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Abstract. The rise of genome sequencing has produced new methods and studies for phylogeny reconstruction
from whole genome data. In the popular gene concatenation method individual genes are aligned separately and
then alignments are concatenated on which a phylogeny is determined. In the tree consensus method (also widely
used) trees are constructed on individual genes and combined to form a consensus. These methods are likely to
miss evolutionary changes in non-coding regions of the genome that contribute to the phylogeny. Other less com-
mon methods such as Huson’s Genome BLAST Distance Phylogeny (GBDP) use the entire genome sequence and
have been previously compared to conserved RNA phylogenies. In this paper we evaluate for the first time the
accuracy of whole genome phylogenies on large-scale simulated data produced from the Evolver whole genome
evolutionary model. We also explore several variants of GBDP and show that the method can be improved with a
whole genome alignment tool instead of BLAST, Jukes-Cantor evolutionary distances, and using just the top few
largest aligned blocks in BLAST. We show that our variants give trees with lower Robinsons-Foulds distance than
gene concatenation, tree consensus, and the original GBDP. We also evaluate our proposed method on real data with
a reference (gene-based) mammalian phylogeny and show that while our tree has higher error than a simple gene-
concatenated one it recovers many major clades. Our work here suggests that whole genome sequence phylogeny
reconstruction methods that account for changes in non-coding regions may give more accurate trees than existing
gene-based methods and that existing whole genome methods can be improved. We make our data freely available
at https://web.njit.edu/˜usman/genomephylogeny.

1 Introduction

As genome sequencing becomes mainstream we see studies evaluating the accuracy of phylogeny reconstruction from
whole genome sequences [1–9]. Previous studies have considered real data only and gauge the accuracy of their
methods by comparing against phylogenies from conserved RNA genes. The two popular methods for constructing
phylogenies from whole genome sequences are gene concatenation and tree consensus [10]. In the first method indi-
vidual gene alignments are concatenated into a single alignment from which typically a maximum likelihood (ML)
[11] tree is inferred. In the second method we construct trees on individually aligned genes which are then combined
to produce a final tree.

An alternative approach is to consider whole genome sequences for building a tree. One of the earliest such
methods is the Genome BLAST Distance Phylogeny (GBDP) by Huson et. al. [3]. In this method high scoring segment
pairs (HSPs) between two genomes are first determined with the blastn program [12] after which a distance matrix
is computing from the HSPs. We explore a similar approach in that we create a distance matrix on which a neighbor
joining phylogeny is constructed, except that we determine evolutionary distances from aligned blocks given by the
popular LASTZ genome alignment program [13]. While the GBDP method uses a distance calculation based on
the number of nucleotides in non-overlapping high scoring alignments we use the Jukes Cantor distance [14] that is
determined directly from our aligned blocks.

More importantly, we consider for the first time simulated data to evaluate phylogenies constructed from whole
genome sequences. The Evolver program [15] makes it possible to simulate the evolution of whole genome sequences
under a sophisticated model that accounts for known genome evolutionary events. Recent large-scale comparisons of
genome assemblers and alignment programs such as Assemblathon [16] and Alignathon [17] use simulated data from
Evolver to compare different programs. Several recent studies on genome assembly and alignment have also used
simulated data from Evolver for evaluation [18–23]. However, we are unaware of previous studies that use Evolver
data and model trees for evaluating whole genome phylogeny reconstruction.



In our study we simulate whole genome sequences under mammalian models trees of 5, 15, 25, and 50 taxa (five
trials for each setting). Running Evolver is considerably challenging as even specified by the program authors in the
manual. Our data simulation and analysis together took months of computation to complete. For each simulated dataset
we constructed trees given by gene concatenation, tree consensus, Huson’s GBDP methods and several variants of it,
and our LASTZ based method. We then we evaluate their error with the Robinson-Foulds distance that measures the
number of false positives and false negatives. We also study our LASTZ based method on real data. In summary our
results show that whole genome sequence methods give lower error than gene based methods on the simulated data,
and that our variants of GBDP give lower error than the original method. In the rest of the paper we describe the
Evolver simulation model and the phylogeny reconstruction methods that we study. After that we present in detail our
results on simulated and real data followed by discussion and future avenues.

2 Methods

2.1 Evolver evolutionary model

Evolver [15] is a suite of programs designed to simulate the evolution of whole genome sequences. It does so by
simulating the long-term averaged effects of mutations and selections over a species rather than using an explicit
model of allele frequencies or gene flow. Evolver embodies two core components as part of its simulation, namely
inter- and intra-chromosome modules. The inter-chromosome module simulates events involving two chromosomes,
including chromosome fission, fusion, and segmental moves and copies. The intra-chromosome module simulates
events that occur within a single chromosome, such as insertions, substitutions, deletions, inversions, transpositions,
and duplications.

There are two types of evolutionary events are used in its simulations: mutations and constraint changes. Mutations
are events that modify the primary sequence. Some examples of mutations are insertions and deletions. If a mutation
affects a base than it is said to be accepted with a probability called accept probability. Evolver proposes mutations at
rates specified by parameters in the model and are used in both inter- and intra-chomosome evolutions.

Constraint change events modify annotations and leave the primary sequence unchanged. Some examples of con-
straint change events are exon gains and losses such as create a new first or last UTR exon. Evolver’s gene model
is based on four types of constrained elements (CEs): CDS (protein-coding sequence), UTR (untranslated exonic se-
quence), NXE (non-exonic CE in a gene), NGE (non-gene element). Since there is no model of RNA genes the base
pairing is not modeled. Genes are defined by the range of positions defined in annotations file. Evolver explicitly mod-
els protein evolution by including constraints such as the gene must begin with a start codon and must contain exactly
one stop codon as last one in the coding sequence.

Mobile elements (MEs) are modeled as nucleotide sequences that are inserted at a randomly chosen point in the
chromosome and are used in the intra-module. Their evolution is given by a birth-death model (see page 21 of the
manual for full details).

Evolver executes in evolutionary cycles by first invoking the inter-chromosome simulator once of the entire genome
followed by the intra-chromosome simulator once for each chromosome. The output of a cycle is used as an input of
the next one.

Evolver requires four main input components:

– An ancestral genome sequence
– An annotation file describing the ancestral genome in terms of gene, non-gene conserved elements, CpG islands

and tandem arrays
– A library of mobile elements and retroposed pseudo-gene sequences
– A parameter file that specifies a model of evolution that includes rates for each type of events used in simulation.

The Evolver output consists of several files:

– Alignments of the evolved genomes to the common ancestor as well as to each other
– Annotations file of the evolved genomes
– Statistics of the evolution process, for example number of accepted and rejected substitutions and genome char-

acteristics
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Effect of model tree branch lengths on Evolver Evolver uses ticks as a unit of time to evolve along a particular
branch. It calculates the number of evolutionary cycles per tick at the base level, gene level, or chromosome level. For
example if a branch length is 0.06 and we specify a tick length of 0.02 then Evolver evolves the genome at length 0.02,
then 0.04, and then 0.06. At each step of the evolution Evolver will produce the genome sequences and annotation files
(all of which take considerable space). If the branch length is greater than the step length then only one evolutionary
cycle is performed.

An evolutionary cycle does not necessarily mean only one evolutionary event. Several events may take place in
one cycle such as substitutions, insertions, and deletions. There are event rates in the parameter file that specify the
number of events per tick. For example from the manual: “the rate of UTR loss is specified as UTRs lost per exon
per tick. Thus if the genome has 105 UTRs and the rate of UTR loss is 10-4 the average number of UTRs lost in the
genome will be 10 per tick”.

The default step value in Evolver is 0.002 while our model tree average branch lengths are higher. Below in
Subsection 3.2 we describe how we select the step length.

2.2 Phylogeny reconstruction methods

We first describe the supermatrix and supertree methods both of which are widely used for whole genome phylogeny
reconstruction. We then describe the Genome BLAST Distance Phylogeny method of Huson et. al. [3] and our method
for estimating distance matrices from whole genome data on which we then run the neighbor joining method to produce
a tree.

Gene concatenation (supermatrix) In this method we align individual genes separately and then concatenate them
to form one large alignment on which we infer a tree. The location of the individual genes are given in the output
files given by Evolver. Since genes may be duplicated we use the first copy we encounter while parsing the genome.
We use the MAFFT program to multiply align each gene [24] and RAxML [25] for tree inference both with default
parameters.

Tree consensus (supertree) In the supertree approach we infer trees on invidually aligned genes separately. Here also
the exact location of individual genes are available to us, we use the first duplicated copy, and we use MAFFT [24] and
RAxML[25] for alignment and tree reconstruction respectively. We then determine the majority consensus tree with
the PHYLIP consense tool[26]. This is the tree given by bipartitions that occur in the majority of the trees [27].

Genome blast distance phylogeny (GBDP) The GBDP method uses blastn [12, 28] to determine high scoring seg-
ment pairs (HSPs) of min length 50 between a pair of genomes from which an evolutionary distance is estimated. We
describe the full GBDP algorithm below in Algorithm 1. Our description follows the steps described in the original
study [3].

We implement GBDP with Python programs, the blastn standalon program, and the neighbor program in PHYLIP
[26]. We study two variants of this method as well:

– GBDP-JC: Instead of the distances given by the above formula here we choose to utilize the Jukes-Cantor evolu-
tionary distance. Instead of selecting long high scoring segments we replace steps 3 and 4 we a different one. We
concatenate all high scoring aligned pairs to form one large alignment and determine the Jukes-Cantor evolution-
ary distance

d(Gi, Gj) = − 3
4 log(1−

4
3pij), where pij =

total mismatches
total length−gaps

– GBDP-TOPK: Instead of considering all high scoring segments to determine the maximum set we select only the
top k longest ones as given by blastn. This in step 2 we would set k to a specific value. This considerably reduces
error as we show below.
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Algorithm 1 Genome blast distance phylogeny (GBDP)
Input: Input genome sequences given in a list G where the length of G is n
Output: Phylogeny T on G
Procedure:

for i = 0 to n− 1 do
for j = i+ 1 to n− 1 do

1. Determing high scoring segments between genomes Gi and Gj using blastn software (with word size set to 50)
2. The output of blastn are k high scoring pairwise alignments HSP0, ..., HSPk−1 of Gi and Gj .
3. Assume without loss of generality that the high scoring pairs are ranking by decreasing length. We greedly select the
maximum set S of non-overlapping pairs: we start with HSP0 and add HSPm (for 0 < m < k) if it doesn’t overlap with
existing HSPs in S.
4. Let Gmatch

i and Gmatch
j be the number of nucleotides in maximal set of HSPs S that we calculated above. We define

dmatch(Gi, Gj) = −log(
|Gmatch

i |+|Gmatch
j |

2min(|Gi|,|Gj |
)

Since blastn is asymmetric the final evolutionary distance is given by the average

d(Gi, Gj) =
dmatch(Gi,Gj)+dmatch(Gj ,Gi)

2

end for
end for
Output the neighbor joining tree on d

LASTZ-based genome distance phylogeny (LGDP) Instead of high scoring segment pairs given by blastn as in the
above method we consider aligned blocks given by the LASTZ program [13] to determine evolutionary distances. For
a given pair of genomes X and Y we determine aligned blocks with LASTZ from which we compute Jukes-Cantor
[14] evolutionary distances. We explain our method in full in Algorithm 2.

Algorithm 2 LASTZ-based genome distance phylogeny (LGDP)
Input: Input genome sequences given in a list G where the length of G is n
Output: Phylogeny T on G
Procedure:

for i = 0 to n− 1 do
for j = i+ 1 to n− 1 do

1. Align genomes Gi and Gj with LASTZ
2. The output of LASTZ are aligned blocks of Gi and Gj .
3. Concatenate all aligned blocks into one large alignment and determine the Jukes Cantor evolutionary distance

d(Gi, Gj) = − 3
4
log(1− 4

3
pij), where pij = total mismatches

total length−gaps

end for
end for
Output the neighbor joining tree on d

3 Results

We describe here our experimental setup with Evolver including challenges encountered in running it. We then present
our experimental results followed by discussion.
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3.1 Model trees

We performed a BLAST search against the manually annotated Swiss-Prot database [29] with the human haemoglobin
gene (HBA HUMAN) as the query sequence. We then obtained top 5, 15, 25, and 50 ranked sequences with repeat
species omitted and computed the neighbor joining tree via ClustalW [30] also available at the Swiss-Prot server. This
gave us four model trees from real data on which we then simulate whole genome sequences starting from human
chromosome 20 as the root sequence. In Figure 1 we show our 50 taxa model tree.

Fig. 1: Our 50 taxa haemoglobin neighbor joining gene tree that we use as a model tree

3.2 Evolver simulation

In total we simulate five sets of whole genome sequences for each model tree. We started the simulation using a
subset of the annotated human genome GRCh38/hg38 [31, 32]. We extracted the complete chromosome sequence for
chromosome 20 along with the annotations from the UCSC genome browser, golden path download site [31–33],
specifically knownGene, mgcGenes, cpgIslandsExt, ensGene and knownGeneOld5. We used the evolverSimControl
[17] suite to process the data into an Evolver infile dataset using same parameters as described in the Alignathon
study [17]. The simulation process shuffles the sequences, genes, and chromosomes of the genome along a given
phylogenetic tree as described earlier. We used the repetitive element library from the human genome already given in
the Evolver package [17, 31, 32].
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As described earlier Evolver uses ticks as a unit of time to evolve along a particular branch. It calculates the number
of evolutionary cycles per tick at the base level, gene level, or chromosome level. The default step length in Evolver
is 0.001 while the average branch lengths of our 5, 15, 25, and 50 taxon model trees are 0.002, 0.017, 0.011, 0.01
respectively. As expected this led to a large output by Evolver of genome sequences and annotations since it simulates
data for every 0.001 portion of the step along a given branch. Furthermore Evolver may timeout early and not simulate
genome sequences for all taxa possibly due to the birth-death process governing mobile element evolution (see page
21 of the manual). We increased the step length incrementally by 0.001 while simulating on the 50 taxon model tree
and stopped at 0.006. There the data output was manageable and Evolver didn’t time out before simulating all taxa -
smaller step lengths and larger trees led to more frequent timeouts.

The simulation process is highly computationally challenging as even stated by the authors of the program in the
program manual. In fact we encountered several computational challenges in producing the simulated data, particularly
on larger 25 and 50 taxon trees that haven’t been studied before with this software. For example Evolver takes days
to finish generating data for a 25 taxon tree on a typical dual core CPU. We ran it on a multiprocessor machine with
a total of 32 cores and 128GB RAM so we could generate multiple simulated datasets and produce data for 50 taxon
trees as well. In total the data for our simulation study occupied about at least terrabyte of disk space and took weeks
to produce (and additional weeks to analyze due its scale). Another challenge in running Evolver on large trees is that
the evolutionary process may terminate earlier on the model tree thus not producing sequences on all leaves. This may
be due to its birth death model that governs the mobile element evolution (see page 21 of Evolver manual).

We make our data freely available at https://web.njit.edu/˜usman/genomephylogeny. This in-
cludes the five model trees and 25 simulated whole genome sequences along with annotation files outputted by Evolver.

3.3 Phylogeny reconstruction

In order to construct gene concatenation and tree consensus phylogenies we need location of genes within the simulated
genomes. Evolver produces annotated files that contain such information for each simulated genome. We thus extract
simulated genes from each sequence from which we construct gene concatenation and tree consensus phylogenies as
described earlier. Due to duplication there may be multiple copies of the same gene in which case we select the first
one encountered while parsing the genome. For the two genome methods we provide the genome sequences directly
as input.

3.4 Robinson-Foulds distances on simulated data

Comparison of whole genome sequence and gene based methods For each model tree we simulated five sets of
whole genome sequences. On each set we constructed trees with the four methods described above and determined
the Robinson-Foulds distance [34] with the PHYLIP program treedist. This is just the number of false positives plus
false negatives. Since both our model and estimated trees are binary our false positives are equal to false negatives thus
making the Robinsons-Fould distance twice the number of false positives.

In Figure 2 we make several observations. First see that the error of all four methods increases as the tree size
becomes larger suggesting the problem becomes difficult as we add taxa. One way to overcome this problem is to
use divide-and-conquer methods for large-scale phylogeny reconstruction such as disk covering methods [35–37].
Disk-covering methods divide the problem into overlapping subsets with a distance [38] or tree-based decomposition
[35], construct trees on each subset, and combine the overlapping subtrees with the strict consensus merger [37]. This
approach is likely to work here since we see that smaller taxon trees are easier to reconstruct.

Second we see that the gene and supertree consensus methods give higher error than the LASTZ based whole
genome approach. This may not be too surprising since the model produces evolutionary events in non-coding regions
that gene-based methods would miss. At the same time there are many genes in the root genome that undergo evolution,
yet their signal isn’t strong enough to determine all branches correctly.

Thirdly, of the two whole genome sequence methods we see that the LASTZ-based genome distance phylogeny
(LGDP) has lower error than the genome BLAST distance phylogeny (GBDP). This may be because we are using
the Jukes-Cantor distances from the alignments to determine an evolutionary distance matrix whereas GBDP relies on
number of bases covered in the BLAST alignments. It’s also possible that the quality of the high scoring segments may
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Fig. 2: Shown here are the average Robinson-Foulds distances of the four methods on genome sequences evolved from our four
model trees. Each point is the average across five simulated datasets per model tree and has error bars to indicate the standard
deviation.

affect the distance matrix calculation and so we test the effect of considering the top k high scoring segments from
which to compute the maximal set. We describe these two variants earlier in our Section on Methods and compare
them to GBDP and LGDP in the next subsection.

Comparison of variants of GBDP and LGDP Due to time constraints we are able to perform these experiments
only on the first trial of our simulated data for 5, 15, and 25 taxon model trees. In Figure 3 we show the error of the
original GBDP, the two variants GBDP-JC and GBDP-TOPK (for k=1000, 10K, 20K, and 50K), and LGDP. Recall
that GBDP-JC is the original method except the Jukes-Cantor distance matrices are used and in GBDP-TOPK we use
the top k largest high scoring segments instead of all to calculate the maximum non-overlapping set.

We make several interesting observations. First we see that Jukes-Cantor distances on high scoring alignments
given by blastn (the GBDP-JC method) gives lower error than the original GBDP. Thus it appears that using a more
exact evolutionary distance is better than counting number of bases in maximal non-overlapping alignments, which is
the original method.

However, the results with GBDP-TOPK show this may not necessarily the case. When we consider just the top
1000 longest high scoring pairs to determine the maximal non-overlapping set we see that the resulting tree has the
lowest error of the GBDP variants. In fact GBDP-TOP1K is comparable to LGDP and better at 25 taxa. As we increase
the threshold k from 1K to 50K the error increases and approaches the original GBDP. Remember that in this variant
we use the original distance formula proposed in GBDP. The top k scoring pairs are not only long but also tend to be
of better quality in terms of alignment score and significance. Thus we see that the better quality high scoring pairs
give lower error.

3.5 Comparison of LGDP and gene concatenation on real data

This section is particularly challenging for us since model species trees are generally constructed with gene concatena-
tion methods. For example the Tree of Life mammalian phylogeny located at http://tolweb.org/Eutheria/
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Fig. 3: Shown here are the Robinson-Foulds distances of variants of GBDP on the first set of evolved genome sequences from our
three model trees. We see that as k increases, in other words as we consider more top high scoring pairs given by blastn, the error
of GBDP-TOPK approaches GBDP.

15997 (and also on Wikipedia at https://en.wikipedia.org/wiki/Evolution_of_mammals) were
given by a maximum likelihood gene concatenated tree containing thousands of genes [39]. Still we want to evaluate
our method on real data and see the similarities and differences to the gene concatenated model species. For this pur-
pose we consider the mammalian phylogeny at The Broad Institute as a reference tree [40]. Note that this phylogeny is
also gene based as explained in pages S18 and S19 of the Supplementary Section of the paper [40]. It was constructed
from orthologous gene trees from family gene trees in the Ensemble Compara v57 database. After filtering the authors
obtained a tree based on 17,709 genes in total.

In order to also have our gene concatenated tree on this data we sought eight genes: gadd45, cd8, cd4, il2, il10, m33,
cytochrome b, and haemoglobin from the SWISSPROT curated database [29]. These genes are spread across essential
functionality but we were able to obtain them only for 24 of the taxa in the mammalian tree. Thus we consider the
model tree reduced to 24 taxa as the reference one. We aligned each gene with MAFFT with default parameters,
concatenated the alignments, and then determined the RAxML tree with default parameters.

We obtained whole genome sequences for each of the 24 taxa from the NCBI genome database [28]. From there
we construct our LASTZ-based genome tree. In Table 1 we see that the gene concatenated tree even with eight genes
has a lower Robinson-Foulds distance. Both trees including the reference are binary, thus false positives and false
negatives are just half the Robinson-Foulds distance.

Table 1: 29 mammals tree comparison

Approach Robinson-Foulds distance
Gene concatenated tree from eight genes 18
LASTZ-genome based tree 28
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While the LASTZ-based whole genome tree has higher error we see in Figure 4 it reconstructs several subtrees
correctly. For example we see the subtrees given by human and chimp, rat and mouse, cat and dog, armadillo and
elephant, cow and dolphin and alpaca all to be correct. We also see larger correct subtrees. It is possible that the
differences between the LASTZ-based tree and the reference are due to evolutionary changes in non-coding regions
that our method accounts for.

(a) (b)

(c)

Fig. 4: In (a) we have the model reference tree on 24 mammals [40], in (b) the LASTZ-based genome distance phylogeny from
whole genome sequences, and in (c) the gene concatenated tree from eight genes.

4 Discussion and Future work

Our research here opens the avenue for several lines of future work. First, the Evolver step length corresponds to
evolutionary rates - low values means more evolution and high values mean less - and we studied only one setting in
this paper. We wish to study the effect of lower and higher step lengths moving forward so we can see how higher
and lower evolutionary rates affect the phylogenetic reconstruction compared to our current setting. We also want to
evolve bacterial genomes - as opposed to just a human chromosome as done here - so that we can evaluate microbial
whole genome phylogenetic reconstruction accuracy.

Second, divide and conquer methods like disk covering methods [37, 38, 35] can be highly effective here leading
to accurate phylogenies from whole genome data for large groups of species. Third, our results on the simulated data
provide insight into the whole genome methods that we have not applied to real data yet. Moving forward we want to
evaluate the GBDP phylogeny (and its variants) on the real dataset. In fact the insight that using just the top k high
scoring alignments gives better trees can be extended to the LGDP method as well. As of now we use all the alignment
blocks outputted by LASTZ in that method but based on what we see in GBDP-TOPK we expect it to perform better
if we consider the top 1000 ones.
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Another line of future work is to extend the Evolver evolutionary model to incorporate horizontal gene transfer
which has been observed in genome evolution [41, 42]. This would allow the evaluation of phylogenetic network
methods [43–45] as well as new network methods from large-scale whole genome sequence data.

We attempted to use an experimentally evolved bacterial phylogeny [46] as a reference tree as part of our real data
study. However, the simulated data includes only short reads of evolved genomes and not completely assembled ones.
This brings up an interesting question of determining evolutionary distances between genomes using short read data
only. Some recent methods have been proposed [47, 48] but their accuracy on simulated data is unknown.

5 Conclusion

We conduct for the first-time a large-scale simulation study to evaluate the accuracy of phylogenies from simulated
whole genome sequences under the Evolver evolutionary model. We show that whole genome sequence methods give
trees with lower error than gene concatenation and tree consensus methods and that simple variants of existing whole
genome sequence phylogeny reconstruction methods can give lower error.
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