Lecture notes on alignment—I

Usman Roshan
Department of Computer Science
New Jersey Institute of Technology

February 22, 2005

1 Basics

We assume we are given an alphabet of characters, which in the case of DNA
is ¥ = {A,C,G,T}. We also have a special character called a gap which is
denoted by ’-’. Given two strings strings S and 7" an alignment is a mapping
S — S, T — T’ such that

e |S'|=|T"|, and
e removal of gaps from S’ gives S and from T" gives T.
An example alignment of S = AGA and T' = ACGG is

S A-GA
T ACGG

An alignment is evaluated using a scoring function o. We use the simple
scoring function

o(z,y) =
-1 ifz=—y=-

The score of our example alignment then, according to o, is +1-1+14+0=1.
Given two sequences we are interested in finding the optimal alignment, i.e.,
the alignment which optimizes a given scoring function o.

2 Pairwise alignment

2.1 Dynamic programming algorithm for optimal align-
ment

We are given sequences S of length n and 7T of length m and want to compute
the optimal alignment under a scoring function o. If we let V' (i,7) be the
score of the optimal alignment between S;_; and T7._;, then we can write the
recursion as:
Base conditions : V(i,0) = X4 _, o(Sk, —)
V(0,7) = Xk 0(= Tk)

Recurrence : for1<i<n,1<j<m
V(i—-1,7-1)+0(S;T;)
V(i,j) =max{ V(i—1,7)+ o(Si, —)
V(i,j—1)+o(=,Tj)

This algorithm takes O(nm) space and time. V(n,m) will give us the
score of the optimal alignment between S and 7.

2.2 Local alignment

If we are interested in the best matching between substrings of S and 7' that
can be done by modifying the previous algorithm. We modify the recursive
relations as follows:

Base conditions : Vi, 3,V (i,0) =0,V (0,5) =0
Recurrence : for1<i<n,1<j<m
0

V(Z’]) - e V(Z_ 15])+U(SZ,_

V(i—1,j-1)+0(S,T;)
)
V(i,j=1) +o(=1T))

It ol A E

2.3 Scoring matrices—PAM and BLOSUM

The quality of the alignment depends largely on the scoring matrix use. In
our previous example we used the unit matrix where we assign gap penalties

2

of 0,1 or —1. In practice scoring matrices are derived from real data and two
popular ones are Point Accepted Mutations (PAM) and Blocks Substitution
Matrix (BLOSUM). We discuss how the PAM matrices are derived.

2.3.1 PAM matrices

Margaret Dayhoff and her co-workers developed the PAM matrices in 1978.
They examined 1572 mutations between 71 families of closely related se-
quences of proteins. The first step in computing the matrix is to compute a
probability transition matrix M. This defines the probability of amino acid
x mutating into amino acid .

To compute M we need

e a list of accepted mutations, and

e the probabilities of occurrence p, of each amino acid a (also known as
background probabilities)

Pq can be estimated by counting the occurrence of amino acid a in all
the sequences and then dividing by the total number of amino acids encoun-
tered. Accepted mutations are those which were positively selected by the
environment and did not cause the demise of the organism. They can be
collected by aligning sequences from very closely related sequences, which is
what Dayhoff and her group did. Note that accepted mutations are undi-
rected events, i.e., we do not know if a mutated into b or vice-versa. All we
know is that a mutation occurred.

Given the accepted mutations we compute f,;, the number of times the
mutation ¢ — b occurred. Note that f,;, = fp, since we are dealing with
undirected mutations. We define f, = 37, fop and thus the total number
of mutations in which a was involved is f =Y, fa-

We are now ready to compute My, the probability of amino acid a chang-
ing to amino acid b. We first compute M,, by defining the relative mutability

fa
100 fpa

m, =

which is the probability of a changing. Note the additional term 100p,.
Thus, m, is the probability that a will change per 100 amino acids on the
average. Given m,, we can compute M,, =1 —m, and M, as

M., = Pr(a — bla changed) Pr(a changed) = %ma-

3

In this model the unit of evolution is amount of evolution that will change
1 in 100 amino acids on the average. We call this unit a 1 PAM evolutionary
distance. To compute the probability that a will change into b in 2 PAM
units, we have to sum the probability of ¢ changing into any amino acid ¢
and then ¢ changing into b, which is just M2 In general M* is the transition
probability matrix for & PAM units of evolution. Note that PAM £ does
not mean there are k observed differences. The observed differences will be
smaller since there are intermediate changes which we cannot see.

We now define the PAM scoring matrices. These matrices contain the
ratio between the probability of a changing to b as opposed to it being a
random occurrence. M, is the probability of a changing to b whereas there
is a py chance of b occurring randomly. Therefore the ratio is Mp;ﬁl. In practice
we take the log of this value and multiply by 10 so that we sum the scores
instead of taking products. The 10 factor is to reduce rounding errors. The

scoring matrix for £ PAM distance is thus defined as 10 log;, %Ii’l.

2.3.2 BLOSUM matrices

BLOSUM matrices are computed from alignments of shorter sequences—
blocks of sequences with sufficient similarity. PAM, on the other hand, comes
from global alignments.

2.4 FASTA

The FASTA algorithm is a heuristic for string comparison. In practice we
may need to search through a database of sequences to find ones similar to a
given query. Doing the optimal pairwise alignment for each comparison can
be very costly, especially when dealing with databases of tens of thousands
of sequences.

The FASTA heuristic looks for local matching subsequences and works
well in practice. We first define hot spots and diagonal runs.

e Hot spots: matching substrings of length k£ from the query and the
database sequences. Note that these do not contain any indels.

e Diagonal run: a sequence of nearby hot spots on the same diagonal of
the dynamic programming matrix. These are not necessarily adjacent
on the diagonal, spaces are allowed.

We now outline the heuristic.

1.

Look for hot spots.

This can be done efficiently by preprocessing the database sequences
and for each sequence store each ktup (k-length substring) in hash-table
for efficient lookup. We can then use a sliding window of length k along
the query to find all the hot spots for each database sequence.

Find top 10 best diagonal runs.

We evaluate a diagonal run by giving each hot spot a positive score
and the space between hot-spots a negative score. The score of the
diagonal run is the sum of the hot spot scores and of the inter spot
scores.

Re-evaluate the diagonal runs.

A diagonal run specifies a sub-alignment composed of only matches
and mismatches. There are no indels because everything is along one
diagonal. We evaluate each sub-alignment specified by the diagonal
run using a scoring matrix, such as PAM 250.

Combine good close diagonal runs.

We combine diagonal runs to form an alignment in the following way.
We construct a directed weighted graph G = (V, E). We set V to be
the sub-alignments computed in the previous step and the score of each
vertex to be the score of the subalignment (also computed in the pre-
vious step). We add an edge from subalignment u to subalignment v if
v starts at a higher row and column than those at which u ends. We
give the edge a negative weight depending upon the number of gaps
created in the alignment by combining subalignments v and v. We now
search for a maximum weight path in this graph which can be done in
polynomial time. We take the best alignments found and discard those
below a specified score.

Band alignment.

As a last step we compute another alignment. We take the best di-
agonal run from step 2 and consider a narrow diagonal band around
it. We compute an optimal alignment constrained to this diagonal and
call this the band alignment.

6. Full alignment.

As a last step the alignments computed in steps 4 and 5 are ranked
according to their scores and a full dynamic programming alignment is
computed for the highest ranked database sequences.

2.5 BLAST

BLAST was developed as an improvement over FASTA to find better and
fewer hot spots. The idea is to use the scoring matrix in the first stage of
finding the hot spots. We first define some terms before outlining the BLAST
strategy.

Given two strings S; and Sy, a segment pair is a pair of equal length
substrings of S; and Sy aligned without gaps. A locally mazimal segment pair
is one whose alignment score cannot be improved by extending or shortening
it. A mazrimum segment pair in S; and S5 is the pair with the maximum

score over all segment pairs in S; and Ss.
We now outline BLAST.

1. For each database sequences s, find all wlength substrings (called words)
of s that align with words from the query. Matches with a score higher
than ¢ are called hits and are kept. Note that matches here are eval-
uated using a scoring matrix. Each hit is really a segment pair. This
step can be done efficiently using the preprocessing that was described
earlier in FASTA.

2. Extend each hit to a locally maximal segment pair and keep those
whose score is above a certain threshold. This is done by extending
each hit until the drop in score, relative to the maximum encountered
so far, exceeds a drop-off threshold.

Improved BLAST Note that this original BLAST did not allow indels.
The improved BLAST in 1997 by Altschul allows for indels and is similar to
FASTA but with less constraints.

PSI BLAST—position specific iterated BLAST We first define a pro-
file. A profile P is used to represent a collection of aligned sequences A. Each
site of the alignment A; is represented by a vector of amino acid frequencies
P;. We denote the frequency of amino acid z in P; as P*. Then the score
between two profile sites P; and @), is

Xay PFQ5S(2,y)

where z and y range over the 20 amino acids and S(z,y) is the amino acid
scoring matrix. Having defined this we can compute the alignment score
between two profiles using the optimal pairwise alignment or BLAST or
FASTA.

As the name suggests, PSI-BLAST this is an iterated version of BLAST
which attempts to find better alignments. PSI BLAST searches the database
for closest matches to a profile. PSI BLAST computes a profile for a given
query sequence by setting each P; to be the i row of the scoring matrix.
It then searches the database, as described previously, for closely matching
sequences. Note that a profile can be constructed for a single sequence as
well; therefore are searches are well-defined. PSI-BLAST then takes the best
matching sequences, builds a profile for them, and continues the search until
no more close sequences are found.

