Feature selection

Usman Roshan

What is feature selection?

- Consider our training data as a matrix where each row is a vector and each column is a dimension.
- For example consider the matrix for the data x₁=(1, 10, 2), x₂=(2, 8, 0), and x₃=(1, 9, 1)
- We call each dimension a feature or a column in our matrix.

Feature selection

- Useful for high dimensional data such as genomic DNA and text documents.
- Methods
 - Univariate (looks at each feature independently of others)
 - Pearson correlation coefficient
 - F-score
 - Chi-square
 - Signal to noise ratio
 - And more such as mutual information, relief
 - Multivariate (considers all features simultaneously)
 - Dimensionality reduction algorithms
 - Linear classifiers such as support vector machine
 - Recursive feature elimination

Feature selection

- Methods are used to rank features by importance
- Ranking cut-off is determined by user
- Univariate methods measure some type of correlation between two random variables.
 We apply them to machine learning by setting one variable to be the label (y_i) and the other to be a fixed feature (x_{ij} for fixed j)

Pearson correlation coefficient

- Measures the correlation between two variables
- Formulas:

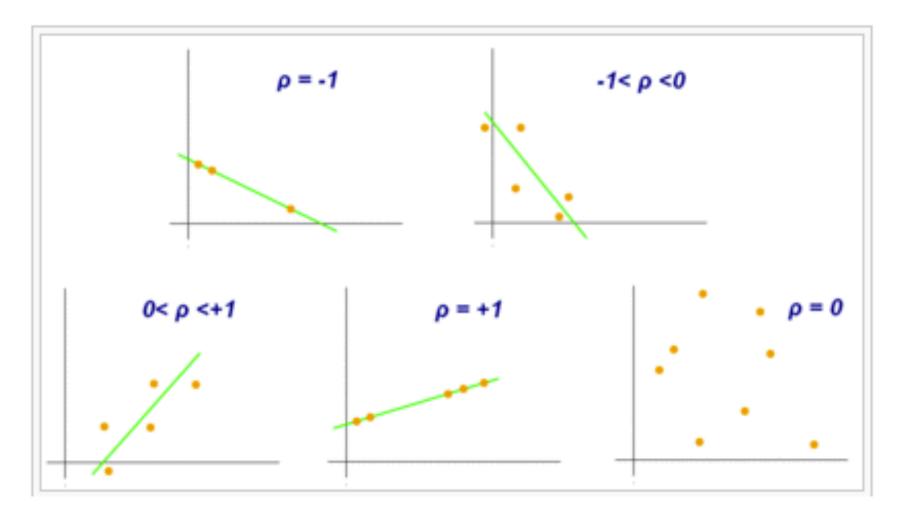
- Covariance(X,Y) = E((X- μ_X)(Y- μ_Y))

- Correlation(X,Y)= Covariance(X,Y)/ $\sigma_x \sigma_y$
- Pearson correlation =

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

 The correlation r is between -1 and 1. A value of 1 means perfect positive correlation and -1 in the other direction

Pearson correlation coefficient



From Wikipedia

F-score

F-score is a simple technique which measures the discrimination of two sets of real numbers. Given training vectors $x_k, k = 1, ..., m$, if the number of positive and negative instances are n_+ and n_- , respectively, then the F-score of the *i*th feature is defined as:

$$F(i) \equiv \frac{\left(\bar{\boldsymbol{x}}_{i}^{(+)} - \bar{\boldsymbol{x}}_{i}\right)^{2} + \left(\bar{\boldsymbol{x}}_{i}^{(-)} - \bar{\boldsymbol{x}}_{i}\right)^{2}}{\frac{1}{n_{+}-1} \sum_{k=1}^{n_{+}} \left(x_{k,i}^{(+)} - \bar{\boldsymbol{x}}_{i}^{(+)}\right)^{2} + \frac{1}{n_{-}-1} \sum_{k=1}^{n_{-}} \left(x_{k,i}^{(-)} - \bar{\boldsymbol{x}}_{i}^{(-)}\right)^{2}}, \quad (4)$$

where \bar{x}_i , $\bar{x}_i^{(+)}$, $\bar{x}_i^{(-)}$ are the average of the *i*th feature of the whole, positive, and negative data sets, respectively; $x_{k,i}^{(+)}$ is the *i*th feature of the *k*th positive instance, and $x_{k,i}^{(-)}$ is the *i*th feature of the *k*th negative instance. The numerator indicates the discrimination between the positive and negative sets, and the denominator indicates the one within each of the two sets. The larger the F-score is, the more likely this feature is more discriminative. Therefore, we use this score as a feature selection criterion.

From Lin and Chen, Feature extraction, 2006

Chi-square test

- We have two random variables:
 - Label (L): 0 or 1
 - Feature (F): Categorical
- Null hypothesis: the two variables are independent of each other (unrelated)
- Under independence
 - P(L,F)=P(D)P(G)
 - P(L=0) = (c1+c2)/n
 - P(F=A) = (c1+c3)/n
- Expected values
 - E(X1) = P(L=0)P(F=A)n
- We can calculate the chi-square statistic for a given feature and the probability that it is independent of the label (using the p-value).
- Features with very small probabilities deviate significantly from the independence assumption and therefore considered important.

	Feature=A	Feature=B
Label=0	Observed=c1 Expected=X1	Observed=c2 Expected=X2
Label=1	Observed=c3 Expected=X3	Observed=c4 Expected=X4

Contingency table

Signal to noise ratio

- Difference in means divided by difference in standard deviation between the two classes
- S2N(X,Y) = $(\mu_X \mu_Y)/(\sigma_X + \sigma_Y)$
- Large values indicate a strong correlation

Multivariate feature selection

- Consider the vector w for any linear classifier.
- Classification of a point x is given by wTx+w0.
- Small entries of w will have little effect on the dot product and therefore those features are less relevant.
- For example if w = (10, .01, -9) then features 0 and 2 are contributing more to the dot product than feature 1. A ranking of features given by this w is 0, 2, 1.

Multivariate feature selection

- The w can be obtained by any of linear classifiers we have see in class so far
- A variant of this approach is called recursive feature elimination:
 - Compute w on all features
 - Remove feature with smallest w_i
 - Recompute w on reduced data
 - If stopping criterion not met then go to step 2

Feature selection in practice

- NIPS 2003 feature selection contest
 - Contest results
 - Reproduced results with feature selection plus
 SVM
- Effect of feature selection on SVM
- Comprehensive gene selection study comparing feature selection methods
- Ranking genomic causal variants with SVM and chi-square

Limitations

- Unclear how to tell in advance if feature selection will work
 - Only known way is to check but for very high dimensional data (at least half a million features) it helps most of the time
- How many features to select?

Perform cross-validation