate. By accurate we mean that a 
hypothesis coincides with the true history of branching events.

If You Knew You could Improve Your Alignment, Would You Do 
It? Figure 7.1 shows an example of a fragment of a computer-generated 
alignment of the 12S rRNA from a variety of primates with that of murine 
rodent outgroups. It follows an optimality criterion based on minimizing 
costs from a Needleman–Wunsch (1970) algorithm and a guide tree.

We hope that this example, almost like the fi rst couplet of a dichot-
omous key, will indicate where you stand on the issue of adjustment. 
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Structural Considerations for RNA MSA 107

Notice the “CTTCAGAAAAC” in the middle of the fi gure for both 
the baboon and the orangutan. If these were your data, would you 
adjust the sequences to correct the errors made by the program, or 
would you leave it alone and let the program make all of the decisions 
about homology, even when it appears to have erred? Would you adjust 
the nearly identical sequences between the human and the chimps? 
Would you make decisions about which nucleotides to exclude? Would 
it bother you if the baboon grouped inside the rodents? There are no 
correct answers, and the choices you make have implications that relate 
to what you wish to discover from your data, and tell a lot about both 
your background and your objectives. If you adjust the alignment, even 
in this one instance, you have converted to a manual alignment, with 
all its strengths and limitations. Adjusting the alignment is an attempt 
to improve the accuracy of an alignment. Here we defi ne “accurate” as 
representing true (unknowable) homology, and also propose that accu-
rate homology estimations will probably improve the accuracy of the 
phylogenetic hypothesis. But how do you know what “accurate” is, and 
where do you draw the line? Is manual alignment an art form subject to 
the whims and biases of the aligner, or can we identify a repeatable meth-
odology? Similarly, if we criticize manual alignments as subjective and 
inconsistent, might these same criticisms apply to computer-generated 
alignments? If accuracy is a concern, where do current algorithms fail?

Many workers could legitimately state that we cannot objectively 
defi ne errors made by the computer, and, in fact, the whole concept 
would be counter to an optimality-based study. If you are looking 
for the shortest tree, you should favor an alignment that reduces the 
number of steps. Others might assume that a few errors, even if they 

Mouse
Rat
Gibbon
Baboon
Orangutan
Human
Bonobo
Chimp

GCTACATTTTCTTA--TAAAAGAACAT-TACTATACCCTTTATGA
GCTACATTTTCTTTTCCCAGAGAACAT-TACGAAACCCTTTATGA
GCTACATTTTCTA--TGCC-AGAAAAC-CACGATAACCCTCATGA
GCTACATTTTCTA--CTTCAGAAAACCCCACGATAGCTCTTATGA
GCTACATTTTCTA---CTTCAGAAAAC-TACGATAGCCCTCATGA
GCTACATTTTCTA---CCCCAGAAAAC-TACGATAGCCCTTATGA
GCTACATTTTCTA--CCCC-AGAAAAT-TACGATAACCCTTATGA
GCTACATTTTCTA--CCCC-AGAAAAT-TACGATAACCCTTATGA

Figure 7.1. A fragment of an alignment of complete 12S rRNA, generated by 
ClustalX (Jeanmougin et al. 1998; Thompson et al. 1997).
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108 Structural Considerations for RNA MSA

could be defi ned, would be better left alone, because the mass of the 
data should counterbalance a few random errors. But what if the errors 
are not random, creating a potential for linking together unrelated 
groups that share the same systematic biases? What if there were some 
higher order of conservation that we could examine in making deci-
sions about homology that does not necessarily result in shorter trees? 
Figure 7.2 shows the same region of rRNA as in Figure 7.1, but has 
been adjusted to minimize secondary structural changes predicted for 
this region of the molecule. Minimizing structural change is also an 
optimality criterion for homology assessment that we support and will 
explore in this chapter. Structural homology is based on position and 
connection, and assumes that the same structure existed in a common 
ancestor. Strict adherence to nucleotide homology may require that the 
same nucleotide state exists in a common ancestor as in its descendants, 
and, by this defi nition, structural homology and nucleotide homology 
may support different alignments.

alignment and its relation to data exclusion

One of the things that are not clear from the above comparisons 
(Figures 7.1 and 7.2) is what we should do with the nucleotides in 
the “loop” portion of the hairpin-stem loop, between the “TTCT” and 
the “AGAA.” This is an extremely important issue, but somewhat out-
side the debate about alignment. Frequently, these regions are excluded 
from the analysis on the grounds that they are too variable to align. 
Some systematists fi nd any form of data exclusion to be  unacceptable, 

Mouse
Rat
Gibbon
Baboon
Orangutan
Human
Bonobo
Chimp

GCTACATT(TTCT TATA--AA AGAA)CAT--TACTATACCCTTTATGA
GCTACATT(TTCT TTTCCCAG AGAA)CAT--TACGAAACCCTTTATGA
GCTACATT(TTCT -ATGCC-- AGAA)AAC--CACGATAACCCTCATGA
GCTACATT(TTCT -ACTTC-- AGAA)AACCCCACGATAGCTCTTATGA
GCTACATT(TTCT -ACTTC-- AGAA)AAC--TACGATAGCCCTCATGA
GCTACATT(TTCT -ACCCC-- AGAA)AAC--TACGATAGCCCTTATGA
GCTACATT(TTCT -ACCCC-- AGAA)AAT--TACGATAACCCTTATGA
GCTACATT(TTCT -ACCCC-- AGAA)AAT--TACGATAACCCTTATGA

Figure 7.2. A structurally adjusted alignment of the same data as shown 
in Figure 7.1. Parentheses indicate the bounds of a hairpin-stem loop, with 
hydrogen-bonded nucleotides indicated with underlines (Kjer et al. 1994). An 
unaligned region (the “loop” portion of the hairpin-stem) is delimited with 
spaces.
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Structural Considerations for RNA MSA 109

and those are typically the same researchers who would not adjust 
the alignment given in Figure 7.1. It is possible that these regions con-
tain some potentially informative characters, yet in our observations 
the ability to objectively retrieve signal from these regions quickly 
becomes confounded with increased sequence divergence across an 
alignment. There is a wide variety of treatments for these data. One 
option would be to transform the out-group states to “missing data” 
(Kjer et al. 2001), with the idea that if you do not have any reasonable 
confi dence of homology between the rodents and the primates, the data 
really are “missing,” and since you are interested in the relationships 
among the in-group taxa, and in-group motifs are of uniform length, 
they could be treated as in Figure 7.3A. Alternatively, you could exclude 
the unaligned nucleotides, and recode them as multistate characters 
(Figure 7.3B), or as fi xed state characters as in Giribet and Wheeler 
(2001). Taken a step further, a step matrix that calculates the minimum 
number of steps to transform one state to another could be applied 
to these multistate characters (Lutzoni et al. 2000). For example, the 
fewest number of steps it would take to transform ACCCC (state 5) 
into ACTTC (state 4) is two, just as ACCCC is two steps from ATGCC, 
but ACTTC is three steps from ATGCC (Lutzoni et al. 2000; Wheeler 
1999). Gillespie (2004) suggested that these regions are diffi cult to align 
due to the expansion and contraction of the more variable hairpin-stem 

A       B              C
                       REC      RAA     REC'
?????   [TATA--AA] 1   [T-] 1 [ATAA-] 1 [-A] 1 
?????   [TTTCCCAG] 2   [TT] 2 [TCCC-] 2 [AG] 2 
ATGCC   [-ATGCC--] 3   [--] 3 [ATGCC] 3 [--] 3 
ACTTC   [-ACTTC--] 4   [--] 3 [ACTTC] 4 [--] 3 
ACTTC   [-ACTTC--] 4   [--] 3 [ACTTC] 4 [--] 3 
ACCCC   [-ACCCC--] 5   [--] 3 [ACCCC] 5 [--] 3 
ACCCC   [-ACCCC--] 5   [--] 3 [ACCCC] 5 [--] 3 
ACCCC   [-ACCCC--] 5   [--] 3 [ACCCC] 5 [--] 3 

Mouse
Rat
Gibbon
Baboon
Orangutan
Human
Bonobo
Chimp

Figure 7.3. Three suggestions for dealing with the unaligned loop 
from Figure 7.2. (A) If the in-group is alignable, but the out-group cannot be 
aligned to the in-group, consider the out-group data as missing. (B) Eliminate 
the entire region, but recode it as multistate characters. Taxa sharing identical 
sequences are coded with the same state. (C) Gillespie’s (2004) method of 
fi nding the unpaired middle, to break up the region into the ambiguously 
aligned loop, and fl anking regions of slippage.
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110 Structural Considerations for RNA MSA

loops of rRNA. He proposed a method that defi nes regions of ambigu-
ous alignment, slippage, and regions of expansion and contraction 
(called RAA/RSC/REC coding), which subdivides these ambiguous 
regions based on their structural properties and is directly applicable to 
the methods of Kjer et al. (2001) and Lutzoni et al. (2000). A demon-
stration of three alternative treatments is shown in Figure 7.3C.

differentiation of molecules

It is obvious that the selective processes involved in the effects of 
insertions or deletions (indels) on the function of a gene (and thus 
the probability of observing such a change in a living organism) are 
completely different for structural RNAs and protein-coding genes. An 
indel of one or two nucleotides in a protein-coding gene results in a 
reading frame shift, whereas an indel of even three nucleotides adds or 
subtracts a codon. Thus, a single indel will most likely have a major 
effect on protein structure and function. Indels in structural RNA genes 
are very different. The effect an indel has on structural RNA is variable 
across sites of the gene. For instance, some regions of rRNA are highly 
conserved in length across phylogenetic domains whose common 
ancestors stretch back for billions of years (Gutell 1996), implying that 
there is little or no tolerance for length variation in these regions of a 
functional ribosome. Other regions freely tolerate insertions and dele-
tions, as observed among the most recently divergent species (Schnare 
et al. 1996). So the location of indels, their frequency, and their length 
in ribosomal RNAs are determined by the affects they have on rRNA 
structure and hence function. Indels in rRNA are not randomly dis-
tributed, but typically highly clustered into regions called expansion 
segments (or variable regions) that are much reduced, or nonexistent, 
in prokaryotes and lower eukaryotes. These expansion segments are 
located on the surface of the ribosome in regions not considered critical 
for ribosome function (Ban et al. 2000; Cate et al. 1999; Schluenzen 
et al. 2000; Spahn et al. 2001; Wimberly et al. 2000; Yusupov et al. 
2001); thus their evolution can be considered less constrained than that 
of the core rRNA.

There are other differences in alignment protocols that are 
dependent on the kinds of questions an investigator is attempting to 
answer. Researchers who study the evolution of genes need to look at 
structural variation. Information about how a protein evolves across 
kingdoms includes major rearrangements, missing amino acids, and 

AUQ1
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Structural Considerations for RNA MSA 111

large insertions, which may make alignment more diffi cult. At the level 
where we observe major substitution of codons, there is often a coinci-
dent saturation of nucleotides, typically at the fi rst and second codon 
positions. On the other end of the spectrum, if you are a population 
geneticist looking for patterns among recently diverged populations, 
you may encounter variation in noncoding regions of the genome. So 
investigators at both the deepest and the shallowest levels of divergence 
may confront serious alignment problems that we do not address in this 
chapter. An alignment of a protein-coding gene with so many indels 
that render homology assignment ambiguous is probably not an ideal 
marker for phylogenetic studies (note, for example, how many phylo-
genetic papers state that their protein-coding genes were length invari-
ant, or that alignment was trivial). Similarly, noncoding regions, such 
as introns, are relatively rare sources for estimating phylogenies. So, 
for phylogenetic systematists, alignment problems are most frequently 
encountered with rRNAs or tRNAs. Those who design alignment algo-
rithms are often interested in serving all investigators, however, and 
many programs are specifi cally designed to align proteins, with the 
default parameters set for protein-coding genes. All of these statements 
seem intuitively obvious. Yet, how many times in the literature have we 
seen phylogenetic studies state in their methods sections that rRNAs 
were aligned with default parameters, that is, using a program whose 
defaults were set to align proteins? There seems to be a basic misunder-
standing, or at least a lack of concern, about differentiating alignment 
processes according to the effect that indels have on the kinds of genes 
that are being aligned (but see Benavides et al. 2007). We fi nd a discon-
nection between alignment philosophy and biological and evolutionary 
constraints. Does constructing an alignment based on maximizing 
nucleotide identity make sense for rRNA?

rRNA Sequences Evolve under Structural Constraints

That nucleotides in rRNA do not evolve parsimoniously can be unam-
biguously demonstrated. Put another way, rRNA structures change 
more slowly than do the nucleotides that they comprise. The Gutell 
laboratory (http://www.rna.icmb.utexas.edu/) maintains a database, 
the Comparative RNA Web Site (Cannone et al. 2002), from which 
secondary structural diagrams can be downloaded. To demonstrate 
the nonconservation of nucleotides, relative to structural features, 
we suggest you download and print any two structural diagrams 
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112 Structural Considerations for RNA MSA

of the same rRNA sequence from distantly related taxa, and then 
superimpose one upon the other; hold them up to the light (or make 
transparencies of each, and superimpose them on a white piece of 
paper). If the structures between organisms are conserved, but the 
nucleotides within these structures are relatively less conserved, then 
you have proved to yourself that minimizing change among nucleo-
tides does not make biological sense. It is not only the number of 
nucleotide changes that computer programs should seek to minimize, 
but, rather, they should seek to minimize change among structural fea-
tures as a higher level of conservation, and then consider minimizing 
nucleotide changes after structural conservation has been optimized. 
Figure 7.4 shows an example. In Figure 7.4, we show a highly con-
served stem of fi ve nucleotides. The fi rst fi ve nucleotides in Figure 7.4 
are  hydrogen-bonded to the last fi ve nucleotides in each taxon. But 
that is not how ClustalX, with default parameters, aligned them. If 
we adjust the fi nal fi ve nucleotides in the two Macromia sequences 

Austroagrion UUAAUUAAUUUAAUUUGGUUAGUGU--UACAUAACUAUCAAU-AAUAUUUAAUUAG
Platycypha  UUAAU-AAUUUAAUUUGUUUGUUGU--GAUAUAAUUGUCAAU-AAUAUUUA-UUAG
Neoneura  UUAAU-AAUUUAAUUUAUAUAUUGU--UAUAUAAAUAUUAAU-AAUAAUUA-UUAG
Megaloprepus CUAAU-AUUUUAUUUUAUUCAGUGU--AUCAUAAUUGUUAAU-AAUAUUAAUUAG-
Dysphaea   CUGGU-AAUUUAAUUUAUUUAUUGU--AGCAUAAAUAUUAAU-AAUAAUUAUCUG-
Uropetalura ---CUAACAUUAUAAUUUAUUUGAUGUUACAUAAUCAUUAAA-AAUAUAAGUUAG-
Tanypteryx  ---CUAAUUAAAUAAUUUAAUUGGUGUUAUAUAACCAUUAAU-AAUAUAAAUUAG-
Oxygastra  ---CUAAAUUAAUAUUUUAUUUAUUGUUAUAUAAAUAUUAAA-AAUAUAAUUUAG-
Libellula  ---UUAAAUUAUAUUUUAGGUUAAUGGGA-AUAAUUAUUAAU-AAUAUAAUUUAG-
Chorismagrion -CUAUCUAUUUAUUUUAUUGGUUGU--UGCAUAAACGUUAAU-AAUUUAUUGGUAG
Gomphus  ---CUAAAUUUGAAUUGGUGGUGGUGGUAUAUAAUCAUAAUU-AAUUUAAUUUUAG
Argia   -CUAAAUUUUUAAUUUAUUUAUUGU--AAUAUAAAUAUUAAU-AAUA-AAUUUUGG
Hypopetalia ---CUAGUUUAAUAAUUUAUUUAAUGUUUUAUAAUUAUUAGA-AAUAUAAACUAG-
Macromidia  ---CUAGAUUAUAGAUUUAUUUAAUGUGAUAAGAUUAUUAAA-GAUUUUAUUUAG-
Neogomphus  ---CUAAAUUUAUAAUUUCUUUAAUGUUUUAUAAUUAUGGAA-AAUUUAUUUUUAG
Amphiagrion ---CUAAAACUUUAAUCUGUUUAUUGUUACAUAAAUAUCUGA-AAUAUUUUUUAG-
Progomphus  ---CUAAAACUAUAAUUUUUUUAAUGUUUCAUAAUUAUAUAU-AAUAUAGUUUUAG
Hagenius  ---CUAAAACCA-GUUAAAAUUAAUGUGGCAUAAUUAUAGUUUAACUGGGUUUUAG
Macromia  ---CUAUGUUAGUAAUUUAUUUAAUGUGGAAUAAUUAUUGAU-AAUACAUCAUAG-
Macromia  ---CUAUGUUAG-AAUUUAUUUAAUGUGGAAUAAUUAUUAAU-AAUACAUCAUAG-
Calaphaea  CUGAUUUGUUUG--AUUUGGUUAAUGUGUUAUAAUUAUCUUA-AAUAC-UCAUCUG
                                                        ^

A)

Figure 7.4. An example of how nucleotide changes should not be used to 
assess alignment quality. This is an example of a hairpin-stem loop structure, 
with hydrogen-bonded nucleotides in bold, and underlined. The fi rst fi ve 
nucleotides bind with the last fi ve. Then there is a large bulge, followed by 
another four nucleotide interaction (UAGU/ACUA in the top sequence). 
(A) Aligned with ClustalX. (B) Structurally adjusted.
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Structural Considerations for RNA MSA 113

(CAUAG) by inserting gaps at the arrow, the tree length increases. 
Whether this increase in tree length is justifi ed is dependent on what 
you are trying to minimize in your algorithm: change among nucleo-
tides or change among structures. We argue that in a structural mol-
ecule such as rRNA, secondary structure is more conserved than 
primary structure (nucleotides) (as we suggested above that you could 
prove to yourself). It is therefore unambiguous to favor the structur-
ally aligned panel (Figure 7.4B) over the panel that was optimized 
to minimize change among nucleotides (Figure 7.4A). Similar conclu-
sions have been reached even through the structural and phylogenetic 
analysis of internal transcribed spacer regions that interrupt subunits 
of rRNA (Denduangboripant and Cronk 2001; Hung et al. 1999; 
Hypša et al. 2005; Morgan and Blair 1998).

Gillespie, Yoder, et al. (2005, their Fig. 9A) illustrated a similar 
empirical example of how automated alignment failed to align nucleotides 
based on secondary structure in one of the most diffi cult-to-align regions 
of arthropod nuclear large subunit (LSU or 28S) rRNA. Gillespie, 
McKenna, et al. (2005) demonstrated the importance of structural 
alignments in proofreading the data. Hallmark features of rRNA, which 
must be present in functional rDNA genes, can be utilized as a means 

Austroagrion UUAAUUAAUUUAAUUUGGUUAGUGUUACAUAACUAUCAAU-AAUAUUUAAUUAG
Platycypha  UUAAU-AAUUUAAUUUGUUUGUUGUGAUAUAAUUGUCAAU-AAUAUUU-AUUAG
Neoneura  UUAAU-AAUUUAAUUUAUAUAUUGUUAUAUAAAUAUUAAU-AAUAAUU-AUUAG
Megaloprepus CUAAU-AUUUUAUUUUAUUCAGUGUAUCAUAAUUGUUAAU-AAUA-UUAAUUAG
Dysphaea   CUGGU-AAUUUAAUUUAUUUAUUGUAGCAUAAAUAUUAAU-AAUAAUU-AUCUG
Uropetalura CUAAC-AUUAUAAUUUAUUUGAUGUUACAUAAUCAUUAAA-AAUAUAA-GUUAG
Tanypteryx  CUAAU-UAAAUAAUUUAAUUGGUGUUAUAUAACCAUUAAU-AAUAUAA-AUUAG
Oxygastra  CUAAA-UUAAUAUUUUAUUUAUUGUUAUAUAAAUAUUAAA-AAUAUAA-UUUAG
Libellula  UUAAA-UUAUAUUUUAGGUUAAUGGGA-AUAAUUAUUAAU-AAUAUAA-UUUAG
Chorismagrion CUAUC-UAUUUAUUUUAUUGGUUGUUGCAUAAACGUUAAU-AAUUUAUUGGUAG
Gomphus  CUAAA-UUUGAAUUGGUGGUGGUGGUAUAUAAUCAUAAUU-AAUUUAAUUUUAG
Argia   CUAAA-UUUUUAAUUUAUUUAUUGUAAUAUAAAUAUUAAU-AAUA-AAUUUUGG
Hypopetalia CUAGU-UUAAUAAUUUAUUUAAUGUUUUAUAAUUAUUAGA-AAUAUAA-ACUAG
Macromidia  CUAGA-UUAUAGAUUUAUUUAAUGUGAUAAGAUUAUUAAA-GAUUUUA-UUUAG
Neogomphus  CUAAA-UUUAUAAUUUCUUUAAUGUUUUAUAAUUAUGGAA-AAUUUAUUUUUAG
Amphiagrion CUAAA-ACUUUAAUCUGUUUAUUGUUACAUAAAUAUCUGA-AAUAUUU-UUUAG
Progomphus  CUAAA-ACUAUAAUUUUUUUAAUGUUUCAUAAUUAUAUAU-AAUAUAGUUUUAG
Hagenius  CUAAA-ACCA-GUUAAAAUUAAUGUGGCAUAAUUAUAGUUUAACUGGGUUUUAG
Macromia  CUAUG-UUAGUAAUUUAUUUAAUGUGGAAUAAUUAUUGAU-AAUACAU-CAUAG
Macromia  CUAUG-UUAG-AAUUUAUUUAAUGUGGAAUAAUUAUUAAU-AAUACAU-CAUAG
Calaphaea  CUGAUUUGUUUGAUUUGGUUAAUGUGUUAUAAUUAUCUUA-AAUAC-UCAUCUG

B)

Figure 7.4. (continued)
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114 Structural Considerations for RNA MSA

of checking the accuracy of generated sequences in a fashion that is no 
different than using translated amino acid sequences to validate the 
correct reading frame within protein-coding genes (Gillespie, McKenna, 
et al. 2005).

challenges to existing programs

Compositional Bias Presents a Severe Challenge

One of the appealing things about DNA data is that all of the character 
states are discrete. With morphological characters, it often seems that 
as you continue to study more representatives of a taxon, your formerly 
“good” or “discrete” characters dissolve into a grade of continuous 
variation. Nucleotide characters are what they are, without intermedi-
ates. Even though this property of four discrete character states, evolving 
under a common mechanism, enhances the justifi cation for models and 
algorithmic alignments, it also presents some new problems with homo-
plasy due to limited character-state space (Brooks and McLennan 1994; 
Lanyon 1988; Mishler et al. 1988). If a nucleotide is free to fl icker back 
and forth among these four states, and if there is some nonrandom bias 
in the data among independent lineages, then there is the possibility for 
systematic error in our hypotheses of phylogeny. If life on some other 
planet had fi ve nucleotides instead of four, then this problem would not 
be as serious as it is here on earth. If we had only two nucleotide states, 
this problem would be much worse. Unfortunately, there are biological 
systems in which there are effectively only two states. For example, 
arthropod mitochondrial genomes are notoriously AT rich, but this bias 
ranges from 65.6% in Reticulitermes (Isoptera) to 86.7% in Melipona 
(Hymenoptera) (Cameron and Whiting 2007). It is easy to predict that 
with A’s and T’s constituting nearly 87% of the genome, a particular site 
that can be an A or T (such as silent third and fi rst codon sites), will be. 
So, taxa that have independently evolved similar compositional biases 
may be drawn together by rapidly evolving, meaningless sites, and this 
convergence is more likely with two states than it is with four (Meyer 
1994). Simmons et al. (2004) discuss at length the problem of limited 
character-state space.

Nucleotide compositional bias is particularly problematic in the 
hypervariable regions of rRNA. The conserved core (the length-
 invariant, alignment trivial regions) may possess the four nucleotides 
in nearly equal proportions, whereas the hypervariable regions (which 
contain many if not most of the parsimony informative characters, and 

AUQ2

AUQ3
AUQ4
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wherein different alignment methods produce different hypotheses) can 
possess extreme nucleotide compositional bias. This bias can vary a 
great deal among taxa. For example, analyzing the structural proper-
ties of nuclear 18S rRNA across the major lineages of insects,  Gillespie, 
McKenna, et al. (2005) demonstrated that base compositional bias 
within nearly all variable regions was severe, and that the patterns of 
these biases were inconsistent with phylogenetic expectations. Interest-
ingly, in instances where pairwise comparisons of base composition 
were not signifi cantly different, length heterogeneity was signifi cantly 
different. This suggests that variable sequence length alone is not the 
only problem encountered in the alignment of rRNA sequences. Base 
compositional bias is another confounding factor.

Homoplasy presents problems not only in phylogenetic analysis but 
also in the assessment of homology in alignment programs. Figure 7.5 
(from Kjer et al. 2007) shows a pairwise alignment of a hypothetical 
region in which the top and bottom sequences are identical to one 
another, except for a single indel, indicated in bold. Computer align-
ment programs using Needleman–Wunsch (1970) algorithms function 
by penalizing change through setting up a ratio of costs in inserting 
gaps, relative to the cost of a substitution (the gap cost-to-change 
ratio, or “gap cost” for short). If the gap cost used in the alignment is 
excessively high, the program will not insert a gap in the top sequence 
where it “belongs,” as indicated by the arrow in Figure 7.5. Rather, the 
algorithm will continue racking up the relatively low mismatch penalties 
until it reaches a region of biased nucleotide composition, where the 
program happily lines up A’s together, despite their being offset by one 
base. It is important to note that even in random sequences we would 
expect every fourth site to “match.” In regions of nucleotide composi-
tional bias, the expectations of nonhomologous but identical states is 
much greater than every fourth site, and approaches 50%.

Figure 7.5. A hypothetical alignment from Kjer et al. (2007), showing that if 
gap costs are too high, Needleman–Wunsch algorithms may favor phenetic 
solutions in regions of nucleotide compositional bias.

Bug1   ATCGCTCTAGTATCGCGCTAAAAATAGAACTCGCTA
   ||||||||||||        ||||    |
Bug2   ATCGCTCTAGTAATCGCGCTAAAAATAGAACTCGCT

^
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Biased nucleotide regions are reminiscent of the bland uniformity 
that frustrates morphologists. But by throwing everything into a 
computer without looking at it, you would miss the fact that, under 
conditions of high compositional bias combined with rapid evolu-
tion and length variation, Needleman–Wunsch algorithms (and their 
subsequent derivations) can imitate phenetics, wherein taxa are grouped 
together according to the overall percentages of A’s and T’s, rather than 
by synapomorphies. The effects of compositional bias can be amplifi ed 
if nonhomologous nucleotides are fi rst aligned together with parsimony 
(with Needleman–Wunsch, minimizing nucleotide change), and then 
subject to long-branch attraction under a parsimony search. This is why 
we reject the assertion that alignments and analyses should logically be 
conducted under the same optimality criterion (Phillips et al. 2000). 
We believe that the goals of each endeavor (alignment and analysis), 
while not independent of one another, are different enough to require 
a different approach, with each step favoring the best option. Simmons 
(2004) provides a detailed discussion on the separation of homology 
and analysis. The regions of rRNA that most commonly accumulate 
extreme compositional bias are the same regions that are most length 
heterogeneous, and hard to align. Compositional bias presents a severe 
challenge to Needleman–Wunsch-based alignment algorithms.

Compositional bias is particularly problematic for the direct optimi-
zation program POY (Gladstein and Wheeler 1999) because it depends 
on accurate reconstruction of ancestral sequences. Collins et al. (1994) 
showed that under conditions of nucleotide compositional bias, or 
accelerated substitution rates, parsimony severely underrepresents the 
rare states in ancestral reconstructions. The Collins et al. (1994) study 
employed a series of empirical and simulation studies to show this, 
and the mathematical proof by Eyre-Walker (1998) confi rmed their 
fi ndings. Reconstructing ancestral nodes is what POY does, and these 
studies indicate that results from a POY analysis should be interpreted 
with caution, and with an understanding of these limitations under 
conditions that are characteristic of the hard-to-align regions of rRNA.

Gaps Are Not Uniformly Distributed

Not only are substitution rates elevated in the hypervariable regions 
of rRNA, but also these regions accumulate insertions and deletions at 
a much more rapid pace than does the “conserved core” (Clark et al. 
1984; Hadjiolov et al. 1984; Hogan et al. 1984; Michot et al. 1984). 
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Anyone who has ever attempted to align rRNA data soon recognizes that 
gaps are clustered in regions. Kjer et al. (2007) measured the clustering 
of gaps by simply converting all of the nucleotides in a mammalian 
rRNA dataset into A’s, and all of the gaps into C’s. The among-site rate 
variation of indels from our so-altered NEXUS fi le was measured on the 
expected tree using PAUP version 4.0b10 (1998) by estimating the shape 
of the gamma distribution (Yang 1994). The gamma distribution is best 
indicated by a value called “alpha,” whose values below 1 indicate seri-
ous among-site rate variation. The alpha value was 0.45, confi rming 
that variation among sites with respect to the frequency of insertions 
and deletions is indeed highly variable. This clustering of indels has 
several important ramifi cations with respect to alignment. Most impor-
tantly, it means that ideal gap costs should vary among sites (Kjer 1995). 
Typically, computer alignments are performed with fi xed gap costs. If 
biological gap costs vary among sites, then all analyses using fi xed gap 
costs will underrepresent appropriate gap costs at some sites, and over-
represent gap costs at others. The “ideal” average gap cost, even if it 
were algorithmically and objectively defi ned, would be inappropriate 
for most sites. Kjer et al. (2007) demonstrate this with a fi gure, repro-
duced here as Figure 7.6. In Figure 7.6, structure is indicated with Kjer 
et al.’s (1994) notation on the nucleotides, and  Gillespie’s (2004) struc-
tural mask above them. The top panel contains a commonly sequenced 
region of mitochondrial 12S rRNA from a series of murine rodents. 
The lower panel contains sequences from a considerably more diverse 
group: a whale, an ape, an ostrich, a lizard, and a snail. Variation in 
length among the rodents indicates that the gap cost in those regions 
should be relatively low, just as invariant lengths among the different 
phyla should indicate the need for a high gap cost. In this region, we can 
see that the loop portion of stem 42 (variable region V7) should have a 
low gap cost, allowing for the easy introduction of gaps. Directly down-
stream from this hypervariable region is a region of extremely high con-
servation in length. Apparently, indels in strand 38’ are not permitted. 
Even if we cannot quantify gap costs (which we cannot do because they 
are arbitrary, and they are arbitrary because we do not have realistic 
models for indels), you can scan across Figure 7.6 and apply fl exible 
gap costs. For example, the loop between the strands of stem 40 should 
receive a low gap cost, and the loop between the strands of stem 42, an 
even lower gap cost. Contrast those low gap costs to the near infi nite 
gap cost within strand 38' and all the undefi ned gap costs in between 
for other sites. If you wish to check your own 12S rRNA data for 
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alignment errors, you will probably fi nd them by lining up stem 39. 
Using fi xed integers as gap costs and applying them across a molecule 
that is demonstrably length-heterogeneous as a result of regional- specifi c 
clustering of indels is a commonly used, but biologically unrealistic, 
approach to the “alignment problem.”

Hence, the practice of exploring parameter space with sensitivity 
analyses, that is, the testing different gap costs, in an effort to select 
among an infi nite pool of gap costs and other parameters is problem-
atic (but supporters of sensitivity analyses would be correct in noting 
that this is no more problematic than performing no such tests, if you 
are tied to fi xed gap costs). Sampling around a series of parameters, 
as a means of parameter selection, implies that some parameters are 
“good,” whereas others are “bad.” This is a futile endeavor. There is 
no ideal, single, fi xed gap cost for an alignment such as this because 
we are dealing with a heterogeneous assortment of regions. Sensitivity 
analyses require that at least some of the analyses are appropriate. But 
when we look at rRNA sequence data, where the “gappy” regions are 
clustered, we can see that one-gap costs will work well for one region, 
and poorly for another. By changing the gap cost, other regions may be 
well aligned, whereas the regions previously well aligned become worse. 
Different gap costs may shift the appropriately aligned regions from 
one region to another without necessarily expanding the proportion of 
well-aligned sites. Of course, if homology is completely ambiguous and 
unknowable, one may fi nd it useful to present alternative alignments in 
assessing alignment uncertainty. However, we fi nd it unreasonable to 
assume that history happened in multiple ways when structural homol-
ogy favors a single solution.

One proposal for selecting among parameters is to perform a sen-
sitivity analysis on a variety of parameters, and measure each resul-
tant tree against some external criterion: a tree based on morphological 
characters, for example, or minimizing ILD scores (Farris et al. 1994) 
between partitions. However, there is an infi nite number of parameters 
to explore. Wheeler (2005) discussed the problem, and also how this 
infi nite space might be realistically explored. Wheeler (2005) explored 
gap costs and transversion weights (as did Terry and Whiting 2005; 
Whiting et al. 1997; and others). These explorations result in a three-
dimensional plot of the parameter landscape. What you would want in 
such a landscape is a single hump containing a distinct peak, because 
with such a simple distribution, if you are anywhere near the peak, then 
you can be assured that the combination of gap cost and some other 

AUQ5
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120 Structural Considerations for RNA MSA

metric (such as transversion weights) is near optimal. This is not the 
shape of the peak found by Kjer et al. (2007), who used an ILD test 
to maximize congruence between 12S rRNA and 16S rRNA datasets 
in optimizing gap costs with gap extension costs (the cost of insert-
ing additional gaps, once an initial gap has been inserted). Figure 7.7 
shows the shape of this “peak.” The problem here is that there was 
a relatively fl at plane of inverse ILD scores, and a single sharp spike, 
where gap costs = extendcosts = 1. Unlike the “single hump distri-
bution,” this kind of distribution does not instill confi dence that the 
best gap cost, relative to the indel extension cost, has been discov-
ered, because an even higher spike may exist among the infi nite com-
binations of parameters that were not explored. Other studies have 

Figure 7.7. Sensitivity analysis, simultaneously exploring the cost of inserting 
a gap (gap cost), and the cost of extending an existing gap (extend cost), and 
how combinations of these costs infl uence ILD scores. The higher the inverse 
of the ILD scores, the less disagreement there is between the partitioned 
analyses (in this case, 12S vs. 16S topology). This fi gure is taken from Kjer 
et al. (2007).
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also found it diffi cult to select parameters with sensitivity analyses 
(Terry and  Whiting 2005; Wheeler 2005), although the generality of 
this problem has not been explored. One thing is certain, though; it is 
arbitrary to perform sensitivity analyses that compare only two analyti-
cal parameters (such as gap cost vs. transversion weights, or gap costs 
vs. extend costs) when there are a multitude of interacting parameters 
that simultaneously infl uence phylogenetic hypotheses. Many of these 
parameters may not be best treated with integers, or with fi xed values, 
and many of them, such as the gap cost, are arbitrary (Doyle and Davis 
1998;  Hickson et al. 2000; Kjer 1995; Phillips et al. 2000; Vingron and 
 Waterman 1994; Wheeler 1996).

Nonindependence of Indels

One of the reasons that gap costs are arbitrary is that we really do 
not have a reasonable model for insertions and deletions. One of the 
most unreasonable assumptions behind many of the existing algorithms 
is that multiple adjacent indel positions are all independent of one 
another, when they may have resulted from a single event. Simmons 
and Ochoterena (2000) discuss at length the problems with noninde-
pendence of gaps and the problems with treating individual gaps as 
5th state characters. They convincingly argue that contiguous gap posi-
tions are most parsimoniously interpreted as the result of a single event, 
and propose a system for coding them. Figure 7.8 offers an example of 
how we do not know the history of events that led to the present condi-
tion. However, we do know a number of things with certainty; fi rst, this 
is a region of compositional bias (82% AT), and second, this is a region 
in which gaps of multiple lengths have accumulated among these and 

                         ((((                                  ))))        
Ptilocolepus  GUCAUUGAG[AAC-----------------------CGA-UAAA]CUCAGAGGC 
Palaeagapetus  GUCAUUGGG[AAU------------------------CACUAAA]CCCAGAGGC 
Anchitrichia  GUCAUUGGG[AAUUUUUCAAACAUA--CAAU---CAUAACUAAA]CCCAUAGGC 
Brysopteryx  GUCAUUGGG[AAUAUAUGGAUAAUAAACAAUGAAUCUAACAAAA]CCCAUAGGC 
Matrioptila   GUCACUGGG[AG------------------------CGAUUAAA]CCCACGGGC 
Rhyacophila fuscula GUCAUUGGG[AUUUUUUUU-----------------ACACUAAA]CCCAGAGGC 
Rhyacophila brunnea GUCAUUGGG[AUUUUUUU------------------ACACUAAA]CCCAGAGGC

Figure 7.8. A structurally aligned region of caddisfl y rRNA, with 
ambiguously aligned nucleotides in brackets. Underlines indicate hydrogen-
bonded nucleotides, as do the parentheses above the sequences. Note the 
compositional bias, and the extreme length variation in the unaligned region.
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122 Structural Considerations for RNA MSA

many other taxa. We also know that this same region is hypervariable 
and hard to align in a wide range of taxa. In an example taken from 
 caddisfl y (Insecta: Trichoptera) rRNA, we can see that the sequences 
from Anchitrichia and Brysopteryx (Hydroptilidae, Hydroptilinae) are 
much longer than those from Paleagepetus and Ptilocolepus (Hydropti-
lidae, Ptilocolepinae). If we treat each of the gaps as 5th state characters, 
that is, as if they were independent of one another, then that would 
mean that ptilocolepines share 24 independent deletions, relative to 
Matrioptila. Such a treatment of the data is nonparsimonious. It would 
be more parsimonious to assume that there was a large insertion of 
multiple nucleotides in Hydroptilinae, followed by subsequent modi-
fi cations. Although the alignment of this region is ambiguous, it gives 
strong hints about relationships. The nucleotides between the brackets 
give strong support to the monophyly of Rhyacophila, and the large 
insert present in the Hydroptilines is likely homologous, since it is long 
and complex, and there are conserved motifs that indicate a common 
origin. Yet, for one to infer dozens of synapomorphies from this rapidly 
changing, unalignable mess, one would have to disregard common sense 
and assume that all characters are equally informative and independent 
of one another. Some studies fi nd that 5th state coding for deletions 
outperform methods that treat deletions as missing data (Ogden and 
Rosenberg 2007b). While we agree that gaps provide important signals 
(Freudenstein and Chase 2001), treating them as 5th states falls short 
to the probability that, while many long inserts do indicate phylogenetic 
relatedness, treating all the gaps as independent characters infl ates the 
support for these nodes (Simmons and Ochoterena 2000), whether they 
are due to common history, convergence, or alignment artifacts.

Long Inserts/Deletions

Whereas simultaneous deletions of fi ve or six nucleotides at a time, 
occurring in independent lineages, may draw these unrelated taxa 
together if they are considered to be fi ve or six independent events, 
much larger indels, sometimes hundreds of nucleotides long, are known 
to occur (e.g., Giribet and Wheeler 2001 provided a list of atypically 
long 18S rRNA sequences of metazoans). These long insertions have 
the potential to wreak havoc on a computer alignment (Benavides et al. 
2007). The epitome of this problem is perhaps the bizarre insertions 
that interrupt both the 28S (Gillespie, unpublished) and 18S (Gillespie, 
McKenna, et al. 2005) rRNA sequences of the strepsipterans. Not 
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only do inserts occur in the variable regions and expansion segments 
of the rRNA of these odd insects, but extraordinarily (up to 366 nts.) 
long insertions are known to occur within the hairpin-stem loop of 
the highly conserved pseudoknot 13/14 in the V4 region of 18S rRNA 
(Gillespie, Mcenna, et al. 2005). Thus, despite the earlier statement 
that conserved regions are less tolerant of indels, the Strepsiptera data 
suggest that introns can occur in conserved regions. In fact, virtually 
all of the introns that interrupt rRNAs occur in the most conserved 
regions of the tertiary structure (Jackson et al. 2002; Wuyts et al. 
2001), particularly at the subunit interface or in conserved sites with 
known tRNA–rRNA interaction (Jackson et al. 2002). While introns 
are relatively rare in rRNA sequences, only a manual evaluation using 
a structural model would detect their presence. Still, the majority of 
large inserts in rRNAs are likely part of the mature molecules and are 
localized to the surface of the ribosome. However, structural models for 
the expansion segments and variable regions exposed to the surface of 
the ribosome are becoming more and more refi ned with the addition of 
new taxa and sequences and through refi nements in the ribosome crys-
tal structures (e.g., Alkemar and Nygård 2003; Alkemar and Nygård 
2004; Buckley et al. 2000; Gillespie et al. 2004; Gillespie et al. 2006; 
Gillespie, McKenna, et al. 2005; Gillespie, Munro, et al. 2005; Gillespie, 
Yoder, et al. 2005; Hickson et al. 1996; Kjer 1997, 2004; Mears et al. 
2006; Misof and Fleck 2003; Ouvrard et al. 2000; Page 2000; Schnare 
et al. 1996; Wuyts et al. 2000). Thus, conserved structures within even 
variable regions and expansion segments will be necessary to guide the 
assignment of nucleotide homology when high levels of length hetero-
geneity exist across alignments.

Lack of Recognition of Covarying Sites 
(A Well-Known, Seldom-Adopted Strategy)

Wheeler and Honeycutt (1988) identifi ed a directed substitution rate 
within helices of the 5S rRNA of animals and plants that deviates from 
the neutral theory of molecular evolution explaining rRNA evolution 
(Kimura 1983; Ohta 1973). This slightly deleterious mode of sequence 
evolution in rRNA, in which noncanonical base pairings, or bulges, 
are replaced by compensatory base changes or reversals to the origi-
nal state, has been identifi ed in subsequent studies (e.g., Douzery and 
Catzefl is 1995; Gatesy et al. 1994; Kraus et al. 1992; Rousset et al. 
1991; Springer and Douzery 1996; Springer et al. 1995; Vawter and 
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Brown 1993), and appears to be the mechanism orchestrating second-
ary structural conservation in rRNAs. Paramount to the fi ndings of 
Wheeler and Honeycutt (1988) was not only the identifi cation of two 
different selective constraints within the same molecule (pairing versus 
nonpairing regions), but also the realization that nucleotides within pair-
ing regions in rRNA datasets are not independent characters, because a 
change at one site infl uences the probability of a substitution at another 
site. This poses an added diffi culty when treating helices in phylogenetic 
analysis, as opposed to unpaired nucleotides, wherein interdependence 
with other positions is not easily demonstrated (although the variety of 
tertiary and stacking interactions could in theory be modeled). Regard-
ing parsimony, analysis of pairing (stems) or nonpairing (loops) regions 
has been suggested, but not both in simultaneous analysis (Wheeler and 
Honeycutt 1988). Some workers have implemented a stem-loop weight-
ing approach to accommodate the nonindependence of pairing regions 
(Dixon and Hillis 1993; Smith 1989; Wheeler and Honeycutt 1988). 
Although seemingly intuitive, down-weighting stems on the basis of 
their nonindependence will also relatively up-weight positions that are 
hypervariable, and often nonpairing and perhaps misaligned, thus inac-
curately representing the information contained within pairing regions. 
Up-weighting compensatory mutations within pairing regions has jus-
tifi cation (Ouvrard et al. 2000), particularly if rare substitutions defi ne 
major clades; however, discerning which characters to weight within 
an alignment can be puzzling if the ancestral pairing cannot be imme-
diately identifi ed (i.e., before analysis). Simon (1991) warns against 
stem-loop weighting, and van de Peer et al. (1993) illustrate that stems 
and loops are both highly heterogeneous in terms of substitution rates. 
These added diffi culties, coupled with the fact that assumptions of cer-
tain branch support measures such as the bootstrap (Felsenstein 1985) 
and Bremer support indices (Bremer 1988; Donoghue et al. 1992) are 
violated by the nonindependence of rRNA pairing regions, suggests that 
a parsimony approach to analyzing rRNA alignments may not ade-
quately accommodate these data. There may be interacting operational 
vs. philosophical factors involved; if compensatory changes in paired stem 
sites are also relatively more conservative, parsimony may appropriately 
(although inadvertently) up-weight the slower-evolving characters (Kjer 
2004). Similarly, standard likelihood models of DNA substitution, which 
are all based on a 4 × 4 rate matrix, are also insuffi cient for  phylogeny 
estimation using rRNA, because of their failure to account for corre-
lated bases forming helices.
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Studies modeling the evolution of pairing regions in rRNA molecules 
have grown in the last decade. Although most have focused on 
modeling base pair evolution under likelihood, similar approaches are 
under development for parsimony (Yoder 2007, Yoder and Gillespie, 
unpublished). These studies have all centered on implementing a sub-
stitution matrix that accommodates the nonindependence of helical 
regions. Unlike the typical 4 × 4 substitution matrix used for model-
ing DNA evolution, a matrix modeling rRNA evolution consists of all 
possible substitutions within a pairing region. Hence, a 16 × 16 matrix 
is used to model pairing regions, with the most general time reversible 
(GTR) model allowing for 134 free parameters. A detailed explana-
tion of the simplifi ed families of RNA substitution models was recently 
provided by Gillespie (2005). Given the attention being addressed to 
modeling RNA evolution, two software packages have incorporated 
some of the above-mentioned models into their programs. MrBayes 
version 3.1 (and earlier versions) (Ronquist and Huelsenbeck 2003) 
includes model 16B (Schöniger and von Haeseler 1994) and allows for 
helices to be modeled independently as pairs along with other mod-
els for nonpaired sites (i.e., loops, codons, amino acids). Importantly, 
model 16B should be considered an F81-like model for pairing sites, 
and when the covarion model in MrBayes is set to REV or HKY85, 
model 16B becomes different for each case (Jow et al. 2005). The pro-
gram PHASE version 1.1 (Jow et al. 2002) also provides a means to 
simultaneously model multiple partitions with different models of evo-
lution. In addition, PHASE contains a suite of RNA models that allow 
for the evaluation of the performance of different RNA models on a 
given dataset. Most likely as a result of the study of Savill et al. (2001), 
those models that allow for base pair asymmetry and a nonzero rate 
of double substitutions, namely, models 16A, 7A, 7D, 6A, and 6B, are 
all included in the PHASE program. Thus, PHASE has an appeal over 
MrBayes 3.1 in that the user can determine the best model of evolution 
for an RNA dataset, rather than settle for only one RNA model (per-
haps with slight modifi cations). The soon-to-be-released MrBayes 4.0 
will contain additional rRNA models.

Doublet models are thus directly related to the alignment issue, 
because alignments performed within a structural context provide a 
template that allows for a more realistic modeling of the evolution 
of these complex biological molecules. Intuitively, they are more 
 desirable to the evolutionary biologist. However, it is not our intention 
here to criticize the algorithmic approach to alignment just because more 
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biologically sound methods exist. On the contrary, we fully support and 
prefer algorithmic methods, as long as the algorithm that is applied 
has some grounding in biological reality. Current methods that ignore 
the properties of rRNA are not biologically grounded. We hope that in 
pointing out the challenges faced by current methods, we will accelerate 
the implementation of algorithmic methods, and eventually eliminate the 
diffi cult, tedious, and nonrepeatable manual alignments. Before this can 
happen, however, if you favor phylogenetic hypotheses that are mean-
ingful and predictive, then manual approaches should not be eliminated 
until algorithmic methods can be shown to outperform them. Replace-
ment should not occur just because a new method remedies some of the 
problems and is “cool,” new, and computationally expensive.

are structural inferences justified?

One of the criticisms of rRNA structural inferences is that they are 
inferences, not direct observations. Despite great efforts in cryo-electron 
microscopy (e.g., Frank and Agrawal 2000; Frank and Agrawal 2001; 
Frank et al. 2000), complete ribosomal RNA secondary structures 
can be directly observed only through x-ray crystallography. While 
several atomic structures of ribosomal subunits now exist for yeast 
(Spahn et al. 2001), the archaean Haloarcula marismortui (Ban et al. 
2000), and the bacteria Thermus thermophilus (Brodersen et al. 2002; 
 Schluenzen et al. 2000; Wimberly et al. 2000; Yusupov et al. 2001) and 
Deinococcus radiodurans (Harms et al. 2001), most rRNA secondary 
structures are inferred through comparative evidence. Structural align-
ments identify with very high accuracy (>90%, Gutell et al. 2002) those 
regions involved in base pairing. Comparative evidence works under the 
assumption that if multiple sequences can fold into the same conserved 
structure, and if there is a substitution in one part of the putative stem, 
it is usually followed by its complementary partner. Inferential, yes, but 
what are the odds that structures are not real, and are you willing to 
take that chance? The odds that structurally superimposable structures 
could arise by chance are easily calculable. For example, if there is an A 
at one site, what is the probability that there will be a T at the position 
of its putative partner? Answer: 0.25 according to Jukes and Cantor 
(1969). So if you align two taxa together, and fi nd 35 compensatory 
mutations between them, the probability of this happening by chance is 
0.2535 (that is, a zero, followed by a decimal point, 21 zeros, and then 
an 8). Adding the thousands of observed compensatory substitutions 
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among all taxa, one arrives at a number so small that the human mind 
(even among mathematicians who are experienced in thinking about 
really small numbers) cannot come close to even imagining these num-
bers in a meaningful way. When one considers how tenuous the whole 
process of phylogenetic inference is (where we never know anything, and 
the best we can do is come up with a reasonable guess, where our data 
are consistent with our hypotheses, given our assumptions), it seems 
absurd to argue over whether it is safe to assume whether structural 
constraints that have a virtually zero (but not technically zero) proba-
bility of being random should be abandoned on philosophical (or other) 
grounds. We also note that translated amino acids are routinely used to 
check DNA alignments of protein-coding sequences, even though few 
(if any) of these studies bother to experimentally demonstrate that the 
genetic code for the taxa of interest is the same as the model taxa.

why align manually?

As we were considering our observations about the objectives of 
phylogenetic alignment, and beginning to write them down for this paper, 
Morrison (2006) presented a review of procedures and philosophies. This 
excellent review thoroughly explores the differences among us, and, in 
fact, much of what we had thought to be intuitive but unproven could 
now be explained in a series of logical arguments. Morrison (2006) lays 
out a series of problems with current algorithms that were designed for 
one purpose, and then used for phylogenetics. He argues that many of the 
problems we face in alignments stem from a failure to recognize that the 
program is neither designed nor suited for phylogenetic inference. Whereas 
we had noticed these problems, we had assumed that some smart person 
out there must have some reasonable solution to phylogenetic alignment; 
we just had not read about it yet. Morrison (2006) presents a radical new 
view, stating, “Our objective should be biological plausibility rather than 
mathematical optimality.” With respect to alignments, we are in complete 
agreement with this statement. Algorithms that currently align sequences 
with the goal of reaching a mathematical optimum may fail for phyloge-
netics if they do not simulate biological reality.

Perceived Advantages of Algorithms

Much about alignment has simply been assumed, without question. 
One’s preferences, alluded to in the introduction, seem more a matter 
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of culture and tradition than experimentally justifi ed or even thought-
fully considered criteria. It seems intuitively obvious that computers are 
more objective at making alignment decisions than manual alignments. 
Are they? No, not if the computer requires arbitrary input parameters. 
The following comparison should be made. Consider a thoughtful sys-
tematist, thinking about homology under a series of structural and evo-
lutionary constraints. Contrast this to another reasonable systematist, 
who believes that homology is best decided objectively with a repeatable 
optimality criterion implemented by a computer. The former may fail 
through carelessness. The latter may fail when the computer program 
is actually an irrational black box. Input parameters, such as gap costs, 
assigned by the investigator determine phylogenetic hypotheses. If these 
input parameters are arbitrary, then justifying algorithmic approaches 
over manual ones under a criterion of “objectivity” is almost impossible 
to argue. One must justify each of the parameters that infl uence the 
analysis. Yet the argument continues. We believe that if input param-
eters are arbitrary and unpredictable, then alignment methods that use 
them are also arbitrary and unpredictable. To submit one’s data to an 
algorithm, with no regard for the implications of such an action, is to 
transfer subjective (and thoughtful) decisions about homology from the 
human investigator to subjective (and careless) decisions about gap cost 
determination. Algorithmic methods are not objective if input param-
eters are subjectively determined.

Another perceived advantage of algorithmic methods is that they 
are easier than structural alignments. In our experience, many inves-
tigators accept that structural alignments make sense, but they do not 
make the effort to perform them because they assume that their Clustal 
alignment is “good enough” and that a few alignment errors gener-
ated by the algorithm will be overridden by the mass of signal in their 
data. We fi nd this cavalier attitude toward homology to be surprising, 
when we consider the effort and expense that goes into collecting the 
sequences. In our opinion, it is always worth the effort to align the 
data with care. As systematists, we are often are more interested in 
resolving controversial nodes and not so interested in re-corroborating 
well-established relationships. Controversial internodes are often char-
acteristically short, and may be diffi cult to recover by any means with 
a variety of datasets. It may be that the characters we discard, because 
the easy method is applied, are the only ones that are informative. Or 
more likely, the few characters that inform us about a short internode 
are overwhelmed by a mass of poorly aligned noise. We could never 
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know how a careful alignment would infl uence our results without the 
effort. Those who support sensitivity analyses to optimize parameters 
with POY would probably agree with us on this point, as they perform 
months of analysis time on parallel processors or super clusters. Careful 
alignment, whether performed by hand or computer, takes time, effort, 
and expertise. We reject the argument that carefully performed algorith-
mic methods are “easier,” and let the reader decide whether “fast and 
careless” alignments are defendable.

An Example of Accuracy and Repeatability

If algorithmic methods could be shown to be more accurate than man-
ual alignments, then we might be able to overlook the possibility that 
arbitrary parameter selection may sometimes lead to unpredictable 
hypotheses. This is not the case, however. Many empirical compari-
sons have shown that manual alignments tend to recover more reason-
able phylogenies (Ellis and Morrison 1995; Gillespie, McKenna, et al. 
2005; Hickson et al. 1996; Hickson et al. 2000; Kjer 1995; Kjer 2004; 
Lutzoni et al. 2000; Morrison and Ellis 1997; Mugridge et al. 2000; 
Schnare et al. 1996; Titus and Frost 1996; Xia et al. 2003). Phylogenies 
are hypotheses to be tested, accepted, or refuted by subsequent hypoth-
eses. We never “know the truth.” Such hypotheses may be accepted on 
the grounds that they generally equate to the recovery of expected or 
corroborated relationships with phylogenetic accuracy. A compelling 
case can be made for phylogenies generated from manually aligned 
datasets. Time after time, we recover “more reasonable” phylogenetic 
hypotheses from carefully aligned data, (while at the same time, analy-
ses justifi ed only on epistemological consistency continue to produce 
“unexpected” hypotheses). Admittedly, these empirical studies can 
provide only points for discussion. To demonstrate accuracy, we need 
either known phylogenies from experimentally manipulated systems 
(such as sampling evolving viruses, Hillis and Bull 1993) or simula-
tion studies where we know the history of insertions and deletions in 
a simulated dataset. However, there are problems with both of these 
approaches, and these problems stem from the nature of rRNA. Viruses 
do not possess rRNA, so problems specifi c to rRNA alignment cannot 
be addressed with manipulated viral sequences. Simulation studies are 
only as good as the model used to simulate the data. Currently, our abil-
ity to model insertions and deletions is limited and unrealistic. Although 
it is possible to insert gaps into a simulated sequence, any model that 
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assumes that gaps are independent of one another and randomly dis-
tributed is not capturing the essence of what is happening in rRNA, 
where insertions and deletions are frequently multiple nucleotides in 
lengths, and strongly clustered in variable regions. An accurate model 
of rRNA evolution would require a proportion of the sites to be cova-
rying, gaps to be nonindependent, and substitution rates and length 
heterogeneity to be regionally variable. Without these characteristic 
features of rRNA built into the simulation, any generalizations drawn 
from these studies must be understood to be only crude approxima-
tions of biological reality.

We suggest a reasonable empirical solution to the assessment of 
accuracy in Kjer et al. (2006, 2007). Although accuracy cannot be 
fully explored with empirical data, we see at least one example where 
an “expected tree” is justifi ed. For taxa whose entire mitochondrial 
genomes are sequenced, it can be expected that partitions of the data 
share the same history. We suggest that relationships that are corrobo-
rated with both nuclear genes and morphology are candidates for iden-
tifying sets of phylogenetic expectations from the mitochondrial data. 
If these independently corroborated nodes are also supported by the 
combined mitochondrial genome data, then these relationships could be 
used to assess alignment strategies of any partitions of the data, such as 
the 12S and 16S mitochondrial rRNAs. Kjer et al. (2007) used the rela-
tionships shown in Figure 7.9 to compare phylogenetic accuracy and 
repeatability of manual and direct optimization methods. These taxa 
possess complete mitochondrial genome data, and each of the nodes 
is supported by morphological characters (McKenna and Bell 1997; 
Novacek 1992; Novacek et al. 1988; Simpson 1945) and nuclear genes 
(Amrine-Madsen et al. 2003; Delsuc et al. 2002; Waddell and Shelley 
2003). The phylogeny shown in Figure 7.9 is recovered from parsi-
mony, Bayesian, and Likelihood analyses of the complete mitochon-
drial genomes (Gibson et al. 2005; Kjer and Honeycutt 2007; Reyes 
et al. 2004). One need not accept this as the “true tree,” but merely a 
tree that is recovered by the entire dataset, and corroborated by mul-
tiple independent sources. By defi nition, partitions of the same linked 
dataset contain less data. It is therefore reasonable to use a tree derived 
from ten times the number of linked nucleotides in order to test align-
ment accuracy. There is a risk to judging an alignment method accord-
ing to this sort of phylogenetic expectation. Namely, the risk would 
be that the “expected tree” was later shown to be inconsistent with a 
tree derived by some future superior method. As such, the results from 
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Ornithorhynchus anatinus Platypus

Tachyglossus aculeatus Echidna

Didelphis virginiana Opossum

Macropus robustus Wallaroo

Rhinoceros unicornis Rhino

Equus caballus Horse

Equus asinus Donkey

Bos taurus Cow

Balaenoptera musculus Whale

Balaenoptera physalus Whale

Papio hamadryas Baboon

Hylobates lar Gibbon

Pongo pygmaeus

Pongo pygmaeus 

Gorilla gorilla Gorilla

Homo sapiens Human

Pan paniscus Bonobo

Pan troglodytes Chimp

0.05 substitutions/site

Orangutans

Monotremes

Marsupials

Eutherians

Primates

Figure 7.9. Expected tree, generated from analysis of the entire mitochondrial 
genome. Branch lengths calculated as likelihood, with a GTR + I + G model 
(Kjer et al. 2007).
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the experiment could be modifi ed by the new phylogenetic expectations. 
In other words, if one is transparent about how phylogenetic expecta-
tions are used to assess alignment performance, then conclusions can 
easily be overturned with future illumination. Science is about laying 
out one’s assumptions, and testing hypotheses according to whether or 
not the data fi t those assumptions.

The experimental design of Kjer et al. (2007) was simple. The 16S 
rRNA sequences from the taxa shown in Figure 7.9 were assembled, the 
taxon names were disguised, and the taxon order was shuffl ed within 
the matrix. The masked data were then sent to three investigators with 
simple instructions: “Align these data with secondary structure, and 
also with POY.” It was predicted that if secondary structure could pro-
vide a reasonable means of homology assessment, then different inves-
tigators would come to similar decisions about structurally infl uenced 
homology. More simply stated, if the structures were real, we would all 
fi nd them, and structurally aligned data would lead to similar phylo-
genetic conclusions among investigators, because they would be using 
a nonarbitrary means of homology assessment, even if the alignments 
themselves were not identical. The second prediction was that if param-
eter decisions were arbitrary (Doyle and Davis 1998; Hickson et al. 
2000; Kjer 1995;  Phillips et al. 2000; Vingron and Waterman 1994; 
Wheeler 1996), and these parameters had a strong infl uence on phy-
logenetic conclusions, then different investigators using an algorithmic 
approach to a phylogenetic problem would arrive at different phyloge-
netic hypotheses, given the same data.

Figure 7.10 shows the results of the experiment. All three of the struc-
tural alignments yielded nearly identical results, with the only differ-
ence being on the Chimp/Human/Gorilla branch (which is a reasonable 
refl ection of reality, because this branch has no perceivable length). The 
structurally aligned data also recovered the expected tree. The hypoth-
eses generated from the independent POY analyses (not shown; see Kjer 
et al. 2007, Fig. 5) resulted in each investigator proposing a different 
phylogenetic hypothesis, none of which were the expected tree. Each of 
the POY analyses resulted in different opinions on how to present the 
confusing array of trees that were generated from the many explorations 
of alternative parameters. We have already discussed the ambiguity of 
sensitivity analyses when each of the explorations of parameter space 
is biologically unrealistic. Alarmingly, even when the same parameters 
(but not necessarily the same search heuristics) were used, each of the 
investigators recovered different trees with POY. In all probability, this 
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was the result of an insuffi cient search strategy. All heuristic exercises, 
including routine tree searches, can suffer from this problem, and if you 
start from the same random seed, you will get the same tree. However, 
direct optimization is more complex than simple tree searches, and fi g-
uring out how long to run the analysis is another decision that needs to 
be made. In this example, structurally aligned data resulted in phyloge-
netically identical hypotheses that conformed to the corroborated tree. Is 
that not what we want in terms of repeatability? Consider the scenario 
of baking a cake. We follow a recipe: 2 eggs, a cup of fl our, a cup of 
sugar, and so forth, . . . mix well, and then bake in the oven at 375 °F 
for 30 minutes. Perhaps one person uses 5% more fl our than another, or 
one person stirs with greater vigor. Regardless, the end product is a cake. 
With manual alignments guided by secondary structure, we all get cake 
in the end (Figure 7.10). Repeatability in science has always been defi ned 
in this way. We describe the methods, and then see if others can repeat 
it. Taken even further, if the alignment is presented, the analyses can be 
precisely repeated, and the decisions that went into it can be assessed and 
changed. Kjer et al. (2007) show that when you follow the cake recipe, 
and pop the data into POY, you do not know what will come out; it 
might be a loaf of bread. Of course, our scenario is one of exaggeration, 
but it serves to make a point. When you are cooking (or applying math-
ematics), you can tell the difference between the end results of a cake and 
a loaf of bread. In phylogenetics, the end products cannot be so easily 
distinguished from one another with respect to which is correct.

Not everyone agrees with the generalizations we reported in Kjer 
et al. (2007), and as with any work, there are, no doubt, legitimate 
criticisms that we would like people to consider. This work (Kjer et 
al. 2007) was presented as an opinion piece to foster some discussions 
about the ambiguities of alignments, both manual and computer gener-
ated. We asked one of our critics, Gonzalo Giribet, to summarize the 
basic weakness of our work here.

I think that we both agree that secondary structure information is valuable 
for refi ning homology hypotheses but we differ in the way we incorporate 
such ancillary information into our homology-assignment techniques, being 
those multiple alignments or simply putative synapomorphies in “direct 
optimization” techniques (what I have called “single-step phylogenetics”). 
We have different understanding of what reproducibility may mean, and 
although I see an alignment as a pure topology-dependant hypothesis 
you may view it as something that is fundamentally knowable, i.e., that 
there is “one” alignment. This is what causes that you may search for 
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“the” alignment while I am more interested in exploring what  alternative 
parameter sets may have to do with my homology hypothesis, i.e., assess-
ing the stability of my results to alternative parameter sets.

Naturally we do not agree with everything Giribet has to say about 
sensitivity analysis. There seem to be two purposes for sensitivity anal-
yses; one would be to fi nd the most justifi ed set of parameters, and 
therefore select a favored hypotheses derived from the preferred input 
parameters. The other purpose would be to explore the stability of the 
data to a variety of parameters, and present a phylogenetic hypoth-
esis that includes measures of alignment uncertainty. Giribet supports 
the second of these in his statement above, and there may have been 
instances where we have confused these two justifi cations for sensitivity 
analyses. We appreciate his effort to clarify this difference, but still fi nd 
both uses of sensitivity analyses problematic.

We think that phylogenetics is a near impossible enterprise, and the 
best we can do is to do our best. We should not be ashamed of pursu-
ing accuracy, even if it is impossible to assess. We agree with Giribet 
that sensitivity to alignment uncertainty should be explored, and that 
uncertainty in an alignment should eventually be part of our estimates 
of support. We think that this would probably require a Bayesian 
method, similar to that proposed by Redelings and Suchard (2005).

If one is interested in a “best estimate” of phylogeny, this estimate 
will likely come from an analysis in which homology (alignment) is 
optimized. Another area of ambiguity is amplifi ed when multiple align-
ment parameters offer many different trees; it becomes diffi cult to infor-
matively select among them. The utility of a phylogenetic hypothesis is 
drastically reduced when no hypothesis can be considered better than 
another, because all of the trees are devoted to explorations of the data 
under different alignment input parameters. For example, what can we 
take from Wheeler et al. (2001) as a phylogenetic hypothesis? Surely 
not the “discussion tree,” but if not that, should we favor the myriad 
of other trees that collapse to a near meaningless polytomy? We believe 
that it is the responsibility on an investigator to clearly present his or her 
hypothesis. The best way to do so would be to state “the best estimate of 
phylogeny we could make comes from analysis ‘X,’ shown in Fig. ‘Y.’” 
It is the responsibility of the reader to then evaluate the results and either 
agree or disagree with the fi ndings. For this dynamic process to occur, 
one must present the data, present the alignment, and justify the deci-
sions that were made. The current feasibility of justifying one’s decisions 
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with an algorithmic approach is not as straightforward as is the case 
with a manual approach.

comparison to protein alignment—
programs and benchmarks

Protein alignment programs have seen much development in recent years, 
beginning with ClustalW (Thompson et al. 1994) to current state-of-the-
art approaches, such as Probalign (Roshan and Livesay 2006), Probcons 
(Do et al. 2005), and MAFFT (Katoh et al. 2005). These programs use a 
variety of techniques, such as hidden Markov models (Durbin et al. 1998), 
maximal expected accuracy (Durbin et al. 1998), fast Fourier transforms 
(Katoh et al. 2005), profi le alignment (Edgar 2004a), and consistency 
alignment (Do et al. 2005). Most protein alignment programs aim to align 
parts of proteins conserved in sequence or structure. This is facilitated by 
amino acid substitution-scoring matrices estimated from real data (such 
as PAM, Dayhoff and Eck 1968; and BLOSUM, Henikoff and Henikoff 
1992) and manually created protein alignment benchmarks, also based on 
real data (such as HOMSTRAD, Mizuguchi et al. 1998b; and  BAliBASE, 
Thompson et al. 2005b). These benchmarks, which are primarily structure-
based alignments, not only allow for comparison of different programs, 
but also enable optimization of gap penalty parameters on real data. As a 
result, protein alignment programs have shown a steady increase in accu-
racy over the years. The most accurate programs use a combination of 
techniques, such as PSI-BLAST profi les, and predicted secondary struc-
tures as found in the PROMALS program (Pei and Grishin 2007).

Most protein sequence alignment programs can be used for RNA align-
ment in principle. However, substitution scoring matrices and alignment 
benchmarks (analogous to BLOSUM and BAliBASE, for example) were 
not developed for RNA until recently. The BRaliBASE RNA alignment 
benchmark (Gardner et al. 2005), similar to BAliBASE for proteins, is 
the fi rst RNA alignment benchmark produced by aligning sequence while 
taking into consideration secondary structure. Subsequent efforts have 
expanded BRaliBASE (see Wilm et al. 2006). Yet, BRaliBASE still lacks 
the size and diversity of its protein counterparts. The RIBOSUM scoring 
matrices (Klein and Eddy 2003) for RNA are comparable to the BLOSUM 
matrices for proteins; however, recent studies show that they perform more 
poorly than simpler scoring matrices when used in the ClustalW program 
on enhanced BRaliBASE benchmarks (Wilm et al. 2006).

Further development of RNA alignment benchmarks, better substitu-
tion scoring matrices, and adaptation of techniques used in state-of-the-art 
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protein alignment programs will eventually lead to better algorithms for 
aligning RNA. Alignment of conserved regions (in sequence or structure) 
is accepted as a measure of correctness in the protein domain. In light of 
our discussion in the preceding sections, the same criteria should apply 
when aligning RNA.

conclusion

When initially asked to contribute to this book, I thought that we would 
provide a chapter on the problems with algorithmic methods. However, 
we fi nd this to be an overly negative approach. We all have different 
backgrounds—and experience. Sometimes we see things in different 
ways, and our experience differs greatly from that of many of the other 
contributors to this book. These differences are a good thing, as differing 
points of view should be openly discussed and debated. Thus, our science 
progresses. It is all too easy in science to take an adversarial approach 
to those who disagree with us. It is not our intention in this chapter to 
be overly critical. We do support properly invoked algorithmic methods, 
and clearly stated optimality criteria. It is our hope that, by our pointing 
out some of the problems we have experienced in the alignment of rRNA 
data, program developers can incorporate solutions to these issues in 
their algorithms. Biologically realistic algorithms could make manual 
alignment less and less relevant. Here are some of the issues we see as 
most important toward the improvement of alignment programs.

In molecules whose function is dependent on structure, the conserva-
tion of the structure should be part of the optimality criterion. Minimizing 
structural change is as justifi ed as minimizing change among nucleotides. 
Perhaps a program could be developed that could locate covarying sites 
in a multiple alignment. Some multistepped combination of calculating 
minimum free energy structures that are shared among multiple taxa, 
and then confi rming those hypothesized structural interactions based on 
compensatory base changes, seems possible. Sites containing such com-
pensatory base changes should be aligned together. A research group led 
by P. Stadler at the University of Leipzig and a research group led by B. 
Misof at the University of Bonn have developed a promising program 
called RNAsalsa that promises to do these things (B. Misof, personal 
communication), but we have not had a chance to evaluate it.

Gap costs should vary among regions. Manual alignments contain 
fl exible gap costs, in that when a person comes to a hypervariable region 
with a lot of variation in length among sequences, gaps are more freely 
inserted. With an algorithm, there should be a way to locate conserved 
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regions by some criteria, and then measure the range of length varia-
tion among taxa in the regions between them. Gap costs could then be 
regionally assigned based on how much length variation was observed, 
giving the lowest gap costs to regions that contain the most length het-
erogeneity. The standard deviation of the lengths could also play a role 
in gap cost determination, and in data exclusion criteria.

The iterative process of moving from guide trees to multiple alignments 
should be improved upon. Perhaps the initial guide tree should be devel-
oped from unambiguously aligned regions; we could then iteratively move 
through more diffi cult regions with guide trees developed only from data 
whose homology reaches some confi dence threshold. It is fairly easy to 
see by eye when one lineage cannot be aligned with another. Reconstruct-
ing ancestral states to the root of a particular lineage may yield sequences 
so different from other lineages that it would be foolish to attempt to 
homologize them. If it is that easy to see for the human eye, there should 
be a way for a computer to measure this incompatibility as well, and 
reach objective criteria for data exclusion. Gblocks  (Castresana 2000) 
provides a conservative means of data exclusion. Another interesting 
program called “Aliscore,” based on the identifi cation of randomness in 
sequence alignments using a Monte Carlo approach, is being developed 
by Misof and Misof (personal communication). We need more informa-
tion about how gaps accumulate and evolve in rRNA to model these 
characters. The greatest challenge is that gaps are not independent of 
one another, and are not randomly distributed across sites. Alignment 
programs must recognize both of these properties.

An ideal program would have a means to assess alignment uncer-
tainty (as in Redelings and Suchard 2005). But alignment uncertainty is 
linked with the model, so it is important to remember that if the model 
for gaps is biologically unrealistic, then the “uncertainty” cannot be 
disentangled from those limitations. It is our impression that the differ-
ences among trees that are attributed to alignment methods are more 
often associated with different data exclusion criteria and philosophies. 
It should be possible to produce a program that incorporates some data 
exclusion criterion with alignment uncertainty.

Alignments involving moderate to extreme length heterogeneity across 
sampled sequences will undoubtedly invoke some degree of subjectivity 
from the investigator, regardless of the methodological approach (Kjer 
et al. 2007). The legitimate disagreements about the kinds of subjectivity 
that are justifi ed will likely continue. Here we state our beliefs. Phy-
logenies are hypotheses only. We think that even though we can never 
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prove a phylogeny to be true, phylogenies that are wrong are worse than 
worthless because they promote further inaccurate predictions. For phy-
logenies to be predictive, they must be accurate, and even if we cannot 
prove accuracy, none of us should be embarrassed to pursue it. Given 
that, we think it is imperative to intervene when it can be demonstrated 
that existing methods are failing. Reasoned subjectivity, with all assump-
tions defi ned and the alignment made public, is far more accessible than 
black box analysis justifi ed under some philosophical principle. We sug-
gest that you should do the best you can today with what you have, 
because if something better comes along later, the data are still available 
in GenBank for reanalysis. And the addition of new sequences to exist-
ing alignment templates is likely the better approach, not only for the 
re-estimation of phylogenies, but also for the evaluation of structural 
and functional predictions derived from said alignments (see Morrison 
2006). Thus, we disagree with favoring purely algorithmic approaches, 
such as POY and others based only on the perceived future of direct 
optimization, simply because no algorithms to date match the level of 
empiricism ingrained within the biological (manual) method.

terminology

Comparative evidence for secondary structure base pairing comes pre-
dominantly from the observation of covarying Watson–Crick pairs (see 
the early works of Gutell, Noller, and Woese). Typically, contradiction of a 
covarying position is as follows: AA, CC, UU, GG; AC, AG, and CU (and 
their symmetrical equivalents) cause disruptive bulges. Gutell and others 
have observed that some of these pairs actually do covary, mostly within 
highly conserved regions of rRNA (e.g., see Lee and Gutell 2004), wherein 
selection favors noncanonical base pairs to foster a variety of tertiary inter-
actions (reviewed in Noller 2005); however, for the alignment of variable 
regions of rRNA, consider them forbidden. Remember also that G↔U is a 
permitted hydrogen bonding pair in RNA. C↔A pairs do not appear to be 
as disruptive as the other noncanonical pairs listed above, and therefore, 
if there is comparative evidence of a site, C↔A pairs should not contra-
dict the site. Contradiction of core helices and other strongly supported 
features of rRNA cannot come from a single taxon because sequencing 
errors can happen, just as evolution can happen. Some deleterious substi-
tutions do not result in the immediate extinction of the lineage, so a single 
bulge or even a few bulges across an alignment cannot contradict a stem. 
However, if you see  multiple bulges, treat the site as suspect and evaluate 
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the support for the helix by a variety of means. Base pair frequency tables 
provide a means to measure the degree of covariation for a given base pair. 
Other statistics, such as mutual information and Kramer’s statistic, further 
illustrate the manner of dependence within sites of a base pair. The entire 
stem need not be rejected, however, particularly if there are covarying sites 
at other positions. Ideally, an objective approach would be to accept only 
base pairs that have less than a certain percentage of noncanonical base 
pairs within proposed helices.

• Helix (stem): A right-handed double helix composed of a succes-
sion of complementary hydrogen-bonded nucleotides between 
paired strands.

• Single strand (loop): Unpaired nucleotides separating helices.

• Hairpin-stem loop: Helix closed distally by a loop of unpaired 
nucleotides (terminal bulge).

• Terminal bulge: Succession of unpaired nucleotides at the distal 
end of a hairpin-stem.

• Lateral bulge: Succession of unpaired nucleotides on one strand 
of a helix.

• Internal bulge: Group of nucleotides from two antiparallel 
strands unable to form canonical pairs.

• Compensatory base change: Subsequent mutation on one strand 
of a helix to maintain structure following initial mutation of a 
complementary base (aka CBC).

• Insertion: A single insertion of a nucleotide relative to the rest of 
the multiple sequence alignment (dependent on frequency and 
determination of direction of event relative to out-group).

• Deletion: A single deletion of a nucleotide relative to the rest of 
the multiple sequence alignment (dependent on frequency and 
determination of direction of event relative to out-group).

• Indel: An ambiguous position (column) within a multiple sequence 
alignment that cannot be described as an insertion or deletion.

• Region of ambiguous alignment (RAA): Two or more adjacent, 
nonpairing positions within a sequence wherein positional 
homology cannot be confi dently assigned due to the high occur-
rence of indels in other sequences.

• Region of slipped-strand compensation (RSC): Region involved 
in base pairing wherein positional homology cannot be defended 
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across a multiple sequence alignment; inconsistency in pairing 
likely due to slipped-strand mispairing.

• Region of expansion and contraction (REC): Variable helical 
region fl anked by conserved base pairs at the 5' and 3' ends, and 
an unpaired terminal bulge of at least three nucleotides; charac-
teristic of RNA hairpin-stem loops.
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appendix: instructions on performing 
a structural alignment

(NOTE: A conceptual approach for structural alignment of rRNA 
sequences and further preparation of the data for RNA maximum 
likelihood models of evolution is available at http://hymenoptera.tamu
.edu/rna/methods.php. Below we provide a didactic example that will 
help the reader begin manually adjusting his or her own data).

It is most often the mechanics of manual alignment that trip people up. 
It is not hard to convince people that doing structural alignments is a 
good idea. It is just that it becomes “too hard,” and if people can get 
“close enough” with Clustal, they call it “good enough.” We under-
stand their pain, but disagree. The following suggestions should make 
the whole process a little easier:

The goal of a manual structural alignment is to make objective and 
repeatable decisions, using minimizing structural changes without being 
arbitrary. An example of being arbitrary would be to say: “retain all 
nucleotides that are identical among all taxa for ten nucleotides or 
more.” Although it makes good sense, and results in a repeatable crite-
rion, the selection of ten is arbitrary. In our opinion, it is better to admit 
to ambiguity than to hide from it and pretend you are being objective, 
in the hope that nobody will notice.

 1. Align the sequences with Clustal or any other computer align-
ment program as a starting point. It works best to avoid a 
“gappy”-looking alignment, because you will need to manually 
adjust the gaps. The computer alignment is simply a timesaving 
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device, as any manual adjustment changes a computer align-
ment to a manual alignment. Clustal is easy to use, is available 
for multiple platforms, and permits multiple export formats. 
Export the alignment in a NEXUS format.

 2. Open the Clustal NEXUS alignment with PAUP. From PAUP, 
go to the “fi le” pull down menus and “export data,” using “fi le 
format, NEXUS,” and clicking the box “interleave” with 130 
characters per line. Close the original PAUP fi le, and reopen the 
new “.dat” fi le, which is now interleaved with 130 characters 
per line. This is just so that you have about the right number of 
characters in each block to be able to look at them all without 
scrolling back and forth on the screen.

 3. Open the interleaved .dat fi le you just made with Microsoft 
Word (of course, there are other text editors; yet, not all of them 
allow for easy manipulation of the data). Format with courier 
bold 9 point font. You may have to format the document in 
“landscape” view, and reduce to 25% so that the lines do not 
wrap over. Setting a custom page size (22” by 22”) may help. 
Now color the nucleotides by going to the “Edit” menu; go to 
“Replace” (select “more options” to fi nd the “font” option, 
under “format”). Change all of the A’s into green A’s, the C’s into 
blue C’s, the U’s into red U’s, and leave the G’s black. Now you 
have something that looks like Figure 7.11, except that yours 
would be in color (this example can be found on Kjer’s website,):

 4. Add a palette to each of the rows. A palette contains a variety of 
symbols that you may wish to insert, as a column, into the data 
matrix. As shown in Figure 7.12, the palette starts and ends with 

AY037172 UUAUUAGAUCAAAGCCAAUCGAACUUUCGGGUU-------------------------------CGUUUUAUUGGUGACUCUGAAUAAC
U61301   UUAUUAGAUCAAAGCCAAUCGAGUUUCGGCUC---------------------------------GUUUUGUUGGUGACUCUGAAUAAC
Z36893   UUAUUAGAUCAAAGCCAAUCGAACUCUCGGGU-------------------------------UCGUUUAAUUGGUGACUCUGAAUAAC
X89485   UUAUUAGAUCAAAGCCAAUCGGACUCUCGGGU-------------------------------UCGUAUUGUUGGUGACUCUGAAUAAC
Z26765   UUAUUAGAUCAAAGCAAAUCGGACCUUCGGG-------------------------------UUCGUUUUGUUGGUGACUCUGAAUAAC
AF173233 UUAUUAGACCGAAACCAACCUGGUCGUGUCUCAC----GGCACGGUCCGGUCUCUGGCUUUGCCCAGGGGUUUGGUGACUCUGAAUAAC
AY037170 UUAUUAGACCGAAAUCAACCUGGUCGUUCGCUU-----GCGAGCGGUCCGGUCUCUGGAUCUUCCAGGGGUUUGGUGACUCUGAAUAAC
AY037169 UUAUUAGACCGAAACCAACCUGGUCGUGUCUCUG-----GCACGGUCCGGUCUCUGGCUUUGUCCAGGGGUUUGGUGACUCUGAAUAAC
AF173234 UUAUUAGCUCAAAGCCGAUCGGGUCCUUGUGGCCC-------------------------------GCAACUUGGUGACUCAAACGAAC
AY037168 UUAUUAGCUCAAAGCCGACCGGGCUUAGCCCGCGCUU-----CCGUUCGCGGUGCGCGGGCGGCCCGCCUCUCGGUGAAACGGACGAAC
AY037167 UUAUUAGUUCAAAGCCGAUCGGGUCCUUUGUG------------------------------GCCCGCUACUUGGUGACUCAAACGAAC
AF005456 UUAUUAGCUCAAAGCCGACCGGGCUUCAACCCUUCGUCCCCUCGCGGGGCGUUGGGGCGGCCCGUUUCCACUCGGCGAAUCGAAAGAAC
AF005455 UUAUUAGCUUAAAGCCAAUCGGGUCCUUGUGGCC-------------------------------CGCUUAUUGGUGACUCAAACGAAC
AF005454 UUAUUAGCUUAAAGCCAAUCGGGUCCUUGUGGCCC--------------------------------GCUUAUUGGUGACUCAAACGAA

Figure 7.11. Algorithmically aligned sequences imported into Word, awaiting 
manual refi nement.

AUQ13
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144 Structural Considerations for RNA MSA

brackets, so that NEXUS will ignore the contents after they are 
eventually reimported into PAUP.

 5. Go to Gutell’s (http://www.rna.ccbb.utexas.edu) or Gillespie’s 
website and download the most recent secondary structure 
 diagram.

 6. Microsoft Word permits three essential things you need to be 
able to do. First, you want to see colors. Second, you must be 
able to move columns. To move columns in Word, you simply 
depress the “option” key as you drag down a column with the 
mouse. Finally, underlines are essential (more about them in 
step 9). So the next step is to fi nd a stem from a structural model, 
and paste in the structural symbols from Kjer (1995) to indicate 
the putative boundaries of the stems. (Note: since 1995, I have 
replaced the bracket symbols with the “|” symbol to indicate 
long range stems, because the brackets have meaning in NEXUS 
that I had not considered in 1995.)

 7. Apply structural symbols as in Kjer (1995) to the reference 
sequence, and fi t them, one by one, onto each of the other 
sequences. Attempt to subdivide long single-stranded regions 
by looking for covariation, as in Kjer (1995). As a fi rst pass, 
assume the structural model you have is correct, but if the data 
contradict it, then do what the data tell you. Structural models 
are inferred from comparative evidence, which is exactly what 
you have before you for a more specifi c set of taxa. These struc-
tures may evolve. If you see that your model does not fi t your 
taxa, then alter it to a model that is supported by the evidence 
presented by the sequences. The signal in these regions comes 
from universal and covariable inferred hydrogen bonds (com-
pensatory base changes). If all of the taxa can bond in a thermo-
dynamically stable stem that is supported by compensatory base 
changes, and would also be unlikely to exist by chance, then 
this stem should be inferred and used in an alignment. You may 
propose modifi cations to structural models this way. It is not 
your task to construct a perfect secondary structural model, but, 
rather, to use the structure to infer homology. A portion of the 
stem for which the structure is ambiguous from the data cannot 
be used to defi ne homology beyond what you can infer from the 
nucleotides (primary structure). So you should freely contract 
stems to the minimum common supported size, and let others 

AUQ14
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Structural Considerations for RNA MSA 145

whose primary goals are to develop structural models worry 
about the differences.

 8. Consult Hickson et al. (1996) and “Phylogenetic conservation 
superimposed onto the E. coli SSU rRNA” on Gutell’s website 
for conserved motifs.

 9. Pasting the structural symbols provides only an initial rough 
hypothesis of base pairing. The next step is to confi rm the 
hydrogen bonds. Since this is an iterative process, you MUST 
be able to trace what you have looked at, and differentiate 
those regions from the regions you have not yet fi nished. One 
way to do this is with underlines. Underlines indicate confi rmed 
 hydrogen bonds. They mean that you have looked at those 
 individual nucleotides, and their partners, and a Watson–Crick, 
or G-U, base pair is possible. Laziness is the biggest prob-
lem at this point, because it is easy to drag entire columns of 
 nucleotides, and simply underline them all without checking. 
A sloppy alignment is full of non-Watson–Crick pairs that are 
mistakenly underlined. Note in Figure 7.13 the bulge indicated 
by the lack of underlines in Z26765 GCAAA...UUGGU. If you 
cannot trust the underlines, you cannot trust the alignment. 
This is why we do not use some of the fancier phylogenetic data 
editors—because they do not offer the opportunity to visualize 
individual hydrogen bonds (or if they do, Kjer did not know). 
There may be a better way to do this. But any system must have 
confi rmation of bonding at each site, as opposed to a mask 
applied to the top sequence.

 10. Line up the stems. If the stems do not line up because there are 
alternative lengths, slippage, or a lack of structural conserva-
tion, pull back on the stems, and consider them unaligned. Put 
an empty space to mark the unaligned regions, as above. Use 
empty spaces to help you break up the alignment, so that you 
can get a better look at it. Think carefully about data exclusion. 
For example, can you justify aligning the above UUUUG with 
CAAC? If not, then eliminate this region, and code it as you see 
fi t with some other method. The structure will defi ne the aligned 
regions, and delimit the unaligned regions. If there is no length 
variation in the single-stranded region, keep it in, as in the region 
below “V2”: AGAUCAAA. If there is length variation, without 
conserved nucleotide motifs, throw it out, put it into INAASE, 
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Structural Considerations for RNA MSA 147

or try some iterative tree-based computer alignment on these 
regions.

 11. Think about dots. When applied to sequences to indicate identity 
with a reference sequence (on top in Figure 7.14), they help 
you to visualize compensatory base changes, as well as synapo-
morphies. They will also make misalignments stand out so that 
you can see them. You can insert them by moving a section into 
 MacClade, and selecting the “matchar” option, but in doing so, 
you would lose your structural symbols.

 12. Defi ne regions of ambiguous alignment. A candidate for a 
region of sequence that may be considered as “ambiguously 
aligned” is initially any region containing length variation 
among taxa. Objectively subdividing this assignment becomes 
the more important task because the initial defi nition applies 
to the whole sequence. There are three types of information 
that help to designate regions into aligned and ambiguously 
aligned classes. First, an ambiguously aligned region is any 
region containing length variation among taxa that is fl anked 
by hydrogen-bonded stems, in which there is more than 
one equally plausible alignment. This assignment alone will 
subdivide the whole gene into multiple fragments. Once the 
secondary structure has defi ned the boundaries of ambiguity, 
additional information comes from the nucleotides. Attempt 
to manually align the region. Consult both Gutell and Hickson 
et al. for conserved motifs, and if all taxa have them, align 
the conserved motifs together to further subdivide the region. 
Ask yourself if a panel of judges were to look at every gap in 
your alignment, whether or not you could defend your deci-
sions to the point where no other placement would be equally 
parsimonious. Consider transitions to be more likely than 
transversions, and also, make consistent decisions about how 
heavily to consider one or a few aberrant taxa in an  otherwise 
length-homogeneous region. Decide the degree of nucleotide 
similarity among taxa that is required to expand into the 
regions defi ned by the fl anking hydrogen bonds. Remember, 
each decision you make is a hypothesis of homology that can 
be reviewed and overturned. Therefore, you do not need to be 
perfect, because if you publish your hypotheses, they can be 
repeated and or contested.
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 13. Once you have fi nished the alignment in Word, import the 
whole thing back into PAUP, and use the “Replace” option in 
the Edit menu to change all the parentheses, and lines “(“ , ”)” 
and “ | ” into blank spaces. The NEXUS fi le should be an exact 
match to the Word fi le, except that it will lack color, and the 
structural symbols.
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AUQ1:  (Differentiation of Molecules, 1st paragraph) Please supply reference entry for Cate et al. 
1999.

AUQ2:  (Compositional Bias Presents a Severe Challenge, 1st paragraph) Please supply reference 
entry for Brooks and McLennan 1994.

AUQ3:  (Compositional Bias Presents a Severe Challenge, 1st paragraph) Please supply reference 
entry for Lanyon 1988.

AUQ4:  (Compositional Bias Presents a Severe Challenge, 1st paragraph) Please supply reference 
entry for Mishler et al. 1988.

AUQ5:  (Gaps Are Not Uniformly Distributed, 3rd paragraph) Suggest defi ne “ILD”
AUQ6:  (Long Inserts/Deletions, 1st paragraph) Is “nts” an abbreviation for nucleotides? If so, 

probably better to write out the word
AUQ7:  (Are Structural Inferences Justifi ed?, last line) Would “taxa” in both places be better as 

“taxon”?
AUQ8:  (An Example of Accuracy and Repeatability, 2nd paragraph) Please supply reference entry 

for Amrine-Madsen et al. 2003.
AUQ9:  (An Example of Accuracy and Repeatability, 2nd paragraph) Please supply reference entry 

for Delsuc et al. 2002.
AUQ10:  (An Example of Accuracy and Repeatability, 2nd paragraph) Please supply reference entry 

for Waddell and Shelley 2003.
AUQ11:  (Terminology, 1st paragraph) Please provide reference entries for the “early works of Gutell, 

Noller, and Woese.”
AUQ12:  (Terminology, 1st paragraph) “a single bulge” correct?
AUQ13:  (Appendix, item 3) Please provide the URL for Kjer’s website.
AUQ14:  (Appendix, item 5) Please provide the URL for Gillespie’s website.
AUQ15:  (Figure 7.10 caption) Please supply reference entries for Kjer, Ober, and Gillespie.
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