
Machine Learning - CS 675
Fall 15 – Prof. Roshan Mohammad Esfandiari

Assignment 2

1) Gradient Descent Perceptron
a) Gradient Descent

To find the local extrema of a function we can use the gradient of the
function. After computing the gradient we move proportional to the
negative or positive of the gradient.

b) Implement Gradient Descent Perceptron. Use the slides as your
reference. The format of the data is like previous assignment. Your
code needs to have the prediction functionality. ONLY PRINT OUT
W, DISTANCE TO ORIGIN.

c) Run on the following data :
0 0
0 1
1 0
1 1
10 10
10 11
11 10
11 11

and labels :
0 0
0 1
0 2
0 3
1 4
1 5
1 6
1 7

Machine Learning - CS 675
Fall 15 – Prof. Roshan Mohammad Esfandiari

2) Coordinate Descent Perceptron
a) As you probably heard in the class Coordinate Descent is another

approach in optimizing functions. Please follow these steps to
implement the coordinate descent version of Perceptron.
You can look at this paper :
http://www.work.caltech.edu/~ling/pub/tr05perceptron.pdf

b) There are three components in Coordinate Descent. The first one is
the Error. In the original Perceptron the error term was

𝑌! − 𝑊!𝑥!
!

!

Where in this version of perceptron the error is 0/1 loss which is the
number of misclassifications given a W.
Second, in the original Perceptron we move in the direction of
gradient but in this version we will have d and alpha which will guide
us to the answer.
Our update statement would be like this :

𝑊!"# =𝑊!"# + 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑑
where alpha is a number which will determine our step size and d is
a vector which will show us which component of W is changing. In our
version of Perceptron we will look at d with the following definition :

𝑑! = 0,0,… ,1,… ,0,0 1 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
In order to determine alpha we need to introduce delta. The following
is the definition of delta :

𝑑𝑒𝑙𝑡𝑎! = 𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑥! ,𝑑)
delta is a vector.

c) Read the data and labels and store them in data, labels array in
Python. Change all the zeros to -1 in labels array. This is very
important. Add a column to each data row with the value 1 in it
just like you did in the original Perceptron.

d) Initialize d to have 0 in all the columns. “d” is a vector of 1 x
number of columns.

e) Do an iteration on the columns. Start with the first column and do the
steps (f) to (h) below for each column.

Machine Learning - CS 675
Fall 15 – Prof. Roshan Mohammad Esfandiari

f) Create a new dataset like this :
∀𝑥! ∈ 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 ∀𝑦! ∈ 𝑙𝑎𝑏𝑒𝑙𝑠 𝑥! , 𝑦! 𝑎𝑛𝑑 𝑑𝑒𝑙𝑡𝑎! ≠ 0

⟼ (𝑑𝑒𝑙𝑡𝑎!!! 𝑊, 𝑥! , 𝑦!𝑠𝑖𝑔𝑛(𝑑𝑒𝑙𝑡𝑎!))
which basically means that for every data point in data we calculate
delta value based on the definition in (c) and then if it was not zero
we map that data point with its corresponding label to a new 1-
dimensional data point with a new label. Store these values in lists
called data_prime and label_prime respectively.

g) To find the best alpha you need to use this method. First multiply
each data_prime with its corresponding label_prime. Then sort the
result. Scan the result from left to right and whenever you have a
change in the sign set alpha to be the middle point. If there is no
change in the sign set return 0. This is a simple example for you to
better understand this :
if data_prime is :
([1.5862809419631958, 2.3768045902252197,
1.5592775344848633, 1.6383299827575684,
1.4791539907455444, 1.5510196685791016])
and label_prime is :
[-1, -1, 1, 1, 1, 1]
then the multiplication would be this :
[-2.3768045902252197, -1.5862809419631958,
1.4791539907455444, 1.5510196685791016,
1.5592775344848633, 1.6383299827575684]
which by scanning we can see there is a sign change between the
second element and the third element so we set alpha to be :
alpha = (-1.5863+1.4792)/2 = -0.0535
Create a FUNCTION named
find_alpha(data_prime,label_prime) to do this.

h) Update the W with the statement in (b). remember because we are
doing coordinate descent in each iteration we only update one
column of W and that column is where d has 1. Compute the error for
the new W and if it was better than before keep the change. If not
revert the change to the W before the update.

Do all the steps from (d) to (h) until either you have zero error or your
counter hit 100. Print out the Error and W.

Machine Learning - CS 675
Fall 15 – Prof. Roshan Mohammad Esfandiari

The following is a starting point for your code:

from sys import argv
from array import array
import random
from math import copysign as sign
import pdb

def dot(a,b):
 res = float(0)
 for i in range(0,len(a)):
 res += (a[i]*b[i])

 return res

def find_alpha(data,label):
 x = sorted([a*b for a,b in zip(data,label)])
 #### FIND WHERE THE SIGN CHANGES IN x
 return alpha

data_path = argv[1]
label_path = argv[2]

READ THE DATA IN AN ARRAY
data_file = open(data_path)
data = []
READ DATA AND ADD 1 TO THE END OF EACH ROW.
rows = len(data)
cols = len(data[0])
READ THE LABELS IN AN ARRAY
label_file = open(label_path)
labels = []
READ LABELS
Starting The Coordinate Descent
W = array('f')
d = array('f')

Machine Learning - CS 675
Fall 15 – Prof. Roshan Mohammad Esfandiari

INITIALIZE W TO A RANDOM PLANE.
delta = float(0)
data_prim = array('f')
label_prim = array('i')
alpha = 0
prev_error = 0
error = 10000000
stop_condition = 100
while(stop_condition != 0 or error != 0):
 prev_error = error
 for j in range(0,cols):
 d[j] = 1
 for i in range(0,rows):
 delta = dot(d,data[i])
 if(delta != 0):
 ###CREAT THE NEW DATA AND APPEND IT
TO DATA_PRIME AND LABEL_PRIME
 alpha = find_alpha(data_prim,label_prim)
 error = 0
 ### CHANGE W AND COMPUTE ERROR
 if (error < prev_error):
 ### UPDATE W
 d[j]= 0
 del data_prim[:]
 del label_prim[:]
 stop_condition -= 1

print(W)
print(error)
NOW READ THE TEST DATA FROM THE INPUT
ASSIGN THE CORRECT CLASS TO THE TEST DATA

BASEDD ON THE SIGNS

