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Dimensionality reduction

* What is dimensionality reduction?

— Compress high dimensional data into lower
dimensions

« How do we achieve this?

— PCA (unsupervised): We find a vector w of length
1 such that the variance of the projected data onto
W IS maximized.

— Binary classification (supervised): Find a vector w
that maximizes ratio (Fisher) or difference (MMC)
of means and variances of the two classes.



Data projection




Data projection

* Projection on x-axis
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Data projection

* Projection on y-axis




Mean and variance of data

 Original data Projected data
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Data projection

 What is the mean and variance of
projected data?
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Data projection

 \What is the mean and variance here?




Data projection

 Which line maximizes variance?




Data projection

 Which line maximizes variance?




Principal component analysis

* Find vector w of length 1 that maximizes
variance of projected data



PCA optimization problem
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The optimization criterion can be rewritten as
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PCA optimization problem

2= li(xi —m)(x, — m)"
N

1s also called the scatter matrix

It welet X =[x, —m,x, —m,...,x, —m]
where each x; 1s a column vector then

> =XX'



PCA solution

Using Lagrange multipliers we can show that
w is given by the largest eigenvector of > .

With this we can compress all the vectors x;
into w'x,
Does this help”? Before looking at examples,

what if we want to compute a second
projection u’x;such that w'u=0 and u'u=1?

It turns out that u is given by the second
largest eigenvector of ).



PCA space and runtime
considerations

* Depends on eigenvector computation

« BLAS and LAPACK subroutines

— Provides Basic Linear Algebra
Subroutines.

— Fast C and FORTRAN implementations.

— Foundation for linear algebra routines in
most contemporary software and
programming languages.

— Different subroutines for eigenvector
computation available



PCA space and runtime

considerations
* Eigenvector computation requires
quadratic space in number of columns

» Poses a problem for high dimensional
data

* Instead we can use the Singular Value
Decomposition



PCA via SVD

* Every n by n symmetric matrix 2 has an
eigenvector decomposition 2=QDQT where D
Is a diagonal matrix containing eigenvalues of
2. and the columns of Q are the eigenvectors
of 2.

* Every m by n matrix A has a singular value
decomposition A=USVT where S is m by n
matrix containing singular values of A, U is m
by m containing left singular vectors (as
columns), and V is n by n containing right
singular vectors. Singular vectors are of
length 1 and orthogonal to each other.



PCA via SVD

In PCA the matrix Z=XX' is symmetric and so the
eigenvectors are given by columns of Q in Z=QDQ".

The data matrix X (mean subtracted) has the singular
value decomposition X=USVT.
This gives

— 2 = XXT =USVT(USVH)T

— USVT(USVT)T= USVTVSUT

— USVIvsut = Us2UT

Thus £ = XXT=US2UT => XXTU = US?U™U = US?
This means the eigenvectors of 2 (principal

components of X) are the columns of U and the
eigenvalues are the diagonal entries of S2.



PCA via SVD

* And so an alternative way to compute
PCA is to find the left singular values of
X.

* |f we want just the first few principal
components (instead of all cols) we can
implement PCA in rows x cols space
with BLAS and LAPACK libraries

» Useful when dimensionality is very high
at least in the order of 100s of
thousands.



PCA on genomic population
data

« 45 Japanese and ,
45 Han Chinese
from the B ELERS

nternational

HapMap Project

« PCA appliedon1.7
million SNPs

02
01055 0108 0. 1055 £.105 01045

Taken from “PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations” by Paschou et. al. in PLoS Genetics 2007



PCA on breast cancer data

Pro_jection on Eigenvector 2
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PCA on climate simulation
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Pro_jection on Eigenvector 2

A on QSAR

Qsar PCA plot
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Pro_jection on Eigenvector 2

PCA on lonosphere

Ionosphere PCA plot
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Kernel PCA

* Main idea of kernel version
— XXTw = Aw
— XTXXTw = AXTw
— (XTX)XTw = AXTw
— XTw is projection of data on the eigenvector w and
also the eigenvector of X™X

* This is also another way to compute
projections in space quadratic in number of
rows but only gives projections.



Kernel PCA
* |n feature space the mean is given by
1 n
My =— Y D(x;,)
noig

* Suppose for a moment that the data is
mean subtracted in feature space. In
other words mean is 0. Then the scatter
matrix in feature space is given by

2, = li‘CI)()Ci)CI)T (x;)
n i



Kernel PCA

» The eigenvectors of 2, give us the PCA
solution. But what if we only know the
kernel matrix?

* First we center the kernel matrix so that
mean is 0

N 1 1 1

— asf oo/ o/yxro\ ss/
K=K - Jij’K - 7Kij] +£—2(JKJ)J.]'

where | is a vector of 1's. K=K



Kernel PCA

* Recall from earlier
— XXTw = Aw
— XTXXTw = AXTw
— (XTX)XTw = AXTw
— XTw is projection of data on the eigenvector w and
also the eigenvector of X™X

— XTX is the linear kernel matrix
« Same idea for kernel PCA

* The projected solution is given by the
eigenvectors of the centered kernel
matrix.



Polynomial degree 2 kernel
Breast cancer

Breast cancer PCA plot
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Polynomial degree 2 kernel
Climate

Clinate PCA plot
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Polynomial degree 2 kernel
Qsar

Qsar PCA plot
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Polynomial degree 2 kernel
lonosphere

Ionosphere PCA plot
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Supervised dim reduction:
Linear discriminant analysis

 Fisher linear discriminant:

— Maximize ratio of difference means to sum
of variance
(m; — mp)?

J(W) = > 2

§1 + 85




Linear discriminant analysis

 Fisher linear discriminant:

— Difference in means of projected data gives
us the between-class scatter matrix

(m —mp)* = (wimp—-wlim;y)?
= wliim,—-mp)(m; —my)'w
= wliSzw
— Variance gives us within-class scatter

matrix sz = S (wlxt - my)?rt
t

= > wix!—mp)(x' —mp)Twr!
t

= wlis;w



Linear discriminant analysis

 Fisher linear discriminant solution:
— Take derivative w.r.t. w and setto O
— This gives us w = ¢S, '(m,-m,)



Scatter matrices

Sy, Is between class scatter matrix
S,, IS within-class scatter matrix
S, =S, + S, Is total scatter matrix

1 < T
S, = _an (m(m _ m) (mw _ m) |
=

1 c Nk T
5= L3l i) (0 )

k=1 j=1



Fisher linear discriminant

* General solution is given by
eigenvectors of S, 'S,



Fisher linear discriminant

* Problems can happen with calculating
the inverse

A different approach is the maximum
margin criterion



Maximum margin criterion
(MMC)

* Define the separation between two classes as

Im, —m, | = s(C,)—s(C,)

« S(C) represents the variance of the class. In
MMC we use the trace of the scatter matrix to

represent the variance.
* The scatter matrix is

1 n
;Z(xl. —m)(x, —m)’




Maximum margin criterion
(MMC)

 The scatter matrlx IS
—2<x —m)(x; —m)’

* The trace (sum of diagonals) is

_Zz(xu —m; )

]lll

* Consider an example with two vectors x and y



Maximum margin criterion
(MMC)

Plug in trace for S(C) and we get
2
Hml —m, H —tr(S,)—tr(S,)

The above can be rewritten as
tr(S,)—1tr(S,)
Where S, is the within-class scatter matrix

S, =Y > (x,—m)(x, —m,)"

k=1 x; eC,,
And S, is the between-class scatter matrix

S, = i(mk —m)(m, — m)"



Weighted maximum margin
criterion (WMMC)

* Adding a weight parameter gives us
tr(S,)—or(S,)

* In WMMC dimensionality reduction we want
to find w that maximizes the above quantity in
the projected space.

* The solution w is given by the largest
eigenvector of the above

S, —as,



How to use WMMC for
classification?

* Reduce dimensionality to fewer features

* Run any classification algorithm like
nearest means or nearest neighbor.



K-nearest neighbor

» Classify a given datapoint to be the
majority label of the k closest points

* The parameter K is cross-validated

» Simple yet can obtain high classification
accuracy



Weighted maximum variance
(WMV)

* Find w that maximizes the weighted
variance

mgx—ZC’w —1x;))°



Weighted maximum variance

« Reduces to
PCA if Cij =
1/n

WMV)

% Zz J n(wl (I - IJ))

o i Ll (z; — ;) (@ — 25)Tw =
% i ,1—111'1 (sz — ;:1;1-,:1::;1.’ x5 , + T L, )w =
%u‘l%(zl‘](llq"g’_lll_{ £ gy +1J1j))ll‘_

1 —_—
T _l (2 Zl j J —2 Zz _] ) _
—wl'L@2nY", zial — 2n?mm!)w =
Lwt (X, zixl — nmm®)w =

’lLv‘T(% Sz —m)(z; —m)HHw =

w?! Spw



MMC via WMV

* Lety, be class labels and let nk be the
size of class k.

* Let G; be 1/nforalliandjandL; be 1/
n if i and j are in same class.

 Then MMC is given by

Arg max —-— ( E Gy (_zt'T(_.l'.lj—.l'j })“— E 2054 l(’T(».l'.i—.l'j TR

i.J i.]



MMC via WMV (proof sketch)
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Graph Laplacians

* We can rewrite WMV with Laplacian
matrices.

: 1
* Recall WMV is arg e on ; Cij(w" (z; — x;))?

* LetL=D - C where D; = Z-C--

* Then WMV is given by arg maXy 3w’ X LX " w
where X = [X4, Xy, ... ]contalns each
X; as a column.

* W IS given by largest eigenvector of
XLXT



Graph Laplacians

* Widely used in spectral clustering (see
tutorial on course website)
* Weights C; may be obtained via
— Epsilon neighborhood graph
— K-nearest neighbor graph
— Fully connected graph

» Allows semi-supervised analysis (where
test data is available but not labels)



Graph Laplacians

* We can perform clustering with the
Laplacian

» Basic algorithm for k clusters:

— Compute first k eigenvectors v, of Laplacian
matrix

— Cluster rows of V (using k-means)
* Why does this work?



Graph Laplacians

* We can cluster data using the mincut
problem

 Balanced version is NP-hard

* We can rewrite balanced mincut
problem with graph Laplacians. Still NP-
hard because solution is allowed only
discrete values

* By relaxing to allow real values we
obtain spectral clustering.



Back to WMV - a two
parameter approach

* Recall that WMV is given by

1
arg max - Z Cyii(wh (z; — x;))?
1]
» Collapse C; into two parameters
—C;=a<0ifiandjare in same class
—C; =B >0ifiandjare in different classes
* We call this 2-parameter WMV



Experimental results

* To evaluate dimensionality reduction for
classification we first extract features
and then apply 1-nearest neighbor in
cross-validation

» 20 datasets from UCI machine learning
archive

 Compare 2PWMV+1NN, WMMC+1NN,
PCA+1NN, 1NN

« Parameters for 2PWMV+1NN and
WMMC+1NN obtained by cross-
validation



Datasets

Table 2:Twenty Datasets for Classification

Code Dataset Classes Dimension Instances
0 Climate 2 18 540

| Ring 2 20 7400
2 Thyroid 3 21 7200
3 Waveform 3 21 5000
4 Breast cancer 2 30 569
3 lonosphere 2 34 351
6 Statlog g 36 6435
7 Texture 11 40 5500
8 Qsar 2 41 1055
9 SPECTF heart 2 44 267
10 Spambase 2 . f 4597
11 Sonar 2 60 208
12 Digits 2 63 762
13 Movement libras 15 90 360
14 Hill valley 2 100 606
15 Musk 9. 166 476
16 Smartphone 6 561 10299
17 Secom 2 591 1567
18 Mfeat 10 649 2000
19 CNAE-9 0 857 1080




Classification error

Results
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Classification error
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Results

* Average error:
— 2PWMV+1NN: 9.5% (winner in 9 out of 20)
— WMMC+1NN: 10% (winner in 7 out of 20)
— PCA+1NN: 13.6%
— 1NN: 13.8%

» Parametric dimensionality reduction
does help



High dimensional data

Table 1:Five High Dimensional Datasets

Code Dataset Classes Dimension Instances
0 Madelon 2 500 2600

1 Micromass 2 1300 031

. Gisette 2 5000 1000

3 Arcene 2 10000 200

4 Dexter 2 20000 300




Classification error

High dimensional data
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Results

* Average error on high dimensional data:
— 2PWMV+1NN: 15.2%
— PCA+1NN: 17.8%
— 1NN: 22%



