
Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Regression Trees

Patrick Breheny

November 3

Patrick Breheny BST 764: Applied Statistical Modeling 1/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Introduction

We’ve seen that local methods and splines both operate
locally – either by using kernels to introduce differential
weights or by using piecewise basis functions

Either way, the kernels/basis functions were prespecified – i.e.,
the basis functions are defined and weights given to
observations regardless of whether they are needed to improve
the fit or not

Another possibility is to use the data to actively seek
partitions which improve the fit as much as possible

This is the main idea behind tree-based methods, which
recursively partition the sample space into smaller and smaller
rectangles

Patrick Breheny BST 764: Applied Statistical Modeling 2/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Recursive partitioning

To see how this works, consider a linear regression problem
with a continuous response y and two predictors x1 and x2

We begin by splitting the space into two regions on the basis
of a rule of the form xj ≤ s, and modeling the response using
the mean of y in the two regions

The optimal split (in terms of reducing the residual sum of
squares) is found over all variables j and all possible split
points s

The process is then repeated in a recursive fashion for each of
the two sub-regions

Patrick Breheny BST 764: Applied Statistical Modeling 3/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Partitioning illustration

x1

x 2

Patrick Breheny BST 764: Applied Statistical Modeling 4/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

The regression model

This process continues until some stopping rule is applied

For example, letting {Rm} denote the collection of rectangular
partitions, we might continue partitioning until |Rm| = 10

The end result is a piecewise constant model over the
partition {Rm} of the form

f(x) =
∑
m

cmI(x ∈ Rm)

where cm is the constant term for the mth region (i.e., the
mean of yi for those observations xi ∈ Rm)

Patrick Breheny BST 764: Applied Statistical Modeling 5/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Trees

The same model can be neatly expressed in the form of a
binary tree

The regions {Rm} are then referred to as the terminal nodes
of the tree

The non-terminal nodes are referred to as interior nodes

The splits are variously referred to as “splits”, “edges”, or
“branches”

Patrick Breheny BST 764: Applied Statistical Modeling 6/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Equivalent tree for example partition

|x1< 7

x2>=3

x1< 2

x1< 5
R1

R2 R3

R4

R5

Patrick Breheny BST 764: Applied Statistical Modeling 7/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Trees and interpretability

The ability to represent the model as a tree is the key to its
interpretability and popularity

With more than two explanatory variables, the earlier partition
diagram becomes difficult to draw, but the tree representation
can be extended to any dimension

Trees are one of the most easily interpreted statistical
methods: no understanding of statistics – or even
mathematics – are required to follow them, and, to some
extent, they mimic the way that human beings naturally think
about things and make decisions

Patrick Breheny BST 764: Applied Statistical Modeling 8/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Artificial example

I know what the weather is like outside . . . should I play?

outlook

sunny overcast rainy

humidity

<= 75 > 75

yes no

yes windy

false true

yes no

Patrick Breheny BST 764: Applied Statistical Modeling 9/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Recursive partitioning
Trees

Algorithms vs. models

As we will see, tree-based methods are not really statistical
models – there is no distribution, no likelihood, no design
matrix, none of the things we usually associate with modeling

The thinking behind them is really more algorithmic, and
treats the mechanism by which the data were generated as
unknown and unknowable

Admittedly, this is a bit foreign; however, in the words of Leo
Breiman, one of the key pioneers of tree-based methods,

The statistical community has been committed to
the almost exclusive use of data models. This
commitment has led to irrelevant theory,
questionable conclusions, and has kept statisticians
from working on a large range of interesting current
problems.

Patrick Breheny BST 764: Applied Statistical Modeling 10/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Regression trees

We now turn to some of the details involved in fitting trees,
and begin with the case where our outcome is continuous
(such trees are referred to as regression trees)

First, note that if we adopt the least squares criterion as our
objective, then our estimate for cm is simply the average of
the yi’s in that region:

ĉm =

∑
i yiI(x ∈ Rm)∑
i I(x ∈ Rm)

Our task is then to find the optimal splitting variable j and
split point s that bring about the largest drop in the residual
sum of squares

Patrick Breheny BST 764: Applied Statistical Modeling 11/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Regression tree algorithm

For a given splitting variable j, this amounts to finding the
value of s that minimizes∑

i:xj≤s
(yi − ĉ1)2 +

∑
i:xj>s

(yi − ĉ2)2

This may seem like a burdensome task, but if xj has been
sorted already, it can be done rather quickly

Thus, we simply have to perform the above search for each
variable j and then pick the best (j, s) pair for our split

Having made this split, we then perform the whole process
again on each of the two resulting regions, and so on

Patrick Breheny BST 764: Applied Statistical Modeling 12/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Categorical predictors

In the preceding, we assumed that our predictors were
continuous

The exact same approach works for ordinal predictors

For unordered categorical (i.e. nominal) predictors with q
categories, there are 2q−1 − 1 possible splits

This actually makes things easier when q is small, but causes
two problems when q is large:

The number of calculations grows prohibitive
The algorithm favors variables with a large number of possible
splits, as the more choices we have, the better chance we can
find one that seems to fit the data well

Patrick Breheny BST 764: Applied Statistical Modeling 13/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

What size tree?

How large should our tree be?

Intuitively, a small tree might be too simple, while a large tree
might overfit the data

There are two main schools of thought on this matter:

The decision of whether to split or not should be based on a
hypothesis test of whether the split significantly improves the
fit or not
Tree size is a tuning parameter, and we can choose it using
methods such as cross-validation

Patrick Breheny BST 764: Applied Statistical Modeling 14/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Hypothesis-testing approach

The hypothesis-testing approach is straightforward (although
the associated hypothesis tests may not be)

Once you decide on the best split, perform a hypothesis test
comparing the original model and the model that incorporates
the new split

If p is below some threshold, incorporate the new split and
continue with the partitioning; if not, reject the split and
terminate the algorithm

Patrick Breheny BST 764: Applied Statistical Modeling 15/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Pruning

The upside of this approach, of course, is that you get p-values
for each split, and they are guaranteed to be significant

The downside is that a seemingly unimportant split might lead
to a very important split later on

The alternative is to “grow” a large tree, and then use a
model-selection criterion to “prune” the tree back to its
optimal size

Patrick Breheny BST 764: Applied Statistical Modeling 16/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Rules for growing trees

Some common rules for when to stop growing a tree are:

When the number of terminal nodes exceeds some cutoff
When the number of observations in the terminal nodes
reaches some cutoff
When the depth of the tree reaches a certain level

Denote this tree, the largest tree under consideration, as T0

Patrick Breheny BST 764: Applied Statistical Modeling 17/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Node impurity

Now consider a subtree T that can be obtained by pruning T0
– that is, by collapsing any number of its internal nodes

Let |T | denote the number of terminal nodes in tree T , and
index those nodes with m, with node m representing region
Rm

We now define the node impurity measure:

Qm(T) =
1

Nm

∑
i:xi∈Rm

(yi − ĉm)2,

where Nm is the number of observations in node m

Patrick Breheny BST 764: Applied Statistical Modeling 18/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Cost-complexity pruning

Finally, we define the cost-complexity criterion:

Cα(T) =
∑
m

NmQm(T) + α |T |

The tuning parameter α behaves like the other regularization
parameters we have seen, balancing stability (tree size) with
goodness of fit

For any given α, there is a tree Tα which minimizes the above
criterion

As the notation suggests, with α = 0 we get T0, the full tree

α itself is usually chosen via cross-validation

Patrick Breheny BST 764: Applied Statistical Modeling 19/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Cotinine data

To get a sense of how trees and their implementation in SAS
and R work, we now turn to an example involving second hand
smoke exposure in children

Cotinine is a metabolite of nicotine, and is found in elevated
levels in people exposed to second-hand smoke

Measurement of cotinine requires lab tests, which cost time
and money

It is easier, of course, to simply ask parents about the extent
of second hand smoke that their children are exposed to – but
how accurate are their answers?

Patrick Breheny BST 764: Applied Statistical Modeling 20/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Cotinine data (cont’d)

To assess the correspondence (or lack thereof) between
self-reported exposure and cotinine levels, the following variables
were recorded:

SmokerTime: Time spent with smokers
(Daily/Intermittent/None)

TSHours: Hours/day spent with a smoker

Nsmokers: Number of smokers who live in the household

PPD: Packs per day smoked by the household

PctOut: Percentage of time spent smoking that is done
outdoors

SHS: Self-reported second-hand smoke exposure
(None/Mild/Moderate/Heavy)

Patrick Breheny BST 764: Applied Statistical Modeling 21/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Tree packages in R

In R, there are two primary packages one can use to fit
tree-based models:

rpart, which is based on cost-complexity pruning
party, which is based on hypothesis test-based stopping

Another relevant difference between the packages is that
party selects its splits in a manner that alleviates the problem
alluded to earlier, whereby explanatory variables with a large
number of possible splits are more likely to be selected

Patrick Breheny BST 764: Applied Statistical Modeling 22/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Usage

In rpart, the model-fitting function is rpart:

fit0 <- rpart(Cotinine~.,data=shs)

In party, the model-fitting function is ctree:

fit <- ctree(Cotinine~.,data=shs)

Patrick Breheny BST 764: Applied Statistical Modeling 23/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Cost-complexity pruning

In party, the algorithm stops automatically when further
splits no longer significantly improve the fit

In rpart, one still has to prune the tree after it has been
grown

Thankfully, rpart carries out cross-validation for you and
stores the results in fit$cptable

α is referred to as cp, and the cross-validation error is xerror

Patrick Breheny BST 764: Applied Statistical Modeling 24/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Cost-complexity pruning

●

●

●

●●

0.20 0.10 0.05 0.02 0.01

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

α

R
el

at
iv

e
E

rr
or

●

●

●

●●
●

●

In−sample
Cross−validated

1 2 3 45

alpha <- fit0$cptable[which.min(fit0$cptable[,"xerror"]),"CP"]

fit <- prune(fit0,alpha)

Patrick Breheny BST 764: Applied Statistical Modeling 25/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Original and pruned trees

SHS

Mild, None Heavy, Moderate

SmokerTime

Intermittent, NoneDaily

n = 89

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

25

PctOut

>= 85 < 85

n = 7

●

0

5

10

15

20

25

n = 19

0

5

10

15

20

25

TSHours

>= 5.75 < 5.75

n = 9

●

0

5

10

15

20

25

n = 11

●

●

●

0

5

10

15

20

25

SHS

Mild, None Heavy, Moderate

SmokerTime

Intermittent, NoneDaily

n = 89

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

25

n = 26

0

5

10

15

20

25

TSHours

>= 5.75 < 5.75

n = 9

●

0

5

10

15

20

25

n = 11

●

●

●

0

5

10

15

20

25

Patrick Breheny BST 764: Applied Statistical Modeling 26/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Plotting trees

rpart comes with its own plotting method:

plot(fit)

text(fit)

However, the end result is not particularly beautiful

The plotting functions in party are much nicer; thankfully,
you can use party’s tools to plot rpart objects using the
package partykit:

require(partykit)

plot(as.party(fit))

Patrick Breheny BST 764: Applied Statistical Modeling 27/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

Plotting trees (cont’d)

|
SHS=Mild,None

SmokerTime=Intermittent,None TSHours>=5.75

1.228 3.433 5.651 10.36

SHS

Mild, None Heavy, Moderate

SmokerTime

Intermittent, NoneDaily

n = 89

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

25

n = 26

0

5

10

15

20

25

TSHours

>= 5.75 < 5.75

n = 9

●

0

5

10

15

20

25

n = 11

●

●

●

0

5

10

15

20

25

Patrick Breheny BST 764: Applied Statistical Modeling 28/29

Recursive partitioning
Algorithm(s)

Cost-complexity pruning
Example

rpart vs. ctree

SHS

Mild, None Heavy, Moderate

SmokerTime

Intermittent, NoneDaily

n = 89

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

25

n = 26

0

5

10

15

20

25

TSHours

>= 5.75 < 5.75

n = 9

●

0

5

10

15

20

25

n = 11

●

●

●

0

5

10

15

20

25

PPD
p < 0.001

≤ 2 > 2

SHS
p < 0.001

Moderate {Mild, None}

n = 11

●

0

5

10

15

20

25

SmokerTime
p = 0.005

Daily{Intermittent, None}

n = 26

0

5

10

15

20

25

n = 89

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

25

n = 9

●

●

0

5

10

15

20

25

Patrick Breheny BST 764: Applied Statistical Modeling 29/29

	Recursive partitioning
	Recursive partitioning
	Trees

	Algorithm(s)
	Cost-complexity pruning
	Example

