Dimensionality reduction

Usman Roshan

Dimensionality reduction

- What is dimensionality reduction?
- Compress high dimensional data into lower dimensions
- How do we achieve this?
- PCA (unsupervised): We find a vector w of length 1 such that the variance of the projected data onto w is maximized.
- Binary classification (supervised): Find a vector w that maximizes ratio (Fisher) or difference (MMC) of means and variances of the two classes.

Data projection

Data projection

- Projection on x-axis

Data projection

- Projection on y-axis

Mean and variance of data

- Original data

Mean: $m=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Variance $=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}$

Projected data

$$
\begin{aligned}
& \text { Mean }: m^{\prime}=\frac{1}{n} \sum_{i=1}^{n} w^{T} x_{i}=w^{T} m \\
& \text { Variance }=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-w^{T} m\right)^{2}
\end{aligned}
$$

Data projection

- What is the mean and variance of projected data?

Data projection

- What is the mean and variance here?

Data projection

- Which line maximizes variance?

Data projection

- Which line maximizes variance?

Principal component analysis

- Find vector w of length 1 that maximizes variance of projected data

PCA optimization problem

$\underset{w}{\arg \max } \frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-w^{T} m\right)^{2}$ subject to $w^{T} w=1$
The optimization criterion can be rewritten as
$\underset{w}{\arg \max } \frac{1}{n} \sum_{i=1}^{n}\left(w^{T}\left(x_{i}-m\right)\right)^{2}=$
$\underset{w}{\arg \max } \frac{1}{n} \sum_{i=1}^{n}\left(w^{T}\left(x_{i}-m\right)\right)^{T}\left(w^{T}\left(x_{i}-m\right)\right)=$
$\underset{w}{\arg \max } \frac{1}{n} \sum_{i=1}^{n}\left(\left(x_{i}-m\right)^{T} w\right)\left(w^{T}\left(x_{i}-m\right)\right)=$
$\underset{w}{\arg \max } \frac{1}{n} \sum_{i=1}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T} w=$
$\underset{w}{\arg \max } w^{T} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T} w=$
$\arg \max w^{T} \sum w$ subject to $w^{T} w=1$

PCA optimization problem

$$
\Sigma=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T}
$$

is also called the scatter matrix

If we let $X=\left[x_{1}-m, x_{2}-m, \ldots, x_{n}-m\right]$
where each x_{i} is a column vector then

$$
\Sigma=X X^{T}
$$

PCA solution

- Using Lagrange multipliers we can show that w is given by the largest eigenvector of \sum.
- With this we can compress all the vectors x_{i} into $w^{\top} x_{i}$
- Does this help? Before looking at examples, what if we want to compute a second projection $u^{T} x_{i}$ such that $w^{T} u=0$ and $u^{T} u=1$?
- It turns out that u is given by the second largest eigenvector of \sum.

PCA space and runtime considerations

- Depends on eigenvector computation
- BLAS and LAPACK subroutines
- Provides Basic Linear Algebra Subroutines.
- Fast C and FORTRAN implementations.
- Foundation for linear algebra routines in most contemporary software and programming languages.
- Different subroutines for eigenvector computation available

PCA space and runtime considerations

- Eigenvector computation requires quadratic space in number of columns
- Poses a problem for high dimensional data
- Instead we can use the Singular Value Decomposition

PCA via SVD

- Every n by n symmetric matrix Σ has an eigenvector decomposition $\Sigma=Q_{D}{ }^{\top}$ where D is a diagonal matrix containing eigenvalues of Σ and the columns of Q are the eigenvectors of Σ.
- Every m by n matrix A has a singular value decomposition $A=U S V^{\top}$ where S is m by n matrix containing singular values of A, U is m by m containing left singular vectors (as columns), and V is n by n containing right singular vectors. Singular vectors are of length 1 and orthogonal to each other.

PCA via SVD

- In PCA the matrix $\Sigma=X X^{\top}$ is symmetric and so the eigenvectors are given by columns of Q in $\Sigma=Q_{D}{ }^{\top}$.
- The data matrix X (mean subtracted) has the singular value decomposition $\mathrm{X}=\mathrm{USV}^{\top}$.
- This gives

$$
\begin{aligned}
& -\Sigma=X X^{\top}=U S V^{\top}\left(U S V^{\top}\right)^{\top} \\
& -U S V^{\top}\left(U S V^{\top}\right)^{\top}=U S V^{\top} V S U^{\top} \\
& -U S V^{\top} V S U^{\top}=U S^{2} U^{\top}
\end{aligned}
$$

- Thus $\Sigma=X X^{\top}=U S^{2} U^{\top}=>X X^{\top} U=U S^{2} U^{\top} U=U S^{2}$
- This means the eigenvectors of Σ (principal components of X) are the columns of U and the eigenvalues are the diagonal entries of S^{2}.

PCA via SVD

- And so an alternative way to compute PCA is to find the left singular values of X.
- If we want just the first few principal components (instead of all cols) we can implement PCA in rows x cols space with BLAS and LAPACK libraries
- Useful when dimensionality is very high at least in the order of 100 s of thousands.

PCA on genomic population data

- 45 Japanese and 45 Han Chinese from the
International
HapMap Project
- PCA applied on 1.7 million SNPs

PCA on breast cancer data

PCA on climate simulation

PCA on QSAR

PCA on Ionosphere

Kernel PCA

- Main idea of kernel version
$-X X^{\top} w=\lambda w$
$-X^{\top} X X^{\top} w=\lambda X^{\top} w$
$-\left(X^{\top} X\right) X^{\top} w=\lambda X^{\top} w$
$-X^{\top} w$ is projection of data on the eigenvector w and also the eigenvector of $X^{\top} X$
- This is also another way to compute projections in space quadratic in number of rows but only gives projections.

Kernel PCA

- In feature space the mean is given by

$$
m_{\Phi}=\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right)
$$

- Suppose for a moment that the data is mean subtracted in feature space. In other words mean is 0 . Then the scatter matrix in feature space is given by

$$
\Sigma_{\Phi}=\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right) \Phi^{T}\left(x_{i}\right)
$$

Kernel PCA

- The eigenvectors of Σ_{ϕ} give us the PCA solution. But what if we only know the kernel matrix?
- First we center the kernel matrix so that mean is 0

$$
\hat{\mathbf{K}}=\mathbf{K}-\frac{1}{\ell} \mathbf{j} \mathbf{j}^{\prime} \mathbf{K}-\frac{1}{\ell} \mathbf{K} \mathbf{j} \mathbf{j}^{\prime}+\frac{1}{\ell^{2}}\left(\mathbf{j}^{\prime} \mathbf{K} \mathbf{j}\right) \mathbf{j} \mathbf{j}^{\prime}
$$

where j is a vector of 1 's. $K=K$

Kernel PCA

- Recall from earlier
$-X X^{\top} w=\lambda w$
$-X^{\top} X X^{\top} w=\lambda X^{\top} w$
$-\left(X^{\top} X\right) X^{\top} w=\lambda X^{\top} w$
$-X^{\top} w$ is projection of data on the eigenvector w and also the eigenvector of $X^{\top} X$
$-X^{\top} X$ is the linear kernel matrix
- Same idea for kernel PCA
- The projected solution is given by the eigenvectors of the centered kernel matrix.

Polynomial degree 2 kernel Breast cancer

Polynomial degree 2 kernel Climate

Polynomial degree 2 kernel Qsar

Polynomial degree 2 kernel lonosphere

Supervised dim reduction: Linear discriminant analysis

- Fisher linear discriminant:
- Maximize ratio of difference means to sum of variance

$$
J(\boldsymbol{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

Linear discriminant analysis

- Fisher linear discriminant:
- Difference in means of projected data gives us the between-class scatter matrix

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(\boldsymbol{w}^{T} \boldsymbol{m}_{1}-\boldsymbol{w}^{T} \boldsymbol{m}_{2}\right)^{2} \\
& =\boldsymbol{w}^{T}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{T} \boldsymbol{w} \\
& =\boldsymbol{w}^{T} \mathbf{S}_{B} \boldsymbol{w}
\end{aligned}
$$

- Variance gives us within-class scatter matrix $s_{1}^{2}=\sum_{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}-m_{1}\right)^{2} r^{t}$

$$
\begin{aligned}
& =\sum_{t} \boldsymbol{w}^{T}\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)\left(\boldsymbol{x}^{t}-\boldsymbol{m}_{1}\right)^{T} \boldsymbol{w} \boldsymbol{r}^{t} \\
& =\boldsymbol{w}^{T} \mathbf{S}_{1} \boldsymbol{w}
\end{aligned}
$$

Linear discriminant analysis

- Fisher linear discriminant solution:
- Take derivative w.r.t. w and set to 0
- This gives us $w=c S_{w}{ }^{-1}\left(m_{1}-m_{2}\right)$

Scatter matrices

- S_{b} is between class scatter matrix
- S_{w} is within-class scatter matrix
- $S_{t}=S_{b}+S_{w}$ is total scatter matrix

$$
\begin{aligned}
& \boldsymbol{S}_{b}=\frac{1}{n} \sum_{k=1}^{c} n_{k}\left(\boldsymbol{m}^{(k)}-\boldsymbol{m}\right)\left(\boldsymbol{m}^{(k)}-\boldsymbol{m}\right)^{T} \\
& \boldsymbol{S}_{w}=\frac{1}{n} \sum_{k=1}^{c} \sum_{j=1}^{n_{k}}\left(\boldsymbol{x}_{j}^{(k)}-\boldsymbol{m}^{(k)}\right)\left(\boldsymbol{x}_{j}^{(k)}-\boldsymbol{m}^{(k)}\right)^{T}
\end{aligned}
$$

Fisher linear discriminant

- General solution is given by eigenvectors of $S_{w}{ }^{-1} S_{b}$

Fisher linear discriminant

- Problems can happen with calculating the inverse
- A different approach is the maximum margin criterion

Maximum margin criterion (MMC)

- Define the separation between two classes as

$$
\left\|m_{1}-m_{2}\right\|^{2}-s\left(C_{1}\right)-s\left(C_{2}\right)
$$

- $S(C)$ represents the variance of the class. In MMC we use the trace of the scatter matrix to represent the variance.
- The scatter matrix is

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T}
$$

Maximum margin criterion (MMC)

- The scatter matrix is

$$
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T}
$$

- The trace (sum of diagonals) is

$$
\frac{1}{n} \sum_{j=1}^{d} \sum_{i=1}^{n}\left(x_{i j}-m_{j}\right)^{2}
$$

- Consider an example with two vectors x and y

Maximum margin criterion (MMC)

- Plug in trace for $\mathrm{S}(\mathrm{C})$ and we get

$$
\left\|m_{1}-m_{2}\right\|^{2}-\operatorname{tr}\left(S_{1}\right)-\operatorname{tr}\left(S_{2}\right)
$$

- The above can be rewritten as

$$
\operatorname{tr}\left(S_{b}\right)-\operatorname{tr}\left(S_{w}\right)
$$

- Where S_{w} is the within-class scatter matrix

$$
S_{w}=\sum_{k=1}^{c} \sum_{x_{i} \in C_{k}}\left(x_{i}-m_{k}\right)\left(x_{i}-m_{k}\right)^{T}
$$

- And S_{b} is the between-class scatter matrix

$$
S_{b}=\sum_{k=1}^{c}\left(m_{k}-m\right)\left(m_{k}-m\right)^{T}
$$

Weighted maximum margin criterion (WMMC)

- Adding a weight parameter gives us

$$
\operatorname{tr}\left(S_{b}\right)-\alpha \operatorname{tr}\left(S_{w}\right)
$$

- In WMMC dimensionality reduction we want to find w that maximizes the above quantity in the projected space.
- The solution wis given by the largest eigenvector of the above

$$
S_{b}-\alpha S_{w}
$$

How to use WMMC for classification?

- Reduce dimensionality to fewer features
- Run any classification algorithm like nearest means or nearest neighbor.

K-nearest neighbor

- Classify a given datapoint to be the majority label of the k closest points
- The parameter k is cross-validated
- Simple yet can obtain high classification accuracy

Weighted maximum variance (WMV)

- Find w that maximizes the weighted variance

$$
\arg \max _{w} \frac{1}{2 n} \sum_{i, j} C_{i j}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}
$$

Weighted maximum variance (WMV)

- Reduces to

PCA if $\mathrm{C}_{\mathrm{ij}}=$ 1/n

$$
\begin{aligned}
& \frac{1}{2 n} \sum_{i, j} \frac{1}{n}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}= \\
& \frac{1}{2 n} \sum_{i, j} \frac{1}{n} w^{T}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{T} w= \\
& \frac{1}{2 n} \sum_{i, j} \frac{1}{n} w^{T}\left(x_{i} x_{i}^{T}-x_{i} x_{j}^{T}-x_{j} x_{i}^{T}+x_{j} x_{j}^{T}\right) w= \\
& \frac{1}{2 n} w^{T} \frac{1}{n}\left(\sum_{i, j}\left(x_{i} x_{i}^{T}-x_{i} x_{j}^{T}-x_{j} x_{i}^{T}+x_{j} x_{j}^{T}\right)\right) w= \\
& \frac{1}{2 n} w^{T} \frac{1}{n}\left(\sum_{i, j} x_{i} x_{i}^{T}-\sum_{i, j} x_{i} x_{j}^{T}-\sum_{i, j} x_{j} x_{i}^{T}+\sum_{i, j} x_{j} x_{j}^{T}\right) w \\
& \frac{1}{2 n} w^{T} \frac{1}{n}\left(2 \sum_{i, j} x_{i} x_{i}^{T}-2 \sum_{i, j} x_{i} x_{j}^{T}\right) w= \\
& \frac{1}{2 n} w^{T} \frac{1}{n}\left(2 n \sum_{i} x_{i} x_{i}^{T}-2 n^{2} m m^{T}\right) w= \\
& \frac{1}{n} w^{T}\left(\sum_{i} x_{i} x_{i}^{T}-n m m^{T}\right) w= \\
& w^{T}\left(\frac{1}{n} \sum_{i}\left(x_{i}-m\right)\left(x_{i}-m\right)^{T}\right) w= \\
& w^{T} S_{t} w
\end{aligned}
$$

MMC via WMV

- Let y_{i} be class labels and let $n k$ be the size of class k .
- Let $G_{i j}$ be $1 / n$ for all i and j and $L_{i j}$ be $1 /$ n_{k} if i and j are in same class.
- Then MMC is given by
$\arg \max _{w} \frac{1}{2 n}\left(\sum_{i, j} G_{i j}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}-\sum_{i, j} 2 L_{i j}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}\right)$

MMC via WMV (proof sketch)

$$
\begin{aligned}
& \frac{1}{2 n} \sum_{i, j} w^{T}\left(G_{i j}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)-2 L_{i j}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{T}\right) w= \\
& \frac{1}{2 n}\left(\sum_{i, j} \frac{1}{n} w^{T}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{T} w-\right. \\
& \left.2 \sum_{k=1}^{c} \sum_{c l\left(x_{j}\right)=k, c l\left(x_{i}\right)=k} \frac{1}{n_{k}} w^{T}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{T} w\right)= \\
& \frac{1}{2 n}\left(2 \sum_{i}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right) w-\right. \\
& \left.2 \sum_{k=1}^{c} \frac{1}{n_{k}} \sum_{c l\left(x_{j}\right)=k, c l\left(x_{i}\right)=k} w^{T}\left(x_{i} x_{i}^{T}-x_{i} x_{j}^{T}-x_{j} x_{i}^{T}+x_{j} x_{j}^{T}\right) w\right)= \\
& \frac{1}{2 n}\left(2 \sum_{i}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right) w-\right. \\
& \left.2 \sum_{k=1}^{c} \frac{1}{n_{k}} \sum_{c l\left(x_{j}\right)=k, c l\left(x_{i}\right)=k} w^{T}\left(2 x_{i} x_{i}^{T}-2 x_{i} x_{j}^{T}\right) w\right)= \\
& \frac{1}{2 n}\left(2 \sum_{i}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right) w-\right. \\
& \left.2 \sum_{k=1}^{c} \frac{1}{n_{k}} \sum_{c l\left(x_{i}\right)=k} w^{T}\left(2 n_{k} x_{i} x_{i}^{T}-2 n_{k}^{2} m_{k} m_{k}^{T}\right) w\right)= \\
& \frac{1}{n}\left(\sum_{i}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right) w-\right. \\
& \left.2 \sum_{k=1}^{c} \sum_{c l\left(x_{i}\right)=k} w^{T}\left(x_{i} x_{i}^{T}-n_{k} m_{k} m_{k}^{T}\right) w\right)= \\
& \frac{1}{n}\left(\sum_{i}^{n} w^{T}\left(x_{i}-m\right)\left(x_{i}-m\right) w-\right. \\
& \left.\left.2 \sum_{k=1}^{c} \sum_{c l\left(x_{i}\right)=k} w^{T}\left(x_{i}-m_{k}\right)\left(x_{i}-m_{k}\right)^{T}\right) w\right)= \\
& w^{T}\left(S_{t}-2 S_{w}\right) w
\end{aligned}
$$

Graph Laplacians

- We can rewrite WMV with Laplacian matrices.
- Recall WMV is $\arg \underset{w}{\max } \frac{1}{2 n} \sum_{i, j} C_{i j}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}$
- Let $\mathrm{L}=\mathrm{D}-\mathrm{C}$ where $\mathrm{D}_{\mathrm{ii}}=\Sigma_{\mathrm{j}} \mathrm{C}_{\mathrm{ij}}$
- Then WMV is given by $\arg \max _{w} \frac{1}{n} w^{T} X L X^{T} w$ where $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ contains each x_{i} as a column.
- w is given by largest eigenvector of XLX ${ }^{\top}$

Graph Laplacians

- Widely used in spectral clustering (see tutorial on course website)
- Weights C_{ij} may be obtained via
- Epsilon neighborhood graph
-K-nearest neighbor graph
- Fully connected graph
- Allows semi-supervised analysis (where test data is available but not labels)

Graph Laplacians

- We can perform clustering with the Laplacian
- Basic algorithm for k clusters:
- Compute first k eigenvectors v_{i} of Laplacian matrix
- Let $\mathrm{V}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right]$
- Cluster rows of V (using k-means)
-Why does this work?

Graph Laplacians

- We can cluster data using the mincut problem
- Balanced version is NP-hard
- We can rewrite balanced mincut problem with graph Laplacians. Still NPhard because solution is allowed only discrete values
- By relaxing to allow real values we obtain spectral clustering.

Back to WMV - a two parameter approach

- Recall that WMV is given by

$$
\arg \max _{w} \frac{1}{2 n} \sum_{i, j} C_{i j}\left(w^{T}\left(x_{i}-x_{j}\right)\right)^{2}
$$

- Collapse C_{ij} into two parameters
$-C_{i j}=\alpha<0$ if i and j are in same class
$-C_{i j}=\beta>0$ if i and j are in different classes
- We call this 2-parameter WMV

Experimental results

- To evaluate dimensionality reduction for classification we first extract features and then apply 1-nearest neighbor in cross-validation
- 20 datasets from UCI machine learning archive
- Compare 2PWMV+1NN, WMMC+1NN, PCA+1NN, 1NN
- Parameters for 2PWMV+1NN and WMMC+1NN obtained by crossvalidation

Datasets

Table 2:Twenty Datasets for Classification

Code	Dataset	Classes	Dimension	Instances
0	Climate	2	18	540
1	Ring	2	20	7400
2	Thyroid	3	21	7200
3	Waveform	3	21	5000
4	Breast cancer	2	30	569
5	Ionosphere	2	34	351
6	Statlog	7	36	6435
7	Texture	11	40	5500
8	Qsar	2	41	1055
9	SPECTF heart	2	44	267
10	Spambase	2	57	4597
11	Sonar	2	60	208
12	Digits	2	63	762
13	Movement libras	15	90	360
14	Hill valley	2	100	606
15	Musk	2	166	476
16	Smartphone	6	561	10299
17	Secom	2	591	1567
18	Mfeat	10	649	2000
19	CNAE-9	9	857	1080

Results

Results

Results

- Average error:
- 2PWMV+1NN: 9.5% (winner in 9 out of 20)
- WMMC+1NN: 10\% (winner in 7 out of 20)
-PCA+1NN: 13.6\%
- 1NN: 13.8\%
- Parametric dimensionality reduction does help

High dimensional data

Table				1:Five High Dimensional
Code	Dataset	Classes	Dimension	Instances
0	Madelon	2	500	2600
1	Micromass	2	1300	931
2	Gisette	2	5000	1000
3	Arcene	2	10000	200
4	Dexter	2	20000	300

High dimensional data

Results

- Average error on high dimensional data:
- 2PWMV+1NN: 15.2\%
-PCA+1NN: 17.8\%
- 1NN: 22\%

