Lecture notes on alignment—II

Usman Roshan
Department of Computer Science
New Jersey Institute of Technology

March 22, 2005

1 Multiple sequence alignment

The multiple alignment of sequences is considered by some to be the holy grail
problem of computational biology and bioinformatics. Multiple sequence
alignments (MSAs) have many applications ranging from constructing phy-
logenies to determining functionally related motifs in proteins. The setup of
the problem is the same as that of pairwise alignment except that we are
now dealing with many sequences as opposed to just two.

1.1 Problem definition

A multiple alignment of n strings Si, S, ..., Sy, is a mapping S; — S}, S —
Sy eeey S — S!, such that

o 18] = |5} = ... =S4, and
e removal of gaps from S; gives S; for all i =1, .., n.

An example aligmnent of S = AGA, T = ACGG, and U = AGC is

S A-GA
T ACGG
U A-GC

1.2 Optimization criteria

There are two popular optimization criteria: sum-of-pairs (SP) and phylo-
gentic tree-alignment (TA).

1.2.1 Sum of Pairs (SP)

Given sequences S; and Sy, we have previously defined how to score a pairwise
alignment 57, S;. Let S(S], S7) be the score of the pariwise alignment under a
given scoring function and gap scoring scheme. Given sequences S, Sy, ..., Sp,
the SP score of a multiple alignment A = 57,5, ..., 5! is defined as

SP(A) = ¥Xi<; (5, 55).

2By

The sum-of-pairs problem is to find the alignment with the optimal SP
score and is NP-hard.

1.2.2 Tree alignment (TA)

Definition 1 [Tree Alignment] Given an evolutionary tree T = (V, E) for
n sequences (S1,S2,...,S,) where T has m + k nodes, a tree alignment of
(S1,52,...,5m) on T is a multiple alignment of (S1,Ss, ..., Smik), where
Snt1, -, Om are additional sequences assigned to the internal nodes of T'.
Note that the additional sequences must be over the same alphabet as Sy, ..., Sy.

Give a pairwise alignment score S(S7,5)), where 57,5} is a pairwise
alignment of S; and Sy, a tree alignment score is defined as TA(T,A) =
2 (uw)€E(T) S(T,,T,) where T, denotes the sequence assigned to node v of T

The tree alignment problem is to find the optimal tree alignment for a
given tree T'. The generalized tree alignment problem is to find the tree T
(as well as its tree alignment) with the optimal tree alignment score. Both
of these problems are NP-hard.

2 Heuristics

Heuristics are widely used in multiple sequence alignment. There are two
main approaches, iterative and progressive alignment, which we discuss be-
low. We first describe some basic concepts used in heuristic multiple sequence
alignment: profile alignments and alignment paths.

2.1 Basics
2.1.1 Profile alignment—aligning two alignments

Very often we are faced with the problem of aligning a set of two alignments.
We solve this problem by computing a profile for each alignment and then
aligning the two profiles using the dynamic programming approach. We
defined a profile previously but do it again here.

Suppose we are given the alignment A and want to compute a profile P.
We first show how to compute the profile P; for the i* A; of alignment A.
Each site A; is represented by a vector of amino acid frequencies P;. We
denote the frequency of amino acid = in P; as P*. Then the score between
two profile sites P; and @); is

Yy PFQYS(x,y)

where x and y range over the 20 amino acids and S(z,y) is the amino
acid scoring matrix. We can now align two alignments by computing their
profiles then use the optimal dynamic programming algorithm to align them,
since we have now defined how to score two sites of a profile.

2.1.2 Alignment paths—retrieving the alignment

An alignment path is a string over the alphabet {M, I, D}, where M means
a match, I means an insertion, and D means a deletion. An alignment path
can be constructed during the pairwise alignment algorithm as follows.

e Set path(A, B) = ¢.
e Compute the optimal scoring matrix and the traceback matrix.
e When constructing the alignment using the traceback matrix we

— concatenate M to path(A, B) if there is a match between them,
— concatenate D to path(A, B) if a letter of A matches with a gap,

— and concatenate I to path(A, B) if a letter of B matches with a
gap

Given two sequences A and B their alignment path can be used to retrieve
their pairwise alignment A’, B’. Assume |A| = m,|B| = n, and P(A, B) = p,
where P(A, B) is the profile of their alignment. We can construct A’ and B’
from the alignment path path(P(A, B)) using the following algorithm.

e Set A" and B’ to be the empty strings, and set j = 0,k = 0.
e Fori=1..pdo {

If path;(A,B) == M {concatenate(A’, A)); concatenate(B', B); j + +;k + +; }
Else if path;(A, B) == D {concatenate(A', A;); concatenate(B', —");j + +; }
Else if path;(A, B) == 1 {concatenate(A’,) —'); concatenate(B', By); k + +; }

}

2.2 Progressive alignment

Progressive alignment is a heuristic for the tree alignment problem. We
assume as input a phylogenetic tree 71" leaf-labeled with sequences from S
which are to be aligned. We outline the steps below.

1. Compute a distance matrix of optimal pairwise alignment scores using
the dynamic programming algorithm.

2. Compute a rooted phylogenetic guide-tree 7" using the using the UP-
GMA algorithm (NJ could also be used).

3. We now assign profiles and alignment paths to each node of T" by per-
forming a post-order traversal. For a given node v with children v and
w, let P(v) = profile(alignment(P(u), P(w))) be the alignment pro-
file of P(u) and P(w) and let path(v) = path(alignment(P(u), P(w)))
be the corresponding alignment path. We use the following recursion
to compute P(root) and path(root), the profile and alignment path at
the root. Let S, be the input sequence associated with leaf v.

If node v is a leaf {P(v) = Sy;path(v) = ¢; }
else {let u and w be the children of v;
let pyw be the pairwise alignment of v and w;

set P(v) = profile(puw); path(v) = path(pyw); }

Since we are performing a post-order traversal, every child will have a
valid path and profile assigned to it.

4

4. We now perform a traversal to compute the alignment for each se-
quence. For each leaf v we perform the following traversal towards the
root.

If parent(v) = ¢ { output v'; }

else {p(v) = parent(v);
set v’ to the alignment obtained using the path path(p(v));
set v =p(v); }

ClustalW is a popular alignment software which uses this approach for
alignment. It, however, uses the neighbor-joining tree instead of the UPGMA
one as the guide-tree. One drawback of this approach is that once a gap is
inserted in a profile it cannot be corrected later on.

2.3 Iterative alignment

Another approach for alignment independent of a guide-tree is called iterative
alignment. In the iterative approach an alignment is built by aligning pairs
of profiles until all the sequences have been aligned to the profile. A simple
iterative alignment strategy would be:

e Let S to be the set of sequences to be aligned
e Randomly select a sequence s € S and set its profile to be P
e While S # ¢ {

— Let s’ € S be such that it has the highest scoring alignment with
P

— Align s’ to P and update P to be the profile of the new alignment
containing s

- S=5-{s}

A drawback of this approach is that it doesn’t take a phylogenetic tree
into consideration and it can be very slow.

2.4 Other approaches

We look at two different approaches.

2.4.1 Tree improvement

The main idea in tree improvement is to get a better phylogenetic tree which
in turn can yield a better progressive alignment. The tree improvement
heuristic is outline below.

e Let S be the sequences to be aligned, and let T be a guide-tree
e Perform a tree alignment A of S on T
e While not done do {

— Compute a tree 7" on A

— Perform a tree alignment A of S on 7"

}

The accuracy and speed of this approach depends upon the method used
for the tree alignment and the method used to compute a tree on the align-
ment. One may iterate this blindly until a specified number of iterations
have been met or stop when the tree alignment score or the sum-of-pairs
score doesn’t improve.

2.4.2 Hybrid—MUSCLE

A recent approach which has performed well on structurally aligned bench-
mark alignments is MUSCLE—multiple sequence alignment using log expec-
tation score. MUSCLE is a combination of progressive and iterative profile
alignment strategies. It has three main stages.

1. Stage I (draft progressive) In Stage I an approximate distance ma-
trix is first estimated using k-mer counting between pairs of sequences.
MUSCLE then computes a UPGMA tree and a progressive alignment
on it.

2. Stage IT (improved progressive) In the second stage a Kimura
distance matrix is estimated from the previous alignment and a new
UPGMA tree is constructed. The new tree is then used to construct
a new progressive alignment and this process is iterated until there is
no topological change in the tree structure or a specified number of
iterations have elapsed.

3. Stage III (refinement) The third stage is called refinement and is
performed in the following manner. Let 7" be the tree from Stage II. A
given edge e of 71" is deleted from 7" which yields two subtrees 77 and
T,. The profiles of the alignment of the sequences restricted to the two
subtrees 77 and 75 is computed and sites which contain only gaps are
removed. The two profiles are aligned and if the sum-of-pairs score of
the new alignment is better than the previous one, the new alignment
is kept. Edges are visited in order of decreasing distance from the root.
This process iterates until a specified number of iterations have been
met or the sum-of-pairs score doesn’t improve after the full tree has
been traversed.

Log expectation score One of the main difference between MUSCLE
and previous approaches is that MUSCLE uses a new profile vector scoring
function called the log-expectation score. This is defined as

LE = (1 - P/)(1 = P{*)log(¥, X, PP P} 2w).

PxPy

where P? is the normalized frequency of amino acid z (or gap if x = gap)
in profile site P;. In the summation z and y loop over amino acids and
not gaps. The multiplicative factor containing gap frequencies downweights

profile sites with a high frequence of gaps.

3 Evaluation of alignment programs

3.1 Simulation—ROSE

There is no well-accepted biological model for the evolution of biomolecu-
lar sequences with insertions or deletions. The only amino-acid subsitution
model with insertions and deletions that we are aware of is the one in the
ROSE software package. We call this the ROSE model. ROSE allows the user
to specify many parameters of the evolutionary process. We first overview
how sequences are evolved in ROSE.

Given a rooted tree with branch lengths, ROSE first generates a root
sequence v. For each child ¢ of v, this sequence is first mutated to yield
subsitutions, and then insertions and deletions are performed. These two
steps are repeated in a pre-order traversal. Throughout the process ROSE
keeps track of the set of insertions and deletions performed, i.e., the true

7

alignment. We now describe how the root sequence is generated and how the
mutations, insertions, and deletions are performed.

Root sequence Given a model tree with edge lengths, a root sequence of
specified length k is generated. Each of the k sites is independently filled
with an amino acid @ with probability f,. The default probabilities are given
by the normalized frequencies of amino acids computed by Margaret Dayhoff
(Atlas of Protein Sequence and Structure, 1979).

Mutation We describe how amino acid z mutates to y on a given edge
of length . The probability of change of x to y is given by a probability
mutation matrix which can be specified by the user. The default matrix is
the 1 PAM matrix (as computed by Dayhoff "79) which is the probability of
one accepted subsitution per hundred sites. We call this the 1 PAM* matrix
M and describe how mutation occurs per unit branch length. For one unit
of branch length, amino acid x changes to y with probabiliy M (z,y), and we
say that the edge has an evolutionary rate of 1 PAM*. For b units of branch
length this process is repeated b times; therefore the edge would have a rate
of b PAM* units.

Insertions and deletions We only describe how insertions take place since
deletions occur in the exact same way. Associated with an insertion are two
parameters p;,s and lis. lins is a probability vector of length ¢;,s. A site
is selected for insertion with probability ®e where k is the length of the
sequence (before the insertion). If an insertion is to take place then the length
i of the new sequence to be inserted is selected with probability I’ _, where
i is the " entry of l;,, and 0 < i < ¢;ns. Deletions occur in the exact same
way using the analogous parameters pgei, lger, and qqe;. The default values of
these parameters are Pins = Pdel, Gins = qdelalins = ldelapins = 0.00005, lins =
{1,.1,.1,.1,.1,.1,.05, .05, .05, .05, .05, .05, .05, .05}, and ¢;,s = 14.

