Distance based phylogeny reconstruction

Usman Roshan

Neighbor joining

1. Additive and $O\left(n^{\wedge} 3\right)$ time
2. Initialization: same as UPGMA
3. For each species compute

$$
u_{i}=\frac{\sum_{k=1, k \neq i}^{n} d_{i k}}{n-2}
$$

4. Select i and j for which $d_{i j}-\left(u_{i}+u_{j}\right)$ is minimum
5. Make them neighbors in the tree by adding new node (ij), and set tree distance from (ij) to i and j as

$$
d_{i,(i j)}=\frac{1}{2} d_{i, j}+\frac{1}{2}\left(u_{i}-u_{j}\right) \quad d_{j,(i j)}=\frac{1}{2} d_{i, j}+\frac{1}{2}\left(u_{j}-u_{i}\right)
$$

Neighbor joining

6. Update distance matrix d : for all clusters k do the following

$$
d_{(i j), k}=\frac{d_{i k}+d_{j k}-d_{i j}}{2}
$$

7. Delete columns and rows for i and j in d and add new ones corresponding to cluster (ij) with distances as computed above
8. Go to 3 until two nodes/clusters are left

NJ

NJ constructs the correct tree for additive matrices

Neighbor joining implementation in Python

- Instead of -1 to denote unusable entries of d we will use ' X '. For this we make changes to
- Find_closest_pair
- Update_distance_matrix
- Make_little_d

Neighbor joining implementation in Python

- We also need to modify the functions below to reflect neighbor joining updates
- Find_closest_pair
- Update_distance_matrix
- Distance

