Algorithms for Molecular Biology Fall Semester, 2001
Lecture 5: December 13, 2001

Lecturer: Ron Shamir Scribe: Roi Yehoshua and Oren Danewitz !

5.1 Hidden Markov Models

5.1.1 Preface: CpG islands

CpG is a pair of nucleotides C and G, appearing successively, in this order, along one DNA
strand. It is known that due to biochemical considerations CpG is relatively rare in most
DNA sequences [4]. However, in particular short subsequences, which are several hundreds of
nucleotides long, the couple CpG is more frequent. These subsequences, called CpG islands,
are known to appear in biologically more significant parts of the genome, such as around
the promoters or ’start’ regions of many genes. The ability to identify these CpG islands in
the DNA will therefore help us spot the more significant regions of interest along the genome.

We will consider two problems involving CpG islands : First, given a short genome se-

quence, decide if it comes from a CpG island or not. Second, given a long DNA sequence,
locate all the CpG islands in it.

5.1.2 Reminder: Markov chains

Definition A Markov chain is a triplet (Q,{p(z1 = s)}, A), where:
e () is a finite set of states. Each state corresponds to a symbol in the alphabet 3.
e p is the initial state probabilities.
e A is the state transition probabilities, denoted by a, for each s,t € Q.
For each s,t €) the transition probability is:

ag = P(x; =tlx; = 9) (5.1)

IThis scribe is partially based on Ophir Gvirtzer’s and Zohar Ganon’s scribe from Fall Semester 2000.

2 Algorithms for Molecular Biology (©) Tel Aviv Univ.

Figure 5.1: Source: [4]. A Markov chain for modeling a DNA sequence. B and ¢ are the
begin and end states, respectively.

We assume that X = (z1,...,2z) is a random process with a memory of length 1, i.e.,
the value of the random variable x; depends only on its predecessor z;_;. Formally we can
write:

Vsl,...,siEZ P(xi:8i|x1:81,...,xi_lzsi_l): (52)
= P(xz' = Sz’|$z‘—1 = 82‘—1) = Qs;_q,s; ‘
The probability of the whole sequence X will therefore be:
L
P(X) = p(xl) ’ H Az; 1,2 (53)
=2

We can simplify this formula by transforming the initial probability p(z;) into a transition
probability. We can add fictitious begin and end states together with corresponding symbols
xo and xr11. Then we can define Vseyx ap s = p(s), where p(s) is the initial probability of the
symbol s. Hence:

P(X) = Haxiq,wi (5.4)

Figure 5.1 shows a simple Markov chain for modeling DNA sequences.

Hidden Markov Models 3

A C G T
0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292

A C G T
0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

HoQ Q=+
HQ Q|

Table 5.1: Source: [4]. Transition probabilities inside/outside a CpG island.

Problem 5.1 Identifying a CpG island.
INPUT: A short DNA sequence X = (z1,...,z1) € ¥* (where ¥ = {A,C,G,T}).
QUESTION: Decide whether X is a CpG island.

We can use two Markov chain models to solve this problem : one for dealing with CpG
islands (the '+’ model) and the other for dealing with non CpG island (the - model).

Let af, denote the transition probability of s,¢ € X inside a CpG island and let a, de-
note the transition probability outside a CpG island (see table 5.1 for the values of these
probabilities).

Therefore we can compute a logarithmic likelihood score for a sequence X by:

P(X|CpG island) Eooaf
7= > log pE—

X) =1
Score(X) = log P(Xnon CpG island

i=1 Ti—1,%q

The higher this score, the more likely it is that X is a CpG Island.

Figure 5.2 shows the distribution of such scores, normalized by dividing by their length.
We can see a reasonable discrimination between regions labelled CpG island and other re-
gions.

Problem 5.2 Locating CpG islands in a DNA sequence.
INPUT: A long DNA sequence X = (x1,... ,x) € ¥X*.
QUESTION: Locate the CpG islands along X.

A naive approach for solving this problem will be to extract a sliding window X* =
(Tgs1, .-, Tpye) of a given length ¢ (where ¢ < L, usually several hundred bases long, and
1 <k <L~/ from the sequence and calculate Score(X k) for each one of the resulting
subsequences. Subsequences that receive positive scores are potential CpG islands.

4 Algorithms for Molecular Biology (©) Tel Aviv Univ.

Figure 5.2: Source: [4]. The histogram of length-normalized scores for given sequences. CpG
islands are shown with dark grey and non-CpG with light grey.

The main disadvantage in this algorithm is that we have no information about the lengths
of the islands, while the algorithm suggested above assumes that those islands are at least
¢ nucleotides long. Should we use a value of ¢ which is too large, the CpG islands would
be short substrings of our windows, and the score we give those windows may not be high
enough. On the other hand, windows that are too small might not provide enough informa-
tion to determine whether their bases are distributed like those of an island or not.

A better solution to this problem is to combine the two Markov chains of the last section
into a unified model, with a small probability of switching from one chain to the other at
each transition point. However, this introduces the complication that we now have two states
corresponding to each nucleotide symbol. Therefore we need to use another model for this
problem. This model will be described in the following section.

Hidden Markov Models 5

5.1.3 Hidden Markov Models
Definition A Hidden Markov Model (HMM) is a triplet M = (3, Q, ©), where:

e Y is an alphabet of symbols.
e () is a finite set of states, capable of emitting symbols from the alphabet .
e O is a set of probabilities, comprised of:

— State transition probabilities, denoted by ay; for each k,[€ Q.
— Emission probabilities, denoted by e (b) for each k € Q and b € X.
A path 11 = (my, ... ,71) in the model M is a sequence of states. The path itself follows
a simple Markov chain, so the probability of moving to a given state depends only on the

previous state. As in the Markov chain model, we can define the state transition probabilities
in terms of II :

QApr — P(ﬂ'l = l|’/Ti_1 = k) (56)

However, in a hidden Markov model there isn’t a one-to-one correspondence between the
states and the symbols. Therefore, in a HMM we introduce a new set of parameters, e(b),
called the emission probabilities. Given a sequence X = (z1,...,z1) € ¥* we define :

en(b) = P(z; = blm; = k) (5.7)

ex(b) is the probability that symbol b is seen when we are in state k.

The probability that the sequence X was generated by the model M given the path II
is therefore:

L
P(Xv H) = Qro,my H Erm; (xl) “ Oy miga (58)

i=1

Where for our convenience we denote my = begin and 7wy, = end.

Example 5.1.3a An HMM for detecting CpG islands in a long DNA sequence

The model contains eight states corresponding to the four symbols of the alphabet
¥ ={A,C,G,T}:

State: At Ct Gt Tt A~ C G- T
Emitted Symbol: A C G T A C G T

6 Algorithms for Molecular Biology (©) Tel Aviv Univ.

mi\mip1 | AT Ct Gt T+ A~ C~ G~ T~
A* 10.180p 0.274p 04206p 0.120p| =2 22 =22 =2
Ct]0.17lp 0.368p 0.274p 0.188p | 2 2 L2 L2
Gt | 0.161p 0.339p 0.375p 0.125p | L2 e e e
T+ |0.079 0.355p 0.384p 0.182p | 2 1p L 1-p

a
2
a
a

A~ g 1 14 ¢ 10.300¢ 0.205¢ 0.285¢ 0.210q

4 4 4
C- 1 e Lu 14 10.322¢ 0.298¢ 0.078¢ 0.302g
G- e 1 1 14 10.248¢ 0.246¢g 0.298¢ 0.208¢
T- 1 1 1 4 10.177¢ 0.239¢ 0.292¢ 0.292g

Table 5.2: Transition probabilities ar, .., in the CpG island HMM.

If the probability for staying in a CpG island is p and the probability of staying outside
it is ¢, then the transition probabilities will be as described in table 5.2 (derived from the
transition probabilities given in table 5.1 under the assumption that we lose memory when
moving from/into a CpG island, and that we ignore background probabilities).

In this special case the emission probability of each state X or X~ is exactly 1 for the
symbol X and 0 for any other symbol.

Let us consider another example, where the emission probabilities will not be degenerate.

Example 5.1.3b An HMM for modeling a dishonest casino dealer

Suppose a dealer in a casino rolls a die. The dealer use a fair die most of the time, but
occasionally he switches to a loaded die. The loaded die has probability 0.5 of a six and
probability 0.1 for the numbers 1 to 5. We also know that the dealer does not tend to change
dies - he switches from a fair to a loaded die with probability 0.05, and the probability of
switching back is 0.1. Given a sequence of die rolls we wish to determine when did the dealer
use a fair die and when did he use a loaded die.

The corresponding HMM is:
e The states are Q = {F, L}, where F' stands for "fair” and L for "loaded”.

e The alphabet is ¥ = {1,2,3,4,5,6}.

Hidden Markov Models 7

0.95 0.9

Fair Loaded

Figure 5.3: Source: [4]. HMM for the dishonest casino problem.

e The probabilities are:

aApp — 0.95 arpr — 0.05 (59)
arr = 0.9 arprp — 0.1 (510)

) 1
Vicicoer(i) = 6 5.11)
vlgigg, eL(i) =0.1 eL(6) =0.5 (512)

Figure 5.3 gives a full description of the model.

Returning to the general case, we have defined the probability P(X,II) for a given se-
quence X and a given path II. However, we do not know the actual sequence of states
(71, ... ,mr) that emitted (x1,...,27). We therefore say that the generating path of X is
hidden.

Problem 5.3 The decoding problem.

INPUT: A hidden Markov model M = (3,Q,©) and a sequence X € ¥*, for which the
generating path Il = (my,... ,7) is unknown.

QUESTION: Find the most probable generating path II* for X, i.e., a path such that
P(X,1I*) is maximized. We denote this also by:

IT" = arg ml_?x{P(X,)}

8 Algorithms for Molecular Biology (©) Tel Aviv Univ.

In the CpG islands case (problem 5.2), the optimal path can help us find the location
of the islands. Had we known II*, we could have traversed it determining that all the parts
that pass through the "+ states are CpG islands.

Similarly, in the dishonest casino case (example 5.1.3b), the parts of II* that pass through
the L (loaded) state are suspected rolls of the loaded die.

A solution for the most probable path is described in the following section.

5.1.4 Viterbi Algorithm

We can calculate the most probable path in a hidden Markov model using a dynamic pro-
gramming algorithm. This algorithm is widely known as Viterbi Algorithm. Viterbi [10]
devised this algorithm for the decoding problem, even though its more general description
was originally given by Bellman [3].

Let X be a sequence of length L. For k €) and 0 < ¢ < L, we consider a path II ending
at k, and the probability of II generating the prefix (zi,...,z;) of X. Denote by vy (i) the
probability of the most probable path for the prefix (zi,...,z;) that ends in state k.

vE(i) = {Hrlrrll?ick} P(xy, ... x;,10) (5.13)
1. Initialize:
Upegin(0) = 1 (5.14)
Vitbegin Vk(0) = 0 (5.15)
2. Foreachi=0,...,L — 1 and for each [€ @) recursively calculate:
vt +1) =e(xit1) - . {ve(?) - ap } (5.16)

3. Finally, the value of P(X,II*) is:

P(X,11) = max {ve(L) - ak.ena}t (5.17)

We can reconstruct the path II* itself by keeping back pointers during the recursive
stage and tracing them.

Hidden Markov Models 9

Complexity: We calculate the values of O(|Q|- L) cells of the matrix V', spending O(|Q|)
operations per cell. The overall time complexity is therefore O(L - |@Q|*) and the space com-
plexity is O(L - |Q|).

Since we are dealing with probabilities, the extensive multiplication operations we per-
form may result in an underflow. This can be avoided if we choose to work with logarithmic
scores, which will make the products become sums and the numbers stay reasonable. We
can therefore define v (7) to be the logarithmic score of the most probable path for the prefix
(x1,...,x;) that ends in the state k.

We shall initialize:

Ubegin(o) =0 (518)
vk;ﬁbegm Uk(O) = —O0 (519)

The recursion will look like:
v(i+1) =loge (i) + rl?eaé({vk () + log(aw)} (5.20)

Finally, the score for the best path IT* is:

Score(X,1II*) = max {vk(L) + log(ak ena) } (5.21)
S

Figure 5.4 shows the results of running the Viterbi algorithm on the dishonest casino
example.

5.1.5 Posterior Decoding

Problem 5.4 The posterior decoding problem.

INPUT: A hidden Markov model M = (X,Q,©) and a sequence X € ¥*, for which the
generating path IT = (mq,... ,7) is unknown.

QUESTION: For each 1 <i < L and k € @), compute the probability P(m; = k|X).

For this we shall need some extra definitions.

Forward algorithm: Given a sequence X = (z1,...,z.) let us denote by fi(i) the
probability of emitting the prefix (x1,...,x;) and eventually reaching state m; = k :

fi(i) = P(z1, ... 25,7 = k) (5.22)

10

Ralls
Dia
Vitarhl

Rolls
Dia
Viterbi

Aslls
Diae
Vicarhbi

Ralle
Daia
Viteroi
L

Rolla
Die
Viterbl

Algorithms for Molecular Biology (©) Tel Aviv Univ.

315116246446644245311321631164152133625144543631656026566666
FFFLLLLLLLLLLLLLLL
FFLLLLLLLLLLLL

6511664531326512456365646316366563162326455236266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLEFFEEFFF

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFEFFLL
FEFFFFFPFFPEFFFFFPFFFPPFFFFFFEFFFFFFFPFFPFFPFFFFFFFFFFFFEFFFL

365816366 R46623258344136016611632525624/335526525234654353533136
L LLLLLFFFEFFFFPFFFEFFP PR FFPPFEEFFFPFPFPFEFFPEFFSPFFEFEFFF
LLLLLLLLLLLLEPFFFFFFEFFFPFPF s PFPFFEFFFPFFFPFEFFFFPESFFPEFFEFFR

2331216253644 14432335103243633005502400662632RARG12355245242
FFFFFFFIFEFFFEFFFFEFFFFFEEFLLLLLLLLLLLLLLLLLLLLLLFFFFEFFFFFET
FPFFFFFFFEFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFET

Figure 5.4: Source: [4]. The numbers show 300 rolls of a die. Below is shown which die was
actually used for that roll (F for fair and L for loaded). Under that, the prediction by the
Viterbi algorithm is shown.

Hidden Markov Models 11

We use the same initial values for fj(0) as was done in the Viterbi algorithm:

Joegin(0) = 1 (5.23)
Vistbegin fx(0) = 0 (5.24)

In analogy to 5.16 we can use the recursive formula:

fili +1) = ey(@iyq) - Z IORT (5.25)

keQ

We terminate the process by calculating:

P(X)=>_ fi(L) - apend (5.26)

keQ

Backward algorithm: In a complementary manner we denote by by (i) the probability
of the suffix (z;41,...,21) given m; = k :

bk(l) = P(.CL"H_l, e, XL, T = k’) (527)

In this case, we initialize:

Vieg bi(L) = ag.ena (5.28)

The recursive formula is:

bk(’b) = Z agg - 61(1’2'4_1) . bl(l + 1) (529)
leQ

We terminate the process by calculating:
P(X)= Zabegin,l ey(z1) - bi(1) (5.30)
1eQ

Complexity: All the values of fi(i) and by (i) can be calculated in O(L - |Q|*) time and
stored in O(L - |Q|) space, as it is the case with Viterbi algorithm.

Unlike in the Viterbi algorithm, here we cannot trivially use the logarithmic weights,
since we do not perform only multiplication of probabilities, but we also sum probabilities.
We can solve this problem by using the exponent function. We can calculate a logarithm of

12 Algorithms for Molecular Biology (©) Tel Aviv Univ.

a sum of probabilities from the logarithms of the probabilities in the following way :

log (p + q) = log (exp (log p) + exp (log q)) (5.31)

Formally, let’s define fi(i) as the logarithm of the probability of emitting the prefix
(1,...,2;) given m; = k.

We shall initialize:

Joegin(0) = 0 (5.32)
vk’;ﬁbegin fk(o) = —0 (533)
The recursion is :
fili+1) =logey(wier) +1og > [ag - exp (fi(i))] (5.34)
keQ

And we terminate the process by calculating:

P(X) =10g Y [arena - exp (fe(L))] (5.35)
keQ

Using the forward and backward probabilities we can compute the value of P(m; = k|X).
Since the process X has memory of only length 1, there is a dependency only on the last
state, so we can write:

P(X,’/Ti = k’) = P(.ﬁl}l,... , Ly, T = k) 'P(.CEH_l,... ,$L|£L"1,... , Ly, T = k’) =
=P(ay,...,x,m = k) - P(@i1, ... on|m = k) = (5.36)
= fuli) - be(i)

Using the definition of conditional probability, we obtain the solution to the posterior
decoding problem:

P(X,m=k) _ fuli) - bi(0)

Pl =kX) = =575 P(X)

(5.37)

where P(x) is the result of the forward or backward calculation. For example, using the
backward calculation we get :

P(X) = Ghegins - e1(x1) - by(1) (5.38)
leQ

Figure 5.5 shows the posterior probability of being in the state corresponding to the fair
die in the dishonest casino example.

Hidden Markov Models 13

P(fair)

0 50 10 150 200 250 300

Figure 5.5: Source: [4]. The posterior probability for the die being fair in the dishonest
casino example. The x axis shows the number of the roll. The shaded areas show when the
roll was generated by the loaded die.

Uses for Posterior Decoding

A major use of the posterior probabilities P(m; = k|X) is for two alternative forms of de-
coding in addition to the Viterbi decoding we introduced in the previous section. These are
particularly useful when many different paths have almost the same probability as the most
probable one, because then we may want to consider other possible paths as well.

The first approach is to define an alternative path II**, comprised of the state sequence
{k;} in which each state k; has the highest probability to emit z; at step i. We denote this
by :

II"™ = arg ml?x{P(Hi =k|X)}

We should notice that this may not be a legitimate path, if some transitions are not
permitted.

The second decoding approach arises when we're not interested in the state sequence
itself, but in some other property derived from it. We can define a function g(k) on the
states, and then look at the value :

G(i|X) = {P(L; = k|X)g(k)}

In the special case where g(k) takes the value 1 for a subset S of the states and 0 for the
rest, G(i|X) is the posterior probability that a state in S emitted the symbol x;. For example
in the CpG island model, we can use this approach to calculate the posterior probability of
each nucleotide to be in a CpG island.

5.1.6 Parameter Estimation for HMMs

In examples 5.1.3a and 5.1.3b we constructed hidden Markov models knowing the transition
and emission probabilities for the problems we had to solve. In real life, this may not be the

14 Algorithms for Molecular Biology (©) Tel Aviv Univ.

case. We may be given n example sequences XV, ... X™ € ¥* of length LM, ... L™,
respectively, which were all generated from the HMM M = (X,Q,0). The values of the

probabilities in ©, however, are unknown a-priori.

In order to construct the HMM that will best characterize X, ..., X we need to
assign values to © that will maximize the probabilities of our sequences according to the
model. Since all sequences are assumed to be generated independently, we can write:

P(xW, . xMe)=]]P(x?e) (5.39)

Jj=1

Using the logarithmic score, our goal is to find ©* such that

O = arg mgX{Score(X(l), L, XMe)} (5.40)
where:
Score(XW, ... XM|0) =log P(XV, X™M|©) =) log(P(X"|0)) (5.41)
j=1
The sequences XM, ..., X™ are usually called the training sequences.

We shall examine two cases for parameter estimation :
(1) Estimation when the state sequence is known.
(2) Estimation when the state sequence is unknown.

Estimation when the state sequence is known

In this case we know the state sequences II™V ... TI™ corresponding to XM, ..., X re-
spectively. For example, in our CpG island model, this could be the case if we were given a
set of genomic sequences in which the CpG islands were already labelled, based on experi-
mental data.

In this case, we can scan the given sequences and compute:
e A;; - the number of transitions from the state k to [.

e FE(b) - the number of times that an emission of the symbol b occurred in state k.

Hidden Markov Models 15

The maximum likelihood estimators will be:
Api

ap] = ————— (5.42)
quQ Ak’q

B (b)
ZUGE Ek (0>

To avoid zero probabilities, when working with a small amount of samples, it is recom-
mended to work with A}, and Ej}(b), where:

en(b) = (5.43)

Ay = Autru (5.44)
E (b)) = Ei(b) + ri(b) (5.45)

Usually the Laplace correction, where all ry; and 7 (b) values equal 1, is applied, having
an intuitive interpretation of a-priori assumed uniform distribution. However, it may be
beneficial in some cases to use other values for the correction (e.g. when having some prior
information about the transition or emission probabilities).

Estimation when state sequence is unknown : Baum-Welch training

Usually, the state sequences I ... TI(™ are not known. In this case, the problem of finding
the optimal set of parameters ©* is known to be NP-complete. The Baum-Welch algorithm
[2], which is a special case of the EM technique (Expectation and Mazimization), can be used
for heuristically finding a solution to the problem.

1. Initialization: Assign arbitrary values to ©.

2. FEzxpectation:

(a) Compute the expected number of state transitions from state k to state [. Using
the same arguments we used for computing P(X,m; = k) (see 5.36), we get:
~ Je() - ap - e(@iv) - bi(i + 1)

P(’]TZ' = kaﬂ—i—‘,—l = Z‘X, @) = P(X) (546)

Let { f,gj)(i), b,(g)(i)}kewg L(j) denote the forward and backward probabilities of the
string XU) . Then the expectation is :

n L(5)
1 3,) 1G) g
An = 2; P(XG) 21: FOG) - ap - (@) b i+ 1) (5.47)
J= =

16 Algorithms for Molecular Biology (©) Tel Aviv Univ.

(b) Compute the expected number of emissions of the symbol b that occurred at the
state k (using the value of P(m; = k|X) as calculated in 5.37):

n

Ex(b) = > 5rom X(J DR LOR A0 (5.48)

=1 {il={=b}

3. Mazximization: Re-compute the new values for © from Ay and Ej(b), as explained
above (in case 1).

4. Repeat steps 2 and 3 until the improvement of Score(X®, ... X|0) is less then a
given parameter e.

The EM-algorithm guarantees that the target function values Score(X™, ... X™|0)
are monotonically increasing, and as logarithms of probabilities are certainly bounded by 0,
the algorithm is guaranteed to converge. It is important to notice that the convergence is
of the target function and not in the © space: the values of ©® may change drastically even
for almost equal values of the target function, which may imply that the obtained solution
is not stable.

The main problem with the Baum-Welch algorithm is that there may exist several local
maxima of the target function and it is not guaranteed that we reach the global maximum:
the convergence may lead to a local maximum. A useful way to circumvent this pitfall is
to run the algorithm several times, each time with different initial values for ©. If we reach
the same maximum most of the times, it is highly probable that this is indeed the global
maximum. Another way is to start with © values that are meaningful, like in the case of the
CpG islands we might start from © values obtained from a real case statistics.

Profile Alignment 17

Begfn > M, R S — —Pp M S -—— M; p End

Figure 5.6: Match states in a profile HMM.

5.2 Profile Alignment

5.2.1 Profile HMMs

HMDMs can be used for aligning a string versus a given profile, thus helping us to solve the
multiple alignment problem.

Ungapped Profile Alignment

We define a profile P of length L, as a set of probabilities, consisting of, for each b € ¥ and
1 < < L, the probability e;(b) of observing the symbol b at the ith position. In such a case
the probability of a string X = (x1,... ,x.) given the profile P will be:

L

P(X[P) = H ei(zi) (5.49)

=1

We can calculate a likelihood score for the ungapped alignment of X against the profile

P:

(&

p(x;)

L
Score(X|P) = Zlog (5.50)
i=1

where p(b) is the background frequency of occurrences of the symbol b.

This leads to a definition of the following HMM: all the states are match states My, ... , My,
which correspond to matches of the string’s symbols with the profile positions. All these
states are sequentially linked (i.e., each match state M, is linked to its successor M;.;) as
shown in Figure 5.6. The emission probability of the symbol b from the state M; is of course
e;(b), and the transition probability between two match states is 1. Alignment to this profile
HMM is trivial, because there is no choice of transitions.

18 Algorithms for Molecular Biology (©) Tel Aviv Univ.

Figure 5.7: A profile HMM with an insertion state (and some match states).

Adding insert and delete states

To allow insertions, we will add also insertion states Iy, ... , I, to the model. We shall assume
that:

Vies er;(b) = p(b)

Each insertion state I; has a link entering from the corresponding match state M;, a
leaving link towards the next match state M;i; and also has a self-loop (see figure 5.7).
Assigning the appropriate probabilities for those transitions corresponds to the application
of affine gap penalties, since the overall contribution of a gap of length h to the logarithmic
likelihood score is:

log(an; ;) +log(ar ;) + (h — 1) - log(az, ;)

gap creation gap extension

To allow deletions as well, we add the deletion states Dy,...,Dy. These states cannot
emit any symbol and are therefore called silent (Note that the begin/end states are silent as
well). The deletion states are sequentially linked, in a similar manner to the match states
and they are also interleaved with the match states (see figure 5.8).

The cost of a deletion is analogous to the cost of an insertion, although the path through
the model looks different. Theoritically, it is possible that the D — D transitions for one

Profile Alignment 19

Dj—l Dj Dj-ﬁ-l
\

AN /, Y /,
\ y \\(/
/y\\ /” \\

// i A

M, —» M —» My

Figure 5.8: Profile HMM with deletion and match states.

deletion will have different probabilities, and thus contribute differently to the score, whereas
all the I — I transitions for one insertion involve the same state, and thus have the same cost.

The full HMM for modeling the profile P of length L is comprised of L layers, each layer
has three states M;, I; and D;. To complete the model, we add begin and end states, con-
nected to the layers as shown in figure 5.9. This model, which we will call a profile HMM,
was first introduced by Haussler et al [5].

We have added transitions between insertion and deletion states, as in the original model,
although these are usually very improbable. Other models, that don’t contain these transi-
tions, are equivalent to the model described above.

5.2.2 Deriving Profile HMMs From Multiple Alignments

Before we can use the profile HMM, we need to estimate the emission and transition prob-
abilities of the model. In case the HMM is derived from a given multiple alignment of
sequences, we can regard the alignment as providing a set of independent samples of align-
ments of sequences to our HMM. Since the alignments are given, we can estimate the model
parameters using the following equations from section 5.1.6:

20 Algorithms for Molecular Biology (©) Tel Aviv Univ.

Begin —— | M, —p| M |— M, —m End

Figure 5.9: Source: [4]. Profile HMM for global alignment.

Akl
Qg = m (5.51)
ex(b) = 20 (5.52)

- Yoes Bil0)

If we have a large number of sequences in our training alignment, this will give us an
accurate and consistent estimate of the parameters. However, it has problems when there
are only a few sequences. A major difficulty is that some transitions or emissions may not
be seen in the training alignment, so we would acquire zero probability. As before, we can
use Laplace’s correction (adding one for each frequency) or other approaches to avoid zero
probabilities.

Figure 5.11 shows an example for estimating the probability parameters in a profile HMM
based on the multiple alignment given in Figure 5.10, using Laplace’s rule. For example, in
column 1 of the alignment there are six transitions from match to match, one transition to
a delete state and no insertions. Thus we obtain ay,, = 1—70, an, Dy, = 1—20, ayn, = %, and
the estimation for the emission probabilities for My are : ey, (V) = &, er, (F) = 2 , and
e, (a) = 5 for each a other than V, I, F.

Profile Alignment 21

HBA_HUMAN ...VGA--HAGEY...
HBB_HUMAN ...V----NVDEV...
MYG_PHYCA ...VEA--DVAGH...
GLB3_CHITP ...VEG-----—- D...
GLBS5_PETMA ...VYS--TYETS...
.cB2_ LUPLU ...FNA--NIPKH...
GLB1_GLYDI ...IAGADNGAGV.

* & & % Rk w

Figure 5.10: Source: [4]. Ten columns from the multiple alignment of seven globin protein
sequences. The starred columns are ones that will be treated as 'matches’ in the profile
HMM.

T Al AR Al Al Al Al Al

cl) ci cl cl cl cl cl

DI DI DI DI DI DI DI DI

El El El El El El El El

Fi Fl Fi Fl Fl Fl Fi Fi

Gl Gl 1] Gl Gl Gl G Gl

HI HI HI HI HI HI HI Hi

11 Il Il 11 Il 11 11 Il

K1 Kl Kl K1 Kl KI K1 KI

LA Ll Ll Lt Ll Ll Ll LI Ll
LULY M1 Mi M1 Ml M1 Mi i
NI N1 NI NE NI NI NI

Pl Pl Pl Pl Pl Pl Fl Pl

Qi Ql Q! Ql Ql Ql Ql Ql

RI RI Rl Rl RI RI RI RI

st H st S| s1 s1 S| s1

TI TI TI T TI T TI TI

ve Vi Vi 1 v Vi Vi vi

Wl Wl Wi Wi Wl Wl wl Wl

Yl Y1 Y1 Y1 X1 Yl Y1

Figure 5.11: Source: [4]. A hidden Markov model derived from the small alignment shown
in the above figure using Laplace’s rule. Emission probabilities are shown as bars opposite
the different amino acids for each match state, and transition probabilities are indicated by
the thickness of the lines. The I — [transition probabilities are shown as percentages in
the insert states.

22 Algorithms for Molecular Biology (©) Tel Aviv Univ.

5.2.3 Aligning Sequences to a Profile HMM

To align the string X = (z1,...,,,) against a profile P of length L, we will use a variant of
the Viterbi algorithm. For each 1 < 7 < L and 1 <7 < m we use the following definitions:

o Let vJM (1) be the logarithmic likelihood score of the best path for matching
X = (x1,...,x;) to the profile HMM P, ending with z; emitted by the state M;.

o Let ’U]I- (7) be the logarithmic likelihood score of the best path for matching
X = (21,...,2;) to the profile HMM P, ending with z; emitted by the state ;.

o Let UJ-D () be the logarithmic likelihood score of the best path for matching
X = (x1,...,;) to the profile HMM P, ending with the state D; (without emitting
any symbol).

The initial value of the special begin state is:
Ubegin(o) =0 (553)

To calculate the values of v}/(i), v/ (i) and v} (i) we use the same technique as in the

Viterbi algorithm. There are however two major differences:

e Each state in the model has at most three entering links (see figure 5.9).

e The deletion states are silent - they cannot emit any symbol.

The three predecessors of the match state M; are the three states of the previous layer,
j— 1

6M($) Ujj\{l(i - 1) + log(aM]-_1,Mj)
UJM(Z) = log péx-)l +max q vf (i — 1) + log(ar, , u;) (5.54)
vﬁl(i — 1) +log(ap,_, ;)

The three predecessors of the insertion state I; are the three states of the same layer, j:

v (i — 1) +log(an, ;)

+max { vf (i — 1) + log(ay, 1,) (5.55)
v (i — 1) +log(ap,,1;)

The three predecessors of the deletion state D; are the three states of the layer j — 1.

Since Dj is a silent state, we should not consider the emission likelihood score for x; in this
case:

€r; (xl>

P(ﬁz)

vi(i) = log

/Uj‘{l(z) + log(a/Mjfl,Dj)
vi’ (i) = max § vf_, (i) 4+ log(as,_, p,) (5.56)
v

j 1(2) + log(a/Dj—lyDj)

Profile Alignment 23

Ml 2

Begin End

Figure 5.12: Source: [4]. Profile HMM for local alignment.

We conclude by calculating the optimal score:

U%(m) + log(aML,end)

Score(X|IT*) = max ¢ vl (m) + log(ar, ena) (5.57)
UE (m) + 1Og(aDL,end)
Complexity: We have to calculate O(L - m) values, each taking O(1) operations (since
we only need to consider the scores of at most three predecessors). We therefore need O(L-m)
time and O(L - m) space.

We can use a similar approach for the problem of local alignment of a sequence versus a
profile HMM. This is achieved by adding four additional states (the lightly shaded states in
Figure 5.12) corresponding to the alignment of a subsequence of X to a part of the profile.

5.2.4 Forward and Backward Probabilities for a Profile HMM

In the previous section we modelled the problem of aligning a string to a profile. As with
general HMMSs, the main problem is to assign meaningful values to the transition and emis-

24 Algorithms for Molecular Biology (©) Tel Aviv Univ.

sion probabilities to a profile HMM. It is possible to use the Baum-Welch algorithm for
training the model probabilities, but it first has to be shown how to compute the forward
and backward probabilities needed for the algorithm.

Given a string X = (21,...,x,) we define:

e The forward probabilities:

fM(i) = P(xy,...,x; ending at M) (5.58)
fj(@) = P(x1,... ,; ending at I;) (5.59)
fP(i) = P(a1,... ,x; ending at D;) (5.60)

e The backward probabilities:

b} (i) = P(Zit1,. .. , Ty beginning from M;) (5.61)
bi(i) = P(%i41, ... ,Tm beginning from I;) (5.62)
bP (i) = P(xis1, ... , T beginning from D) (5.63)

Computing the Forward Probabilities:

1. Initialization:
Jregin(0) =1 (5.64)

2. Recursion:

'I— (Z - 1) : a[jfl,Mj + (565)

fli=1)-ar, + (5.66)

jI—l(Z.) “ar,_y,p; t (567)

fJD—l(Z) "ap;_4,D;

Profile Alignment

Computing the Backward Probabilities:

1. Initialization:

bﬁ/l(m> = AM;, end
br(m) = ar, ena

b? (m) = Aapy end

2. Recursion:
bj\/[(’b) = b;‘_{_l(’b + 1) “AM;, My 6M].+1(JIZ‘+1) +
bi(i +1) - ang,,z, - er, (wi1) +

bﬁ—l (@) - ang;.p;1

ng(Z) = b%—l(z + 1) CAI; My €M ('Ti-i-l) +
b;(z + 1) : G/Ij,fj : 6[j ('Ti-i-l) +
b]D-l-l(Z) “Q1;,Dj

bgD(Z) = b%—l(z + 1) *AD; My " €M (xi-i-l) +
b;(l + 1) : CLD].JJ. : 6]j (ZL’Z'_H) +

bjD‘l‘l (Z> "AD;,Dj1

25

(5.68)
(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

Again, if we want to transform to the log space, we can do it in the following way :

Computing the Forward Logarithmic Probabilities:

1. Initialization:
fbegin(o) =0

2. Recursion:

fJM(Z> = lOg(@M]. (XZ)) + log[an—hMj ’ exp(f]!\fl(i - 1)) +
ar;_1,M; 6l’p(fjl_1(7; -

AD; _1,M; * €$P(ij_1(i -

(5.74)

(5.75)

26 Algorithms for Molecular Biology (©) Tel Aviv Univ.

F1(i) = log(er, (X)) + loglans, 1, - exp(f, (i — 1)) +
ar;_1,1; - €9Cp(ff—1(i - 1)) +
ap; 4,15 ° €9Cp(fjli1(i —1))]

f7(0) = loglans, ., p, - exp(f11(i — 1)) +
ar;_y,D; - €Ip(fj_1(i - 1)) +
ap, ,p; - exp(f;21(i —1))]

We can transform the backward probabilities in the same way.

(5.76)

(5.77)

The forward and backward variables can then be combined to re-estimate emission and

transition probability parameters as follows:

Baum-Welch re-estimation equations for profile HMMs:

1. Expected emission counts from sequence X:

k - ka

z\m =a

Ep(a) = Z JHOUAD)

z\z =a

2. Expected transition counts from sequence X (X, is anyone of My, Iy, Dy):

AXkMk+1 - Z fk anMk+1€Mk+1 (xl-l—l)bk—i-l(l + 1)
kak - Z fk anIkelk (xl-l—l)bk(z + 1)
AXka-H = ka anDk+1bk—|—1()

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

Profile Alignment 27

5.2.5 Multiple Alignment with Profile HMMs

Profile HMMs can help us to obtain an approximate solution to the multiple alignment
problem. Given n sequences SM, ... S consider the following cases:

1. If the profile HMM P is known, the following procedure can be applied:

e Align each sequence S® to the profile separately.
e Accumulate the obtained alignments to a multiple alignment.

e Insert runs are not aligned, i.e. the choice of how to put the letters in the insert
regions is arbitrary (Most profile HMM implementations simply left-justify insert
regions, as in the following example).

2. If the profile HMM P is not known, one can use the following technique in order to
obtain an HMM profile from the given sequences:

e Choose a length L for the profile HMM and initialize the transition and emission
probabilities.

e Train the model using the Baum-Welch algorithm, on all the training sequences.

e Obtain the multiple alignment from the resulting profile HMM, as in the previous
case.

Figure 5.14 shows an example for obtaining a multiple alignment from a profile HMM.
First, we derive the profile HMM shown in Figure 5.13 from a given multiple alignment
of seven sequences. The shaded columns were arbitrarily defined to be insertions for the
purposes of this example, and the other ten columns correspond to ten profile HMM match
states. Second, the same seven sequences were realigned to the model, and their alignment
is shown in Figure 5.14, left, where lower-case letters were assigned to an insert state and
upper-case letters were assigned to a match state. We should notice that the original align-
ment and the new alignment are the same alignment. A profile HMM does not attempt to
align the lower-case letters assigned to insert states (as was described in the algorithm). This
is a biologically realistic view of multiple alignment, since the insert regions usually represent
parts of the sequences which are unconserved, and not meaningfully alignable. Third, we
align a new sequence to the same model, shown in Figure 5.14, right. This sequence has
more inserted positions than any of the other seven sequences, so the alignment of the other
seven sequences must be adjusted to allow space for these positions.

One can use an extension of the above approach to identify similar patterns in a given
set of sequences by using the profile HMM for local alignment (see Figure 5.12). Next, we
present another approach to this problem, which tackles the problem from a totally different
perspective.

28

Algorithms for Molecular Biology (©) Tel Aviv Univ.

.<>9

S EERETEET
-

RIS
]

FPHF-DLE~—===HGSAQ

FESFGDLSTPDAVMGNPK
FDRFKHLKTEAEMKASED
FTQFAG-KDLESIKGTAP
FPKFKGLTTADQLKKSAD
FS-FLK-GTSEVPONNPE

FG-FSGume=A8s-DPG

Figure 5.13: Source: [4].

FPHF-DIS I /HGSAQ

A model (top) estimated from an alignment (bottom).
columns in the shaded area of the alignment were treated as inserts.

FS-FLKngvdptaai--NPK
FPHF-Dls.......HGSAQ

FESFGD1lstpdavMGNPK FESFGDlstpdav. .MGNPK
FDRFKHl1kteaemKASED FDRFKHlkteaem. .KASED
FTQFAGkdlesi.KGTAP FTQFAGkdlesi...KGTAP
FPKFKGlttadglKKSAD FPKFKGlttadgl. .KKSAD

FS-FLKgtsevp.ONNPE
FG-FSGas.e wim~—-DPG

FS-FLKgtsevp. . .QNNPE
FG-F SGasaaisiitiil - -DPG

The

Figure 5.14: Source: [4]. Left: the alignment of seven sequences is shown with lower-case
letters meaning inserts. The dots are just space-filling characters to make the matches line
up correctly. Right: the alignment is shown after a new sequence was added to the set. The
new sequence is shown at the top, and because it has more inserts, more space-filling dots
were added.

Gibbs Sampling 29

5.3 Gibbs Sampling

Problem 5.5 Locating a common pattern.

INPUT: A set of sequences S = S0, ..., S and an integer w.

QUESTION: For each string S, find a substring (pattern) of length at most w, so that
the similarity between the n substrings is maximized.

Let a®, ..., a™ be the starting indices of the chosen substrings in S0, ..., S respec-
tively. We introduce the following notations:

o Let ¢;; be the number of occurrences of the symbol j € ¥ among the ith positions of
. 1
the n substrings: {si&)ﬂ._l, . 7‘9((1?3)“—1}'

e Let ¢;; denote the probability of the symbol j to occur at the jth position of the pattern.

e Let p; denote the frequency of the symbol j in all the sequences in S.

We therefore wish to maximize the logarithmic likelihood score:

w

Score = Z Z ¢ij - log K (5.83)

i=1 jex p;

When the number of occurences of symbol 7 in the ith position of the pattern increases,
its frequency in that position g;;, relative to its background frequency p;, increases (and vice
versa). In the above expression, each symbol j in the ith position of the pattern is given
a weight, represented by ¢;;, which is proportional to its frequency in that position. Thus,
when the similarity between the n substrings increases, we have more occurences of symbols

J with high frequency in each position ¢, hence the given score increases.
To accomplish this task, we perform the following iterative procedure:

1. Initialization: Randomly choose a(V), ... a(™.

2. Randomly choose 1 < z < n and calculate the ¢;;, ¢;; and p; values for the strings in

5\56).

3. Find the best substring of S*) according to the model, and determine the new value
of a'*). This is done by applying the algorithm for local alignment of S*) against the
profile of the current pattern.

4. Repeat steps 2 and 3 until the improvement of the score is less then e.

30 Algorithms for Molecular Biology (©) Tel Aviv Univ.

Unlike the profile HMM technique, the Gibbs sampling algorithm (due to Lawrence et
al. [8]) does not rely on any substantial theoretic basis. However, this method is known to
work in specific cases.

Known problems:
e Phase shift - The algorithm may converge on an offset of the best pattern.

e The value of w is usually unknown. Choosing different values for w may significantly
change the results.

e The strings may contain more than a single common pattern.

e As is the case with the Baum-Welch algorithm, the process may converge to a local
maximum.

References

e Hidden Markov models were originally invented and are commonly used for speech
recognition. For additional material on this subject, see [9].

e For a more comprehensive overview on the EM technique, see [1].

e For a detailed discussion about the adaptation of HMMs to computational biology
algorithms see [4] (chapters 3-6).

e Applications of profile HMMs for multiple alignment of proteins can be found in [5]
and for finding genes in the DNA can be found in [7, 6].

Bibliography

1]

[9]

[10]

N. M. Laird A. P. Dempster and D. B. Rubin. Maximum likelihood estimation from
incomplete data. Journal of the Royal Statistics Society, 39:1-38, 1977.

L. E. Baum. An inequality and associated maximization technique occuring in the
statistical analysis of probabilistic functions of markov chains. Inequalities, 3:1-8, 1972.

R. Bellman. Dynamic Programming. Princeton University Press, Boston, 1957.

R. Durbin, S. Eddy, A. Krough, and G. Mitchison. Biological Sequence Analysis: Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

A. Krogh, M. Brown, S. Mian, M. Sjolander, and D. Haussler. Hidden markov models in
computational biology. applications to protein modeling. Journal of Molecular Biology,
235(5):1501-1531, 4 February 1994.

Anders Krogh, I. Saira Mian, and David Haussler. A hidden markov model that finds
genes in E. coli DNA. Nucleic Acids Research, 22:4768-4778, 1994.

D. Kulp, D. Haussler, M.G. Reese, and F.H. Eeckman. A generalized hidden Markov
model for the recognition of human genes in DNA. 1In D. J. States, P. Agarwal,
T. Gaasterland, L. Hunter, and R. Smith, editors, Proc. Conf. On Intelligent Systems
in Molecular Biology '96, pages 134-142. AAAT/MIT Press, 1996. St. Louis, Mo.

Charles E. Lawrence, Stephen F. Altschul, Mark S. Boguski, Jun S. Liu, Andrew F.
Neuwald, and John C. Wootton. Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science, 262:208-214, 8 October 1993.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257-286, February 1989.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Trans. Information Theory, IT-13:260-269, 1967.

31

