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When comparing two biological sequences, it is often desirable for a gap to be assigned a cost not
directly proportional to its length. If affine gap costs are employed, in other words if opening a
gap costs v and each null in the gap costs u, the algorithm of Gotoh (1982, J, molec, Biol. 162, 705)
finds the minimum cost of aligning two sequences in order MN steps. Gotoh's algorithm
attempts to find only one from among possibly many optimal (minimum-cost) alignments, but
does not always succeed. This paper provides an example for which this part of Gotoh’s
algorithm fails and describes an algorithm that finds all and oaly the optimal alignments. This
modification of Gotoh's algorithm still requires order M N steps. A more precise form of path
graph than previously used is needed to represent accurately all optimal alignments for affine gap
costs.

Introduction. The first widely used algorithm for aligning two biological
sequences was developed by Needleman and Wunsch (1970). Sellers (1974)
introduced mathematical rigor by finding optimal (minimum-cost) alignments,
where substitution of element x by y is assessed a substitution cost c(x, y), and
aligning an element with a null (missing element) is charged a null cost w, . As s
frequently done when nucleic acid sequences are compared, in this paper ¢(x, y)
is chosen to be 0 if x=y and 1 if x # y. For protein sequence comparison, other
sets of substitution costs have proven useful (Schwartz and Dayhoff, 1978;
Erickson and Sellers, 1983). The Sellers SS algorithm for finding all optimal
alignments (Sellers, 1974) requires O(MN) (on the order of MN) computatio-
nal steps, where M and N are the lengths of the aligned sequences. In this
approach, a gap of length k (k consecutive nulls of one sequence aligned with k
consecutive elements of the other sequence) has cost w, =kw, . In other words,
the gap costs are directly proportional to gap length. Ukkonen (1983) has
described a fast algorithm that is applicable when substitution costs are equal
to 1 and gap costs are proportional to gap length. His algorithm still requires
O(MN) steps in the worst case.

Since a single genetic event can insert or delete an entire segment of a genetic
sequence, a long gap should arguably cost only slightly more than a shorter
one. Waterman et al. (1976) have generalized the Sellers algorithm so that any
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proportional to gap length. Fitch and Smith (1983) have discussed a case in
which such gap costs are necessary in order to produce the correct alignment.
The major disadvantage of the algorithm of Waterman et al. (1976) is that it
takes O(M N) steps to find the minimal alignment cost, where M is the length
of the longer sequence. Recently, Waterman (1984) has described an algorithm
for concave gap costs that is conjectured to require Q(MN) steps.

The general approach of Waterman et al. (1976) allows each null in a gap to
have a different cost. Gotoh (1982) considered the more restricted case of affine
gap costs. Specificaily, opening a gap costs v and each nuii in the gap costs u, so
that Wy =v+Kku, wherc v,u>0. The major advantage of Gotoh's algorithm is
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In addition, Gotoh’s algorithm attempts to find just one (rather than all) of
the optimal alignments. But the single alignment found occasionally fails to be
optimal. Taylor (1984) has described a modification of Gotoh’s algorithm that
always finds at least one optimal alignment. Taylor’s algorithm has the
disadvantages that in the general case it does not find all and only the optimal
alignments and that its storage requirements depend on the length of the
longest gap to be allowed.

We describe here a modification of Gotoh’s algorithm, called the SS-2
algorithm, that correctly finds all optimal alignments of two sequences in
O(MN) steps. We also present two sequences and a set of gap costs for which
Gotoh’s algorithm fails to find the single optimal alignment, and two sequences
for which Taylor’s algorithm cannot find all and only the optimal alignments.
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which is needed to represent accurately all optimal alignments for affine gap
costs.

Affine path graphs. Each alignment of two sequences can be represented in a
two-dimensional graph by a path, which consists of a contiguous series of
horizontal, diagonal and/or vertical edges between graph nodes from the upper
left to lower right nodes of the graph. Figure 1a illustrates the complete path
graph for sequences X=x,x, ...x,,and Y=y,y, .. .yy. In general, diagonal
edge D, ; aligns Jt:I with y;, vertical edge V, ; aligns x; with a null in ¥, and
horizontal edge H, ; aligns a null in X with y;, as shown in Fig. 1b. If gaps are
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alignments of two sequenocs can simultaneously be rcpresemcd in such a linear
path graph. For example, if w, =k, the five optimal alignments of sequences
AGCCT and AGGTCC are represented by the five overlapping paths of the
linear path graph in Fig. 1c. For affine gap costs, however, a linear path graph
can be ambiguous in indicating precisely which paths are optimal. For
example, if w,=1+k, sequences AGT and TGAGTT have a minimum
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Figure 1. Linear path graphs. (a) The complete graph. (b) The edges adjacent to
node N, ;. (c) Paths representing the five optimal alignments of AGCCT and
AGGTCC.

alignment cost of 5. Panels a—c of Fig. 2 show all three optimal alignments with
this cost and the corresponding simple path graphs. In Fig. 3a these three
optimal paths are combined to give a composite graph. This graph contains a
fourth path (Fig. 2d) but fails to indicate that this fourth path is not optimal.

One way to solve this problem is to represent horizontal and vertical edges
more precisely by the eight symbols shown in Fig. 4a. Their meanings are
defined by the following four conventions, which are illustrated in Fig. 4b. (1) A
path using a horizontal edge whose left half is bold must also use the horizontal
edge to its left. (2) A path using a horizontal edge whose right half is bold must
also use the horizontal edge to its right. (3) A path using a vertical edge whose
top halfis bold must also use the vertical edge above. (4) A path using a vertical
edge whose bottom half is bold must also use the vertical edge below.

A path graph that employs these symbols and conventions is called an affine
path graph. For example, the three optimal alignments in panels a—c of Fig. 2
are indicated unambiguously by the affine path graph shown in Fig. 3b. The
SS-2 algorithm presented below actually produces the equivalent affine path
graph shown in Fig. 3c.

When affine gap costs are used, the minimum cost of continuing a path from
a given node to the lower right node of the graph may depend upon whether the
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Figure 2. Four alignments of AGT and TGAGTT, and their path graphs. (a)-(c)
Optimal alignments for w, =1+k. (d} A non-optimal alignment.

Figure 3. Composite path graphs representing the optimal alignments of AGT and

TGAGTT for w,=1+k. (a) The linear path graph. (b) An affine path graph

representing only the optimal alignments. (¢) The affine path graph produced by the
SS-2 algorithm.
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Figure 4. New edge symbols and their meaning. (a) Eight symbols for horizontal
and vertical edges. (b) No path using the central edge may use the dotted edges.

given node was entered using a vertical, horizontal or diagonal edge. Paths that
enter a node through different edges may have different optimal continuations.
Thus new edge symbols, such as those in Fig. 4a, are necessary if all and only
the optimal paths are to be represented in a single path graph. Using affine gap
costs w, = v + ku is equivalent to charging v+ u for the first null in a gap and u
for each subsequent null. Since any path that uses a vertical or horizontal edge
has already opened a gap, each subsequent null in the gap will have identical
cost u. Thus all paths that enter a node through a given edge will have the same
optimal continuations. Therefore the edge symbols of Fig. 4a provide sufficient
modification of the linear path graph to indicate precisely all and only the
optimal alignments for affine gap costs.

When non-affine gap costs are employed, however, even an affine path graph
will not suffice in the general case to represent accurately all and only the
optimal alignments of two sequences. For example, if w,=1.2 and w,=
0.7+4(0.7)k for k>1, there are two optimal alignments of the sequences
AGTCGA and GTTACCG (Fig. 5a). A linear path graph containing the paths
that represent each of these alignments appears in Fig. 5c. It is not possible to
use the horizontal edge symbols of Fig. 4a in this graph in a way that includes
both optimal alignments but excludes the two non-optimal alignments shown
in Fig. 5b. Further generalization of the vertical and horizontal edge symbols,
however, would allow precise representation of the optimal alignments implied
by these and more complicated sets of gap costs.
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Figure 5. Non-affine gap costs. (a) The two optimal alignments of AGTCGA and
GTTACCG for w,=1.2 and w;=0.7+(0.7)k when k> 1. (b) Two non-optimal
alignments, (¢) A composite path graph representing the optimal alignments.

An Alignment Algorithm for Affine Gap Costs. An extension of Gotoh’s
algorithm is presented here that finds all and only the optimal alignments of
two sequences for affine gap costs and represents them by an affine path graph
in the manner described above. Let the two sequences be X=x,x, ... x,,and
Y=y,y, ... yyand the affine gap costs be w, = v+ ku. The algorithm uses three
rectangular number arrays (P;;, Q;;, R;;) to store the costs associated with the
graph nodes N;. In place of arrays P and R two one-dimensional number
arrays, and in place of array Q a variable, provide sufficient storage (Gotoh,
1982). The three rectangular arrays are used here for ease of exposition. For
each array, index i ranges from O to M and index j from O to N. The algorithm
also uses seven rectangular bit arrays (a;;, b;, . . ., g;;) to store data associated
with graph edges V};, H;;and D;;. For each array, index i ranges from 0 to M + |
and index j from 0 to N+ 1. It is possible to limit the first index to the range 0 to
M and the second to the range 0 to N, but then dealing with the borders of the
arrays during the edge assignment section of the algorithm becomes more
complicated.

The SS-2 algorithm. The following 11 steps produce the minimum
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alignment cost, R,, v, and an affine path graph containing all and only those
paths that represent optimal alignments of sequences X and Y. All statements
involving a negative index should be omitted.
Initialization. Execute step {1}.
i1} Initialize the number and bit arrays:
For j from 0 to N, set Py ; to +cc and R, ; to v+ ju.
Forifrom 0 to M, set Q; , to + 20 and R, , to v+iu.
- Set Ry, to 0.
Set bit arrays a—g uniformly to 0.
Set Cyppq nseq tO L
Cost assignment. For i from 0 to M and j from 0 to N, execute steps {2}-{7}.
{2} Find the minimum cost of a path ending at node N, ; and using edge V; ;
Set P, ;tou+min (P,_, ;, R,_, ;+v).

(3 Detcrmme if cost P, ; can be achleved using edge V,_, ;and if it can be
achieved without using cdge Vi, -

If P, :_“-t-u set d,_,J
IfP..ﬂ-R jFu+u sete,_, tol.

{4 Find the mlmmum cost of a path ending at node N, ;and using edge , ;:
Set Q; ;tou+min (Q; ;_,, R, ;_; +v).

{5 Dctermme if cost Q, ; can be dChIeVCd using edge A, ;_, and if it can be

achieved without using edge -1
IfQ, ;= Q,_J_, +u,setf, ;. tol.
IfQ, = ” ptotusetyg; ;. , to .
16} Find the minimum cost of a path ending at node N, ;:
Set R, jtomin (P, ;, Q;;, Ry ;- +clx;, y))).
{7} Determine if cost R, ; can be achieved by using edge ¥, ;, H, ; or D, ;
IfR ;=P seta;;tol.
lfR Q,},setb to 1.
If Ru Ri_y - 1+.:‘(Jrc,.._|.'j,'], set ¢; ;to 1.
Edge assignment. For i from M to 0 and j from N to 0, execute steps {8}—{11}.

{8} If there is no optimal path passing through node N, ; which has cost R, ;
at node N, ;, remove edges V; j»H;;and D, ;

If(a;,,;=00re ;=0) and (bi. H—O org;;=0)and (c;;, ;j,,=0).
Seta, ;, b, ; and c j00.

19} Ifno optlmal pazh passes through node N, ;, proceed to the next node:
Ifa,, j.—b“l“ Ci+1,j+1=0, skip steps {10} and {11}.

{10} If edge V;., ; is in an optimal path and requires edge V; ; jtobeinan
optimal path, determme if an optimal path that uses edge V. | must use edge
V.; and the converse:

Ifa,,, ,=landd =1,

[set d,. jtol—e ; sete tol—a,; and]
set a; ; to 1.

[Otherw1se setd, ., ;and ¢; ;10 0.]

tol
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{11} If edge H, ;,, is in an optimal path and requires edge H, ; to be in an
optimal path, determine if an optimal path that uses edge H, ;, , must use edge
H, ; and the converse:

Ifb,;.,=1andf;=1,

[setf,;+, t0 1—g, ;, set g, to 1—b, ; and]
set b, ;to 1.

[Otherwise, set f; ;. , and g, ; to 0.]

Comments. The meaning of the bit arrays changes during the execution of the
algorithm. Let an (i,j) path be a path from N,, to N, ;. After the cost
assignment section is complete, the seven bit arrays store the following
information:

a;;=11ff an optimal (i, j) path uses V, ;.

b, ;=1 iff an optimal (i, j) path uses H, ;.

c;;=1iff an optimal (i, j) path uses D, ;.

d; ;=1iff among (i+ 1, j) paths through N, , an optimal one uses V; ;.

e;;=1iff among (i+ 1, j) paths through N, ;, an optimal one does not use

Vij-
fii=1 i{‘f among (i, j+ 1) paths through ¥, ;, an optimal one uses H, ;.
g;;=1iff among (i, j+ 1) paths through A, ;, an optimal one does not use
H .
After the eJdge assignment section is complete, the seven bit arrays store the
affine path graph, as illustrated in Fig. 6 and described below:

a; ;=1 iff an optimal (M, N) path uses V ;.

b, ;=1 iff an optimal (M, N) path uses H, ;.

¢;;=1iff an optimal (M, N) path uses D, ;.

d; ;=1 iff every optimal (M, N) path that uses V, ;also uses V;_, ;. (The top

half of ¥, ; is bold.)

e;;=1iff every optimal (M, N) path that uses V, ; also uses V., ;. (The

bottom half of ¥ ; is bold.)

fi;=1iff every optimal (M, N) path that uses H, ; also uses H, ;_, . (The left

half of H,, is bold.)

g:;=1 iffevery optimal (M, N) path that uses H, ;also uses H, ; , , . (The right

half of H,  is bold.)
Note that if a; ;=0, bits d, ;and e, ; are meaningless. Similarly, if b, ;=0,f; ;and

c d
al--
b
fig

Figure 6. Bit array assignments. Arrays a—c correspond to full edges and d-g to half
edges.
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g ;are meaningless. Table I shows the values of the number and bit arrays after
the cost and edge assignment for sequences X=AGT and Y=TGAGTT where

w,=1+k. The affine path graph for this example is presented in Fig. 3c.

Since the algorithm involves a fixed number of steps for each node, its
execution requires O(MN) steps. In the initialization step, oo need only be a
number larger than any number with which it will be compared during
execution of the algorithm; the number 2v + max(M, N)u+ 1 will suffice. The

bit ¢y, v+ s initially set to 1 so that the conditions of steps {8} and {9} are
false for node N, 5. If the four expressions in bracketsin steps {10} and {11} are

TABLE I
Number and Bit Arrays During Execution of the SS-2 Algorithm
Node After edge
index After cost assignment assignment
i P a b ¢ d e g a b ¢ d e f g
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Starred bits are meaningless. Bits with index i=4 or j=7 do not change after initialization, and are not

shown.
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omitted, the linear path graph represented by bit arrays a-¢ contains all and
only those edges that are part of seme optimal path; such a graph often contains
non-optimal paths. All seven bit arrays are still required to find these edges.
While a specific set of substitution costs has been used in all examples in this
paper, the SS-2 algorithm allows any set of substitution costs to be employed.
Also, slight modification will allow it to employ different sets of affine gap costs
for terminal and interior gaps. When the SS-2 algorithm is implemented on a
compuier iacking bit siorage, ihe seven bits associaied wiih a given node may
conveniently be packed into a single byte.

Previous Algorithms. If w,=5+k, a single optimal alignment exists for
sequences AAAGGG and TTAAAAGGGGTT (Fig. 7). This alignment can
not be found by Gotoh’s algorithm. It saves only the edge bit arrays a-c during
cost assignment in the forward direction. Steps corresponding to steps {3} and
{5} of the SS-2 algorithm are absent. Gotoh’s algorithm then repeats the cost
assignment in the reverse direction, which saves additional edges, and finds a
path with as few turns as possible that uses only saved edges. Since the two
edges marked by arrows in the graph of Fig. 7 are not saved during either the
forward or reverse cost assignment, neither edge can appear in the path found
by Gotoh’s algorithm. Thus the path shown in Fig. 7 is not found by Gotoh’s
algorithm even though it represents the only optimal alignment.

If w,=1+k, sequences AGT and TGAGTT have only the three optimal

alionmente shown in nanels a—¢ of Fie, 2, Tqulnfo alogrithm for findine all
“‘lé‘ul‘v‘lla AFAANS YY RE AAL Pul.v b Ulllllll A%re b

optimal alignments (Taylor, 1984) saves at each node one vertical and one
horizontal pointer for path traceback. Such a pointer system can find any pair
of optimal alignments or all four alignments of Fig. 2, but it can not find
precisely the three optimal alignments. In order to identify all and only the
optimal alignments in the general case, a pointer system similar to that
described by Smith er al. (1981) or Taylor (1984) must allow for an arbitrary

GEEeTT

Figure 7. The optimal alignment of AAAGGG and TTAAAAGGGGTT for
w, =54k. Arrows indicate two edges of the path graph not saved by Gotoh’s
algorithm.
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number of pointers at each node, where many bits may be required to represent
each pointer. In contrast, the system described above requires the storage of
only seven bits per node even when gaps of arbitrary length are present. The
optimal alignments can easily be represented by the corresponding affine path
graph. Alternatively, all optimal alignments may be extracted from the bit
arrays a—g and output linearly, as shown on the right of Fig. 2. When non-
affine gap costs are employed, a generalization of this system may be inferior to
a pointer system.

A Biological Example. The advantage of using affine gap costs wheu
comparing biological sequences is illustrated by two DNA sequences for
interleukin 2 (IL-2), an important regulator of T-cell clonal expansion. The
DNA sequences code for human IL-2 (Taniguchi et al., 1983) and murine IL-2
(Yokata et al., 1985). The DD algorithm was used to search the diagonal path
graph, which lacks all horizontal and vertical edges, for interesting gap-free
subalignments of the two IL-2 sequences using a new similarity measure
(Altschul and Erickson, 1986). Two of the four best subalignments found were
human segment 65-107 with mouse segment 77-119 (43 nucleotides) and
human segment 91-299 with mouse segment 133-341 (209 nucleotides). The
ends of these subalignments overlap, as shown by the two paths in Fig. 8a for
that part of the DD graph involving human segment 76-107 (H) and murine
segment 88-149 (M). Joining these two subalignments requires a net deletion of
30 nucleotides from M, which can be achieved by inserting one or more gaps
into segment H.

Using the SS algorithm (Sellers, 1974) and gap costs w, =2k (Erickson and
Sellers, 1983) to align segments H and M produces a large number of optimal
subalignments (Fig. 8b). Because it costs nothing to open a gap, every optimal
alignment contains at least 12 separate gaps in segment H, as illustrated by line
H1 of Fig. 9. These alignments imply that at least 12 insertions or deletions are
needed to explain the evolutionary divergence of segments H and M from a
common ancestral gene segment. Such a large number of events is considered
to be unlikely.

The number of insertions or deletions needed becomes smaller when a
positive cost v is imposed for opening a gap (Figs 8c—e). Forv>1and u>0.5,
all 30 nulls must be joined into a single gap, which can be inserted into any one
of 11 different places in segment H (Fig. 8e). Specifically, it can be placed after
nucleotide 90 (line H2 of Fig. 9), after nucleotide 100 (line H3 of Fig. 9), or after
any nucleotide in between. Since murine segment 103-132 encodes 10
glutamine residues, we chose previously (Altschul and Erickson, 1986) the
alignment of lines M and H2 in Fig. 9. Our experience in comparing nucleotide
sequences using affine gap costs suggests that the costs w,=2.5+ (0.5)k are
useful with the SS-2 algorithm.
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8 100 110 120 130 140 149
M TCTACAGCGGAAGCACAGCAGCAGCAGCAGCAGCAGCAGCAGC AGCAGCAGCACC TGGAGCA
41 TCTACA----AAG-A-A--A--A-CA-CA-CAGCT--A-CA--A--A-C------TGGAGCA
HZ TCTACARAGAAAACA--=---------omommmmm o me e oo CAGCTACAACTGGAGCA
H3 TCTACAAAGAAAACACAGCTACAAC-=-=======mrmsmcmmmoooonnoan TGGAGCA

78 80 ElY 100 10t 107

Figure 9. Three representative optimal alignments of murine segment M and human
segment H from interleukin 2. Each of the lines H1-H3 is aligned with line M.
Smaller letters are different from the corresponding letters in M.
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