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Dimensionality reduction 

•  What is dimensionality reduction? 
–  Compress high dimensional data into lower 

dimensions 
•  How do we achieve this? 

–  PCA (unsupervised): We find a vector w of length 
1 such that the variance of the projected data onto 
w is maximized. 

–  Binary classification (supervised): Find a vector w 
that maximizes ratio (Fisher) or difference (MMC) 
of means and variances of the two classes. 



Data projection 
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Data projection 

•  Projection on x-axis 
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Data projection 

•  Projection on y-axis 
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Mean and variance of data 

•  Original data   Projected data 

Mean :m =
1
n

xi
i=1

n

∑

Variance =
1
n

(xi − m)
2

i=1

n

∑

Mean :m ' = 1
n

wT xi = w
Tm

i=1

n

∑

Variance =
1
n

(wT xi − w
Tm)2

i=1

n

∑



Data projection 

•  What is the mean and variance of 
projected data? 
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Data projection 

•  What is the mean and variance here? 
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Data projection 

•  Which line maximizes variance? 
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Data projection 

•  Which line maximizes variance? 
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Principal component analysis 

•  Find vector w of length 1 that maximizes 
variance of projected data 



PCA optimization problem 
argmax

w

1
n

(wT xi − w
Tm)2  subject to wTw = 1

i=1

n

∑
The optimization criterion can be rewritten as

argmax
w

1
n

(wT (xi − m))2 =
i=1

n

∑

argmax
w

1
n

(wT (xi − m))T (wT (xi − m)) =
i=1

n

∑

argmax
w

1
n

((xi − m)T w)(wT (xi − m)) =
i=1

n

∑

argmax
w

1
n

wT (xi − m)(xi − m)T w =
i=1

n

∑

argmax
w

wT 1
n

(xi − m)(xi − m)T w =
i=1

n

∑
argmax

w
wT ∑w subject to wTw = 1



PCA optimization problem 

Σ = 1
n

(xi −m)(xi −m)T
i=1

n

∑
is also called the scatter matrix

 

If we let X = [x1 −m, x2 −m,…, xn −m]
where each xi  is a column vector then
Σ = XXT



PCA solution 

•  Using Lagrange multipliers we can show that 
w is given by the largest eigenvector of ∑.  

•  With this we can compress all the vectors xi 
into wTxi 

•  Does this help? Before looking at examples, 
what if we want to compute a second 
projection uTxi such that wTu=0 and uTu=1? 

•  It turns out that u is given by the second 
largest eigenvector of ∑. 



PCA space and runtime 
considerations 

•  Depends on eigenvector computation 
•  BLAS and LAPACK subroutines  

– Provides Basic Linear Algebra 
Subroutines. 

– Fast C and FORTRAN implementations. 
– Foundation for linear algebra routines in 

most contemporary software and 
programming languages. 

– Different subroutines for eigenvector 
computation available 



PCA space and runtime 
considerations 

•  Eigenvector computation requires 
quadratic space in number of columns 

•  Poses a problem for high dimensional 
data 

•  Instead we can use the Singular Value 
Decomposition 



PCA via SVD 
•  Every n by n symmetric matrix Σ has an 

eigenvector decomposition Σ=QDQT where D 
is a diagonal matrix containing eigenvalues of 
Σ and the columns of Q are the eigenvectors 
of Σ. 

•  Every m by n matrix A has a singular value 
decomposition A=USVT where S is m by n 
matrix containing singular values of A, U is m 
by m containing left singular vectors (as 
columns), and V is n by n containing right 
singular vectors. Singular vectors are of 
length 1 and orthogonal to each other. 



PCA via SVD 
•  In PCA the matrix Σ=XXT is symmetric and so the 

eigenvectors are given by columns of Q in Σ=QDQT. 
•  The data matrix X (mean subtracted) has the singular 

value decomposition X=USVT. 
•  This gives  

–  Σ = XXT  = USVT(USVT)T 

–  USVT(USVT)T=  USVTVSUT 

–  USVTVSUT      =  US2UT 

•  Thus Σ = XXT = US2UT => XXTU = US2UTU = US2 
•  This means the eigenvectors of Σ (principal 

components of X) are the columns of U and the 
eigenvalues are the diagonal entries of S2. 



PCA via SVD 

•  And so an alternative way to compute 
PCA is to find the left singular values of 
X. 

•  If we want just the first few principal 
components (instead of all cols) we can 
implement PCA in rows x cols space 
with BLAS and LAPACK libraries 

•  Useful when dimensionality is very high 
at least in the order of 100s of 
thousands. 



PCA on genomic population 
data 

•  45 Japanese and 
45 Han Chinese 
from the 
International 
HapMap Project 

•  PCA applied on 1.7 
million SNPs 

Taken from “PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations” by Paschou et. al. in PLoS Genetics 2007 



PCA on breast cancer data 



PCA on climate simulation 



PCA on QSAR 



PCA on Ionosphere 



Kernel PCA 

•  Main idea of kernel version 
–  XXTw = λw 
–  XTXXTw = λXTw 
–  (XTX)XTw = λXTw 
–  XTw is projection of data on the eigenvector w and 

also the eigenvector of XTX 

•  This is also another way to compute 
projections in space quadratic in number of 
rows but only gives projections. 



Kernel PCA 
•  In feature space the mean is given by 

 

•  Suppose for a moment that the data is 
mean subtracted in feature space. In 
other words mean is 0. Then the scatter 
matrix in feature space is given by 

mΦ = 1
n

Φ(xi )
i=1

n

∑

ΣΦ = 1
n

Φ(xi )Φ
T (xi )

i=1

n

∑



Kernel PCA 
•  The eigenvectors of ΣΦ give us the PCA 

solution. But what if we only know the 
kernel matrix? 

•  First we center the kernel matrix so that 
mean is 0 

 
where j is a vector of 1’s.K = K  



Kernel PCA 
•  Recall from earlier  

–  XXTw = λw 
–  XTXXTw = λXTw 
–  (XTX)XTw = λXTw 
–  XTw is projection of data on the eigenvector w and 

also the eigenvector of XTX 
–  XTX is the linear kernel matrix 

•  Same idea for kernel PCA 
•  The projected solution is given by the 

eigenvectors of the centered kernel 
matrix.  



Polynomial degree 2 kernel 
Breast cancer 



Polynomial degree 2 kernel 
Climate 



Polynomial degree 2 kernel 
Qsar 



Polynomial degree 2 kernel 
Ionosphere 



Supervised dim reduction:  
Linear discriminant analysis 

•  Fisher linear discriminant: 
– Maximize ratio of difference means to sum 

of variance 



Linear discriminant analysis 
•  Fisher linear discriminant: 

– Difference in means of projected data gives 
us the between-class scatter matrix 

– Variance gives us within-class scatter 
matrix 



Linear discriminant analysis 
•  Fisher linear discriminant solution: 

– Take derivative w.r.t. w and set to 0 
– This gives us w = cSw

-1(m1-m2) 
 



Scatter matrices 

•  Sb is between class scatter matrix 
•  Sw is within-class scatter matrix 
•  St = Sb + Sw is total scatter matrix 



Fisher linear discriminant 

•  General solution is given by 
eigenvectors of Sw

-1Sb 



Fisher linear discriminant 

•  Problems can happen with calculating 
the inverse 

•  A different approach is the maximum 
margin criterion 



Maximum margin criterion 
(MMC) 

•  Define the separation between two classes as 

•  S(C) represents the variance of the class. In 
MMC we use the trace of the scatter matrix to 
represent the variance. 

•  The scatter matrix is 

m1 − m2
2 − s(C1) − s(C2 )

1
n

(xi − m)(xi − m)
T

i=1

n

∑



Maximum margin criterion 
(MMC) 

•  The scatter matrix is 

•  The trace (sum of diagonals) is 

•  Consider an example with two vectors x and y 

1
n

(xi − m)(xi − m)
T

i=1

n

∑

1
n

(xij − mj )
2

i=1

n

∑
j=1

d

∑



Maximum margin criterion 
(MMC) 

•  Plug in trace for S(C)   and we get 

•  The above can be rewritten as 

•  Where Sw is the within-class scatter matrix 

•  And Sb is the between-class scatter matrix 

m1 − m2
2 − tr(S1) − tr(S2 )

tr(Sb ) − tr(Sw )

Sw = (xi − mk
xi ∈Ck
∑ )(xi − mk )

T

k=1

c

∑

Sb = (mk − m)(mk − m)
T

k=1

c

∑



Weighted maximum margin 
criterion (WMMC) 

•  Adding a weight parameter gives us 

•  In WMMC dimensionality reduction we want 
to find w that maximizes the above quantity in 
the projected space. 

•  The solution w is given by the largest 
eigenvector of the above  

tr(Sb ) −αtr(Sw )

Sb −αSw



How to use WMMC for 
classification? 

•  Reduce dimensionality to fewer features 
•  Run any classification algorithm like 

nearest means or nearest neighbor. 



K-nearest neighbor 

•  Classify a given datapoint to be the 
majority label of the k closest points 

•  The parameter k is cross-validated 
•  Simple yet can obtain high classification 

accuracy 



Weighted maximum variance 
(WMV) 

•  Find w that maximizes the weighted 
variance 



Weighted maximum variance 
(WMV) 

•  Reduces to 
PCA if Cij = 
1/n 



MMC via WMV 

•  Let yi be class labels and let nk be the 
size of class k. 

•  Let Gij be 1/n for all i and j and Lij be 1/
nk if i and j are in same class. 

•  Then MMC is given by 



MMC via WMV (proof sketch) 



Graph Laplacians 
•  We can rewrite WMV with Laplacian 

matrices. 
•  Recall WMV is  

•  Let L = D – C where Dii = ΣjCij 

•  Then WMV is given by                            
where X = [x1, x2, …, xn] contains each 
xi as a column. 

•  w is given by largest eigenvector of 
XLXT 

 



Graph Laplacians 

•  Widely used in spectral clustering (see 
tutorial on course website) 

•  Weights Cij may be obtained via  
– Epsilon neighborhood graph 
– K-nearest neighbor graph 
– Fully connected graph 

•  Allows semi-supervised analysis (where 
test data is available but not labels) 



Graph Laplacians 

•  We can perform clustering with the 
Laplacian 

•  Basic algorithm for k clusters: 
– Compute first k eigenvectors vi of Laplacian 

matrix 
– Let V = [v1, v2, …, vk] 
– Cluster rows of V (using k-means) 

•  Why does this work? 



Graph Laplacians 

•  We can cluster data using the mincut 
problem 

•  Balanced version is NP-hard 
•  We can rewrite balanced mincut 

problem with graph Laplacians. Still NP-
hard because solution is allowed only 
discrete values 

•  By relaxing to allow real values we 
obtain spectral clustering. 



Back to WMV – a two 
parameter approach 

•  Recall that WMV is given by 

•  Collapse Cij into two parameters 
– Cij = α < 0 if i and j are in same class 
– Cij = β > 0 if i and j are in different classes 

•  We call this 2-parameter WMV 



Experimental results 
•  To evaluate dimensionality reduction for 

classification we first extract features 
and then apply 1-nearest neighbor in 
cross-validation 

•  20 datasets from UCI machine learning 
archive 

•  Compare 2PWMV+1NN, WMMC+1NN, 
PCA+1NN, 1NN 

•  Parameters for 2PWMV+1NN and 
WMMC+1NN obtained by cross-
validation 



Datasets 



Results 



Results 



Results 

•  Average error: 
– 2PWMV+1NN: 9.5% (winner in 9 out of 20) 
– WMMC+1NN: 10% (winner in 7 out of 20) 
– PCA+1NN: 13.6% 
– 1NN: 13.8% 

•  Parametric dimensionality reduction 
does help 



High dimensional data 



High dimensional data 



Results 

•  Average error on high dimensional data: 
– 2PWMV+1NN: 15.2% 
– PCA+1NN: 17.8% 
– 1NN: 22% 


