Distance based phylogeny reconstruction

Usman Roshan

Phylogenetics

- Study of how species relate to each other
- "Nothing in biology makes sense, except in the light of evolution", Theodosius Dobzhansky, *Am. Biol. Teacher* (1973)
- Rich in computational problems
- Fundamental tool in comparative bioinformatics

Why phylogenetics?

- Study of evolution
 - Origin and migration of humans
 - Origin and spead of disease
- Many applications in comparative bioinformatics
 - Sequence alignment
 - Motif detection (phylogenetic motifs, evolutionary trace, phylogenetic footprinting)
 - Correlated mutation (useful for structural contact prediction)
 - Protein interaction
 - Gene networks
 - Vaccine devlopment
 - And many more...

Phylogeny Problem

- Two main methodologies:
 - Alignment first and phylogeny second
 - Construct alignment using one of the MANY alignment programs in the literature
 - Do manual (eye) adjustments if necessary
 - Apply a phylogeny reconstruction method
 - Fast but biologically not realistic
 - Phylogeny is highly dependent on accuracy of alignment (but so is the alignment on the phylogeny!)
 - Simultaneously alignment and phylogeny reconstruction
 - Output both an alignment and phylogeny
 - Computationally much harder
 - Biologically more realistic as insertions, deletions, and mutations occur during the evolutionary process

First methodology

- Compute alignment (for now we assume we are given an alignment)
- Construct a phylogeny (two approaches)
- Distance-based methods
 - Input: Distance matrix containing pairwise statistical estimation of aligned sequences
 - Output: Phylogenetic tree
 - Fast but less accurate
- Character-based methods
 - Input: Sequence alignment
 - Output: Phylogenetic tree
 - Accurate but computationally very hard

Definitions

- Tree:
 - Set of nodes and edges
 - Undirected graph
 - No cycles
 - Connected
- Examples
- Degree of node = number of edges connected to the node
- Binary tree: every node has at most two children
- Phylogeny: unrooted binary tree

Distance-based methods

Distance methods

- UPGMA: similar to hierarchical clustering but not additive
- Neighbor-joining: more sophisticated and additive
- What is additivity?

Additivity

A distance matrix D is additive if there exists a tree, T = (V, E), and $w : E \to \mathcal{R}^+$ such that $D_{ij} = \sum_{e \in P_{ij}} w(e)$.

Waterman et al, 1977, showed that:

UPGMA is not additive but works for ultrametric trees. Takes $O(n^3)$ time

Input: distance matrix D, Output: Phylogeny T

- 1. Set *d=D*
- 2. Initialize *n* clusters where each cluster *i* contains the sequence *I*
- 3. Find closest pair of clusters *i*, *j*, using distances in matrix *d*
- 4. Make them neighbors in the tree by adding new node *(ij)*, and set distance from *(ij)* to *i* and *j* as *dij/*2
- 5. Update distance matrix *d* with weighted average. For all clusters *k* do the following (*ni* and *nj* are size of clusters *i* and *j* respectively)

$$d(i,j) = \frac{1}{n_i n_j} \sum_{i' \in L(i)} \sum_{j' \in L(j)} D(i',j')$$

- 6. Delete columns and rows for *i* and *j* in *d* and add new ones corresponding to cluster (*ij*) with distances as computed above
- 7. Goto step 2 until only one cluster is left

	А	В	С	D
A		6	32	32
В			32	32
С				6
D				

Doesn't work (in general) for non ultrametric trees

UPGMA constructs incorrect tree here

Bipartition (BC,AD) is not in true tree

