Dimensionality reduction

Usman Roshan

Dimensionality reduction

- What is dimensionality reduction?
 - Compress high dimensional data into lower dimensions
- How do we achieve this?
 - PCA (unsupervised): We find a vector w of length 1 such that the variance of the projected data onto w is maximized.
 - Binary classification (supervised): Find a vector w that maximizes ratio (Fisher) or difference (MMC) of means and variances of the two classes.

Projection on x-axis

Projection on y-axis

Mean and variance of data

Original data

Projected data

$$Mean: m = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$Variance = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$$

Mean:
$$m' = \frac{1}{n} \sum_{i=1}^{n} w^T x_i = w^T m$$

Variance $= \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - w^T m)^2$

What is the mean and variance of projected data?

• What is the mean and variance here?

• Which line maximizes variance?

• Which line maximizes variance?

Principal component analysis

 Find vector w of length 1 that maximizes variance of projected data

PCA optimization problem

$$\arg\max_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - w^{T} m)^{2} \text{ subject to } w^{T} w = 1$$

The optimization criterion can be rewritten as

 $\arg\max_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T}(x_{i} - m))^{2} =$ $\arg\max\frac{1}{n}\sum_{i=1}^{n} (w^{T}(x_{i}-m))^{T}(w^{T}(x_{i}-m)) =$ $\arg\max_{w} \frac{1}{n} \sum_{i=1}^{n} ((x_{i} - m)^{T} w)(w^{T} (x_{i} - m)) =$ $\arg\max_{w} \frac{1}{n} \sum_{i=1}^{n} w^{T} (x_{i} - m) (x_{i} - m)^{T} w =$ $\arg\max_{w} w^{T} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - m)(x_{i} - m)^{T} w =$ $\arg \max w^T \sum w$ subject to $w^T w = 1$ W

PCA optimization problem

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)(x_i - m)^T$$

is also called the scatter matrix

If we let $X = [x_1 - m, x_2 - m, ..., x_n - m]$ where each x_i is a column vector then $\Sigma = XX^T$

PCA solution

- Using Lagrange multipliers we can show that w is given by the largest eigenvector of \sum .
- With this we can compress all the vectors x_i into $w^T x_i$
- Does this help? Before looking at examples, what if we want to compute a second projection $u^T x_i$ such that $w^T u=0$ and $u^T u=1$?
- It turns out that u is given by the second largest eigenvector of \sum .

PCA space and runtime considerations

- Depends on eigenvector computation
- BLAS and LAPACK subroutines
 - Provides Basic Linear Algebra Subroutines.
 - Fast C and FORTRAN implementations.
 - Foundation for linear algebra routines in most contemporary software and programming languages.
 - Different subroutines for eigenvector computation available

PCA space and runtime considerations

- Eigenvector computation requires quadratic space in number of columns
- Poses a problem for high dimensional data
- Instead we can use the Singular Value Decomposition

PCA via SVD

- Every n by n symmetric matrix Σ has an eigenvector decomposition Σ=QDQ^T where D is a diagonal matrix containing eigenvalues of Σ and the columns of Q are the eigenvectors of Σ.
- Every m by n matrix A has a singular value decomposition A=USV^T where S is m by n matrix containing singular values of A, U is m by m containing left singular vectors (as columns), and V is n by n containing right singular vectors. Singular vectors are of length 1 and orthogonal to each other.

PCA via SVD

- In PCA the matrix Σ=XX^T is symmetric and so the eigenvectors are given by columns of Q in Σ=QDQ^T.
- The data matrix X (mean subtracted) has the singular value decomposition X=USV^T.
- This gives
 - $-\Sigma = XX^{T} = USV^{T}(USV^{T})^{T}$
 - USV^T(USV^T)^T= USV^TVSU^T
 - USV^TVSU^T = US²U^T
- Thus $\Sigma = XX^T = US^2U^T = XX^TU = US^2U^TU = US^2$
- This means the eigenvectors of Σ (principal components of X) are the columns of U and the eigenvalues are the diagonal entries of S².

PCA via SVD

- And so an alternative way to compute PCA is to find the left singular values of X.
- If we want just the first few principal components (instead of all cols) we can implement PCA in rows x cols space with BLAS and LAPACK libraries
- Useful when dimensionality is very high at least in the order of 100s of thousands.

PCA on genomic population data

- 45 Japanese and 45 Han Chinese from the International HapMap Project
- PCA applied on 1.7
 million SNPs

PCA on breast cancer data

PCA on climate simulation

PCA on QSAR

Qsar PCA plot

PCA on lonosphere

Ionosphere PCA plot

- Main idea of kernel version
 - $XX^{T}w = \lambda w$
 - $X^T X X^T w = \lambda X^T w$
 - $(X^T X) X^T w = \lambda X^T w$
 - X^T w is projection of data on the eigenvector w and also the eigenvector of X^TX
- This is also another way to compute projections in space quadratic in number of rows but only gives projections.

• In feature space the mean is given by

$$m_{\Phi} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i)$$

 Suppose for a moment that the data is mean subtracted in feature space. In other words mean is 0. Then the scatter matrix in feature space is given by

$$\Sigma_{\Phi} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi^T(x_i)$$

- The eigenvectors of Σ_Φ give us the PCA solution. But what if we only know the kernel matrix?
- First we center the kernel matrix so that mean is 0

$$\mathbf{\hat{K}} = \mathbf{K} - rac{1}{\ell} \mathbf{j} \mathbf{j}' \mathbf{K} - rac{1}{\ell} \mathbf{K} \mathbf{j} \mathbf{j}' + rac{1}{\ell^2} \left(\mathbf{j}' \mathbf{K} \mathbf{j} \right) \mathbf{j} \mathbf{j}'$$

where j is a vector of 1's.K = K

- Recall from earlier
 - $XX^{T}w = \lambda w$
 - $X^{\mathsf{T}} X X^{\mathsf{T}} w = \lambda X^{\mathsf{T}} w$
 - $(X^{\mathsf{T}}X)X^{\mathsf{T}}w = \lambda X^{\mathsf{T}}w$
 - X^Tw is projection of data on the eigenvector w and also the eigenvector of X^TX
 - $X^T X$ is the linear kernel matrix
- Same idea for kernel PCA
- The projected solution is given by the eigenvectors of the centered kernel matrix.

Polynomial degree 2 kernel Breast cancer

Polynomial degree 2 kernel Climate

Climate PCA plot

Polynomial degree 2 kernel Qsar

Qsar PCA plot

Polynomial degree 2 kernel Ionosphere

Ionosphere PCA plot

0.3 Class 0 + Class 1 × 0,25 + 0.2 0,15 ŝ Projection on Eigenvector 0.1 0.05 Ø -0.05 -0.1 × -0,15 -0.2 -0.25 -0.08 -0.06 -0.04 -0,02 Ø 0.02 0,04 0.06 0,08 0.1 0,12 -0.1

Projection on Eigenvector 1

Supervised dim reduction: Linear discriminant analysis

- Fisher linear discriminant:
 - Maximize ratio of difference means to sum of variance

$$J(\boldsymbol{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

Linear discriminant analysis

- Fisher linear discriminant:
 - Difference in means of projected data gives us the between-class scatter matrix

$$(m_1 - m_2)^2 = (w^T m_1 - w^T m_2)^2$$

= $w^T (m_1 - m_2) (m_1 - m_2)^T w$
= $w^T S_B w$

- Variance gives us within-class scatter matrix $s_1^2 = \sum_t (w^T x^t - m_1)^2 r^t$ $= \sum_t w^T (x^t - m_1) (x^t - m_1)^T w r^t$ $= w^T S_1 w$

Linear discriminant analysis

- Fisher linear discriminant solution:
 - Take derivative w.r.t. w and set to 0

- This gives us $w = cS_w^{-1}(m_1 - m_2)$

Scatter matrices

- S_b is between class scatter matrix
- S_w is within-class scatter matrix
- $S_t = S_b + S_w$ is total scatter matrix

$$egin{split} m{S}_b &= rac{1}{n} \sum_{k=1}^c n_k \Big(m{m}^{(k)} - m{m} \Big) \Big(m{m}^{(k)} - m{m} \Big)^T, \ m{S}_w &= rac{1}{n} \sum_{k=1}^c \sum_{j=1}^{n_k} \Big(m{x}^{(k)}_j - m{m}^{(k)} \Big) \Big(m{x}^{(k)}_j - m{m}^{(k)} \Big)^T, \end{split}$$

Fisher linear discriminant

 General solution is given by eigenvectors of S_w⁻¹S_b

Fisher linear discriminant

- Problems can happen with calculating the inverse
- A different approach is the maximum margin criterion

Maximum margin criterion (MMC)

• Define the separation between two classes as

$$\|m_1 - m_2\|^2 - s(C_1) - s(C_2)$$

- S(C) represents the variance of the class. In MMC we use the trace of the scatter matrix to represent the variance.
- The scatter matrix is

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - m)(x_i - m)^T$$

Maximum margin criterion (MMC)

- The scatter matrix is $\frac{1}{n}\sum_{i=1}^{n}(x_{i}-m)(x_{i}-m)^{T}$
- The trace (sum of diagonals) is

$$\frac{1}{n} \sum_{j=1}^{d} \sum_{i=1}^{n} (x_{ij} - m_j)^2$$

• Consider an example with two vectors x and y

Maximum margin criterion (MMC)

• Plug in trace for S(C) and we get

$$\|m_1 - m_2\|^2 - tr(S_1) - tr(S_2)$$

- The above can be rewritten as $tr(S_h) tr(S_w)$
- Where S_w is the within-class scatter matrix

$$S_{w} = \sum_{k=1}^{c} \sum_{x_{i} \in C_{k}} (x_{i} - m_{k})(x_{i} - m_{k})^{T}$$

• And S_b is the between-class scatter matrix

$$S_b = \sum_{k=1}^{c} (m_k - m)(m_k - m)^T$$

Weighted maximum margin criterion (WMMC)

• Adding a weight parameter gives us

 $tr(S_b) - \alpha tr(S_w)$

- In WMMC dimensionality reduction we want to find w that maximizes the above quantity in the projected space.
- The solution w is given by the largest eigenvector of the above

$$S_b - \alpha S_w$$

How to use WMMC for classification?

- Reduce dimensionality to fewer features
- Run any classification algorithm like nearest means or nearest neighbor.

K-nearest neighbor

- Classify a given datapoint to be the majority label of the k closest points
- The parameter k is cross-validated
- Simple yet can obtain high classification accuracy

Weighted maximum variance (WMV)

Find w that maximizes the weighted variance

$$\arg\max_{w} \frac{1}{2n} \sum_{i,j} C_{ij} (w^T (x_i - x_j))^2$$

Weighted maximum variance (WMV)

Reduces to
 PCA if C_{ij} =
 1/n

 $\frac{1}{2n}\sum_{i,j}\frac{1}{n}(w^T(x_i-x_j))^2 =$ $\frac{1}{2n}\sum_{i,j}\frac{1}{n}w^T(x_i-x_j)(x_i-x_j)^Tw =$ $\frac{1}{2n}\sum_{i,j}\frac{1}{n}w^{T}(x_{i}x_{i}^{T}-x_{i}x_{j}^{T}-x_{j}x_{i}^{T}+x_{j}x_{j}^{T})w =$ $\frac{1}{2n}w^{T}\frac{1}{n}(\sum_{i,j}(x_{i}x_{i}^{T}-x_{j}x_{j}^{T}-x_{j}x_{i}^{T}+x_{j}x_{j}^{T}))w =$ $\frac{1}{2n}w^{T}\frac{1}{n}(\sum_{i,j}x_{i}x_{i}^{T}-\sum_{i,j}x_{i}x_{j}^{T}-\sum_{i,j}x_{j}x_{i}^{T}+\sum_{i,j}x_{j}x_{j}^{T})w$ $\frac{1}{2n}w^T \frac{1}{n}(2\sum_{i,j}x_ix_i^T - 2\sum_{i,j}x_ix_j^T)w =$ $\frac{1}{2n}w^T \frac{1}{n}(2n\sum_i x_i x_i^T - 2n^2 mm^T)w =$ $\frac{1}{n}w^T(\sum_i x_i x_i^T - nmm^T)w =$ $w^{T}(\frac{1}{n}\sum_{i}(x_{i}-m)(x_{i}-m)^{T})w =$ $w^T S_t w$

MMC via WMV

- Let y_i be class labels and let nk be the size of class k.
- Let G_{ij} be 1/n for all i and j and L_{ij} be 1/ n_k if i and j are in same class.
- Then MMC is given by

$$\arg\max_{w} \frac{1}{2n} \left(\sum_{i,j} G_{ij}(w^{T}(x_{i}-x_{j}))^{2} - \sum_{i,j} 2L_{ij}(w^{T}(x_{i}-x_{j}))^{2}\right)$$

MMC via WMV (proof sketch)

 $\frac{1}{2n} \sum_{i,j} w^T (G_{ij}(x_i - x_j)(x_i - x_j) - 2L_{ij}(x_i - x_j)(x_i - x_j)^T) w =$

 $\frac{\frac{1}{2n} (\sum_{i,j} \frac{1}{n} w^T (x_i - x_j) (x_i - x_j)^T w - 2\sum_{k=1}^c \sum_{cl(x_j)=k, cl(x_i)=k} \frac{1}{n_k} w^T (x_i - x_j) (x_i - x_j)^T w) =$

$$\frac{\frac{1}{2n}(2\sum_{i}^{n}w^{T}(x_{i}-m)(x_{i}-m)w-2\sum_{k=1}^{c}\frac{1}{n_{k}}\sum_{cl(x_{j})=k,cl(x_{i})=k}w^{T}(x_{i}x_{i}^{T}-x_{i}x_{j}^{T}-x_{j}x_{i}^{T}+x_{j}x_{j}^{T})w) =$$

$$\frac{\frac{1}{2n}(2\sum_{i=1}^{n}w^{T}(x_{i}-m)(x_{i}-m)w-2\sum_{k=1}^{c}\frac{1}{n_{k}}\sum_{cl(x_{j})=k,cl(x_{i})=k}w^{T}(2x_{i}x_{i}^{T}-2x_{i}x_{j}^{T})w) =$$

$$\frac{\frac{1}{2n}(2\sum_{i}^{n}w^{T}(x_{i}-m)(x_{i}-m)w-2\sum_{k=1}^{c}\frac{1}{n_{k}}\sum_{cl(x_{i})=k}w^{T}(2n_{k}x_{i}x_{i}^{T}-2n_{k}^{2}m_{k}m_{k}^{T})w) =$$

$$\frac{1}{n} \sum_{k=1}^{n} w^{T}(x_{i} - m)(x_{i} - m)w - 2\sum_{k=1}^{c} \sum_{cl(x_{i})=k} w^{T}(x_{i}x_{i}^{T} - n_{k}m_{k}m_{k}^{T})w) =$$

$$\frac{1}{n} \sum_{k=1}^{n} w^{T}(x_{i} - m)(x_{i} - m)w - 2\sum_{k=1}^{c} \sum_{cl(x_{i})=k} w^{T}(x_{i} - m_{k})(x_{i} - m_{k})^{T})w = 0$$

$$w^T (S_t - 2S_w) w$$

- We can rewrite WMV with Laplacian matrices.
- Recall WMV is $\arg \max_{w} \frac{1}{2n} \sum_{i,j} C_{ij} (w^T (x_i x_j))^2$
- Let L = D C where $D_{ii} = \Sigma_j C_{ij}$
- Then WMV is given by $\arg \max_{w} \frac{1}{n} w^{T} X L X^{T} w$ where X = [x₁, x₂, ..., x_n] contains each x_i as a column.
- w is given by largest eigenvector of XLX^T

- Widely used in spectral clustering (see tutorial on course website)
- Weights C_{ii} may be obtained via
 - Epsilon neighborhood graph
 - K-nearest neighbor graph
 - Fully connected graph
- Allows semi-supervised analysis (where test data is available but not labels)

- We can perform clustering with the Laplacian
- Basic algorithm for k clusters:
 - Compute first k eigenvectors v_i of Laplacian matrix
 - -Let V = [$v_1, v_2, ..., v_k$]
 - Cluster rows of V (using k-means)
- Why does this work?

- We can cluster data using the mincut problem
- Balanced version is NP-hard
- We can rewrite balanced mincut problem with graph Laplacians. Still NPhard because solution is allowed only discrete values
- By relaxing to allow real values we obtain spectral clustering.

Back to WMV – a two parameter approach

- Recall that WMV is given by $\arg \max_{w} \frac{1}{2n} \sum_{i,j} C_{ij} (w^{T} (x_{i} - x_{j}))^{2}$
- Collapse C_{ij} into two parameters $-C_{ij} = \alpha < 0$ if i and j are in same class $-C_{ij} = \beta > 0$ if i and j are in different classes
- We call this 2-parameter WMV

Experimental results

- To evaluate dimensionality reduction for classification we first extract features and then apply 1-nearest neighbor in cross-validation
- 20 datasets from UCI machine learning archive
- Compare 2PWMV+1NN, WMMC+1NN, PCA+1NN, 1NN
- Parameters for 2PWMV+1NN and WMMC+1NN obtained by crossvalidation

Datasets

Table 2: Twenty Datasets for Classification						
Code	Dataset	Classes	Dimension	Instances		
0	Climate	2	18	540		
1	Ring	2	20	7400		
2	Thyroid	3	21	7200		
3	Waveform	3	21	5000		
4	Breast cancer	2	30	569		
5	Ionosphere	2	34	351		
6	Statlog	7	36	6435		
7	Texture	11	40	5500		
8	Qsar	2	41	1055		
9	SPECTF heart	2	44	267		
10	Spambase	2	57	4597		
11	Sonar	2	60	208		
12	Digits	2	63	762		
13	Movement libras	15	90	360		
14	Hill valley	2	100	606		
15	Musk	2	166	476		
16	Smartphone	6	561	10299		
17	Secom	2	591	1567		
18	Mfeat	10	649	2000		
19	CNAE-9	9	857	1080		

Table 2: Twenty Datasets for Classification

Results

Results

- Average error:
 - 2PWMV+1NN: 9.5% (winner in 9 out of 20)
 - WMMC+1NN: 10% (winner in 7 out of 20)
 - PCA+1NN: 13.6%
 - 1NN: 13.8%
- Parametric dimensionality reduction does help

High dimensional data

Table 1: Five High Dimensional Datasets

Code	Dataset	Classes	Dimension	Instances
0	Madelon	2	500	2600
1	Micromass	2	1300	931
2	Gisette	2	5000	1000
3	Arcene	2	10000	200
4	Dexter	2	20000	300

High dimensional data

Results

- Average error on high dimensional data:
 - 2PWMV+1NN: 15.2%
 - PCA+1NN: 17.8%
 - 1NN: 22%