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Abstract—This paper develops the separating capacities of fami-
lies of nonlinear decision surfaces by a direct application of a theorem
in classical combinatorial geometry. It is shown that a family of sur-
faces having d degrees of freedom has a natural separating capacity
of 2d pattern vectors, thus extending and unifying results of Winder
and others on the pattern-separating capacity of hyperplanes. Apply-
ing these ideas to the vertices of a binary n-cube yields bounds on
the number of spherically, quadratically, and, in general, nonlinearly
separable Boolean functions of n variables.

It is shown that the set of all surfaces which separate a dichotomy
of an infinite, random, separable set of pattern vectors can be charac-
terized, on the average, by a subset of only 2d extreme pattern vec-
tors. In addition, the problem of generalizing the classifications on a
labeled set of pattern points to the classification of a new point is
defined, and it is found that the probability of ambiguous generaliza-
tion is large unless the number of training patterns exceeds the
capacity of the set of separating surfaces.

I. DEFINITIONS AND HISTORY OF FUNCTION-
COUNTING THEOREMS

( i\ONSIDER a set of patterns represented by a set
of vectors in a d-dimensional Euclidean space
E? A homogeneous linear threshold function
fw: E*—{ —1,0, 1} is defined in terms of a parameter or
weight vector w for every vector x in this space:

1, w-x >0
fu®) ={ 0, wx=0 (1)
—1, w-x <0

where w-x is understood to mean the inner product of
w and x. '

Thus every homogeneous linear threshold function
naturally divides E¢ into two sets, the set of vectors x
such that fw(x) =1 and the set of vectors x such that
fw(x) = —1. These two sets are separated by the hyper-
plane

{x:fw(x) = 0} = {x: xw = O} (2)

which is the (d —1)-dimensional subspace orthogonal to
the weight vector w. Let X be an arbitrary set of vectors
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in E% A dichotomy {X+, X~} of X is linearly separable
if and only if there exists a weight vector w in E? and a

scalar ¢ such that
xw >, fxec Xt
xw <t ifx € X~ 3)

The dichotomy {X+, X~} is said to be homogeneously
linearly separable if it is linearly separable with t=0. A
vector w satisfying

x & Xt
xE X~ @)

w-x > 0,
w-x <0,

will be called a solution vector, and the corresponding
orthogonal hyperplane {x: x-w=0} will be called a
separating hyperplane for the dichotomy {X+, X—}. In
this, the homogeneous case, the separating hyperplane
passes through the origin of the space and is, in fact,
the (d—1)-dimensional orthogonal subspace to w.
Finally, a set of N vectors is in general position in d-
space if every subset of d or fewer vectors is linearly
independent.

The foundations have been laid for the presentation
of the fundamental function-counting theorem which
counts the number of homogeneously linearly separable
dichotomies of N points in d dimensions.

Theorem 1 (Function-Counting Theorem): There are
C(N, d) homogeneously linearly separable dichotomies
of N points in general position in Euclidean d-space,
where

d—1 N O—
C(N,d) =2 Z(‘Vk 1). (5)

The binomial coefficients comprising (N, d) defined
for all real s and integer % by

<s>_s(s—1)---(s—k+1)‘
Iy k!

(6)

This interesting theorem has been independently
proved in different forms by many authors [1]-[6], but
Winder [1], [2], Cameron [3], Joseph [4], and Whit-
more and Willis [S] have emphasized the application
of Theorem 1 to counting the number of linearly sep-
arable dichotomies of a set. In addition, Winder and
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Cameron independently applied Theorem 1 to the
vertices of a binary #-cube in order to find an upper
bound on the number of linearly separable truth func-
tions of # variables. These authors [1]-[5] have all
used a variant of a proof, which seems to have first
appeared in Schlifli [6], of Theorem 2 or its dual state-
ment Theorem 2’.

Theorem 2: N hyperplanes in general position passing
through the origin of d-space divide the space into
C(N, d) regions.

Theorem 2': A d-dimensional subspace in general
position in N-space intersects C(NV, d) orthants.

Proofs of Theorem 2 appear in Schlifli [6], Winder
[1], [2], Cameron [3], and Wendel [7]. Proofs in terms
of the dual statement, Theorem 2’, can be found in
Schlifli [6] and in Joseph [4]. It should be noted that
most of these references are relatively obscure. A varia-
tion of the known proofs of Theorems 2 and 2’ will
therefore be provided in the first portion of the proof of
Theorem 3.

II. SEPARABILITY BY ARBITRARY SURFACES

Many authors [8]-[12] have been concerned with
separating sets of points with parametric families of sur-
faces. Cooper [8], [9] has been primarily concerned with
the characterization of the natural class of decision sur-
faces for a given decision theoretic pattern-recognition
problem, as well as with the complementary question
of characterizing the natural class of problems for which
a given family of decision surfaces is minimal complete.
Bishop [13], Wong and Eisenberg [14], and Cooper
[15] have been concerned with the problem of using rth-
order polynomial surfaces to implement truth functions
(separating a dichotomy of the vertices of a binary n-
cube). Koford [16] and Aizerman et al. [10] have ob-
served that standard training algorithms will converge
to a separating surface if one exists. In this section, the
number of dichotomies of a set of points which may be
separated by a faymily of decision surfaces will be found.
This number foll ws directly from the function-count-
ing theorem when the family of separating surfaces and
the set of points to be separated are carefully defined.

Consider a family of surfaces, each of which naturally
divides a given space into two regions, and a collection
of N points in this space, each of which is assigned to
one of two classes X+ or X~. This dichotomy of the
points is said to be separable relative to the family of
surfaces if there exists a surface in the family that
separates the points in X+ from the points in X—. Con-
sider the set of IV objects X = {xl, cee, xN}. The ele-
ments of X will be referred to as patterns for intuitive
reasons. On each pattern x€X, a set of real-valued
measurement functions ¢i, ¢2, - - -, ¢a comprises the
vector of measurements

¢: X—E! (M
where ¢(x) = [¢1(x)v ¢2(x)r tT d)(l(x)]) xCX.
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A dichotomy (binary partition) {X+, X} of X is
¢-separable if there exists a vector w such that

w-p(x) > 0, xE Xt

w-9(x) <0, ®)

x e X,

Observe that the separating surface in the measurement
space is the hyperplane w-¢=0. The inverse image of
this hyperplane is the separating surface {x:w-¢(x) =0 }
in the pattern space.

Definition: Let the vector-valued measurement func-
tion ¢ map a set of patterns X = {x;, Xo, ¢ v, xN} into
E? The set X is said to be in ¢-general position if Condi-
tion 1 holds.

Condition 1: Every k element subset of the set of d-
dimensional measurement vectors {¢(x1), d(x2), - - -,
d(xn) } is linearly independent for all 2<d.

When N >d, Conditions 1, 1/, 1”, and 1’” are equiva-
lent.

Condition 1’': Every d element subset of the set of d-
dimensional measurement vectors {qb(xl), ce e, ¢(xN)}
is linearly independent.

Condition 1': Every dXd submatrix of the NXd
matrix

$1(x1)  @a(x1) - - - palx1)
¢1(x2)

)

é1(xn) $a(x)
has a nonzero determinant.

Condition 1'": No d+1 patterns lie on any one ¢-
surface in the pattern space.

Clearly Condition 1”7 is just an explicit algebraic
statement of Condition 1’. Note that general position is
a strengthened rank condition on the matrix ®. (® has
maximal rank d if at least one dXd submatrix has a
nonzero determinant.) Definition 1’/ relates general
position in the measurement space to general position in
the pattern space.

A lemma will now be established which plays a cen-
tral role in the investigation in that it enables the exten-
sion of Theorem 1 to the case in which the family of deci-
sion surfaces is constrained to pass through a given set
of points. This lemma also provides an alternative
simple proof of the function-counting theorem and will
be used in Section VI, Generalization and Learning.

Lemma 1: Let X+ and X~ be subsets of E¢, and let y
be a point other than the origin in E% Then the dichot-
omies { XU {y}, X~} and {X*, X~U{y} } are both
homogeneously linearly separable if and only if
{X+, X‘} is homogeneously linearly separable by a
(d —1)-dimensional subspace containing y.

Remarks: In geometrical terms, Lemma 1 says that a
new point can be adjoined to either half of a separable
dichotomy to form two new separable dichotomies if
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and only if there exists a separating hyperplane through
the new point which separates the old dichotomy. This
is reasonable because, if such a hyperplane exists, small
displacements of the hyperplane will allow arbitrary
classification of the new point without affecting the
separation of the old dichotomy. The proof makes these
displacements explicit.

Proof: The set W of separating vectors for {X+, X-}
is given by W= {w: w-x>0, xEXt; w-x<0, xEX‘}.
The dichotomy {X+U{y}, X-} is homogeneously
linearly separable if and only if there exists a w in W
such that w-y>0; and the dichotomy {X+, X-U{y}}
is homogeneously linearly separable if and only if there
exists a w in W such that w-y<0. If {X+*U{y}, X~}
and {X+, XY {y} } are homogeneously linearly separ-
able by w; and ws,, respectively, then w*=(—w;-y)w;
+ (w1-y)w, separates {X+, X~} by the hyperplane
{x: w*-x= 0} passing through y. Conversely, if
{X+, X—} is homogeneously linearly separable by a
hyperplane containing y, then there exists a w* & W such
that w*-y=0. Since W is open, there exists an ¢>0 such
thatw* 4 eyand w* — eyarein W. Hence, { X+U {y}, X~}
and {X+, XV {y} } are homogeneously linearly sepa-
rable by w*+ ey and w* — ey, respectively.

Theorem 3 generalizes the function-counting theorem
to certain classes of nonlinear functions under con-
straints. In particular, it states that 2 independent con-
straints on the class of separating surfaces reduce the
number of degrees of freedom of the class by &.

Theorem 3: If a ¢-surface {x: w-op(x) = 0} is con-

strained to contain the set of points ¥ = {yl, Yo, -+ - ,yk},
where ¢ (1), ¢(y), - - -, ¢(y:) are linearly independent,
and where the projection of @(x1), ¢(x2), - - -, d(xn)

onto the orthogonal subspace to the space spanned by
o (y1), d(y2), - - -, d(yx) is in general position, then there
are C(V,d—k) ¢-separable dichotomies of X.

Proof: In the special case k=0 (no constraints) and
¢(x) =x (linear separating surfaces), this theorem re-
duces to the statement of Theorem 1. We shall first
prove this special case by induction on NV and d. Let
C(N, d) be the number of homogeneously linearly sepa-
rable dichotomies of X = {xl, X2, ¢ -, xN}. Consider a
new point xy41 such that X\J {xN+,} is in general posi-
tion, and consider the C(N, d) homogeneously linearly
separable dichotomies of X. If a dichotomy {X+, X~}
is separable, then either {X+Uf{xyn.}, X-} or
{X+, X-U{xx41}} must be separable. However, both
dichotomies are separable, by Lemma 1, if and only if
there exists a separating vector w for { X+, X ‘} lying
in the (d—1)-dimensional subspace orthogonal to
xn+1. A dichotomy of X is separable by such a w if and
only if the projection of the set X onto the (d—1)-
dimensional orthogonal subspace to xy;1 is separable.
By the induction hypothesis there are C(&V, d—1) such
separable dichotomies. Hence,

COV+1,d) = C(V, &) + CN, d = 1). (10)

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

June

Repeated application of (10) to the terms on the right
yields

C(V, d) = Nf(N k— 1)0(1, d— %),

k=0

(11)

from which the theorem follows immediately on noting
2, m> 1

12
0, m < 1. (12)

ca,m = {

Generalizing the proof to arbitrary ¢ and %, we first

observe that the condition that a ¢-surface contains the

set {yl, Yoy ¢ v, yk} is that the parameter vector w

which characterizes the surface must lie in the (d—k)-
dimensional subspace L, where

L= {w:w'¢(y5)=0,i=1,2,---,k}.

Let ¢ be the orthogonal projection of ¢ onto L. Then,
since w-¢=w-¢ for all w in L, it is seen that a set of
vectors {¢} is separable by a parameter vector in L if
and only if the corresponding set of projections {43} is
separable. Since, by the second assumption, ¢(x1),
é(x2), - - -, ¢(xn) are in ¢-general position in L, there
are C(N, d—k) homogeneously linearly separable di-
chotomies of {¢(x1), d(xa), - - -, ¢(xN)} by a vector w
in L.

In defining a linear threshold function, it is difficult
to decide whether to classify the points lying on the
separating hyperplane into the (41) class or the (—1)
class. This difficulty can be resolved by assigning these
points to a third class and proving Theorem 4.

Theorem 4: Let {xl, Xg, ¢ ¢ - ,xN} be a set of N vectors
in general position in E¢ Let F be the class of functions

f:{x, %2 -+ -, xx}—{1,0, —1} defined for each win
E¢ by
(1, xirw >0
fw(xz) = 0) X W = 0 (13)
-1, rw<0, 1=1,2,---,N.
Then there are Q(N, d) functions in F, where
d—1 d—k—1 N N—Et—1
QN,d) =23 E( )( ) (14)
k=0 m=0 k m

Proof: The number of functions f, for which f,(x) =0
on k given points of {xy, - - -, xN} corresponds to the
number of different ways a homogeneous linear separat-
ing surface constrained to contain these points can
dichotomize the remaining N —k points. By Theorem 3
this number is just C(N—k, d—k). Since there are
N!/RI(N—FE)! ways to choose the k points for which
fw=0, the theorem follows upon summing on k.

Remarks : It can be verified that
Q(N, d) = 3%, N<d

and (15)
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(a)

Fig. 1.
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(b)

Examples of ¢-separable dichotomies of five points in two dimensions. (a) Linearly separable dichotomy.

(b) Spherically separable dichotomy. (c) Quadrically separable dichotomy.

Q(N, d)
Iim ———
Now» C(N, d)

= 261,

III. EXAMPLES OF SEPARATING SURFACES

A natural generalization of linear separability is poly-
nomial separability. For the ensuing discussion, consider
the patterns to be vectors in an m-dimensional space.
The measurement function ¢ then maps pomts in m-
space into points in d-space.

Consider a natural class of mappings obtained by
adjoining r-wise products of the pattern vector coordi-
nates. The natural separating surfaces corresponding to
such mappings are known as rth-order rational varieties.
A rational variety of order r in a space of m dimensions
is represented by an rth-degree homogeneous equation
in the coordinates (x),,

.1?,,(36)1;1(96){2 cee (x)ir = Oa (16)

Aiyig- -

where (x); is the 7th component of x in E™ and (x), is set
equal to 1 in order to write the expression in homoge-
neous form. Note that there are (m—r)!/m!lr! coeffi-
cients in (16). Examples of surfaces of this form are
hyperplanes (first-order rational varieties), quadrics
(second-order rational wvarieties), and hyperspheres
(quadrics with certain linear constraints on the coeffi-
cients). Figure 1 illustrates three dichotomies of the
same configuration of points. Of the 32 dichotomies of
the five points in Fig. 1, precisely C(5, 3)=22 are
linearly separable, C(5, 4) = 30 are spherically separable,

and C(3, 5) =32 are quadrically separable. It is clearly
true in general that linear separability implies spherical
separability, which in turn implies quadric separability.

In order to establish the number of separable dichoto-
mies of pattern vectors by general surfaces of these
types, inspection of (16) and application of Theorem 3
with the mapping ¢: E»—E+0!=l"! defined by

o(x) = (1, ®)y, - - "’ (x)m’ (x1)?,

yields the following result: A set of N points in m-space,
such that no (m-+r7)!m!r! points lie on the same rth-
order rational variety, can be separated into precisely
C(N, (m+r)mlr!) dichotomies by an rth-order ra-
tional variety. If the variety is constrained to contain
k-independent points, the number of separable dichot-
omies is reduced by C(N(m—+7r)!mlr! —k).

The original uses of the function-counting theorem
were to establish upper bounds on the number of lin-
early separable truth functions of m variables. Since
then, Bishop [13] has exhaustively found the number
L,, of quadrically separable truth functions of m argu-
ments for low m. From the foregoing it can be seen that
L,, is less than or equal to the number of quadrically
separable functions of 2™ points, with inequality instead
of equality because the 2™ vertices of the binary m-cube

are not in general position. Asymptotically we have the
bound

Lm < C(Zm (m + 2)) = 2ms/2-l-0(m2 log m) (18)
= ) 2
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TABLE 1
EXAMPLES OF SEPARATING SURFACES WITH THE CORRESPONDING NUMBER OF
SEPARABLE DICHOTOMIES OF N POINTS IN m DIMENSIONS
Mapping ¢ . Degrees of Number of ¢-Sepa- .
Defined on Stesp:i‘?a;‘?:g Freedom of General Position rable Dichotomies Sgparatlltng
x in Em ¢-Surface of N Points apacity
o(x)=x hyperplane through. m no m points on any subspace C(N, m) 2m
origin
o(x)=(1, x) hyperplane m—+1 no m+1 points on any hyperplane C(N, m+1) 2(m+1)
&(x)=(1, x, ||x|[?) hypersphere m—+2 no m+2 points on any hypersphere C(N, m+2) 2(m+2)
o(x)=(x, |x[) hypercone m+1 no m+1 points on any hypercone C(N, m+1) 2(m+1)
m-+r m-r m-r m-+r
¢(x)=all r-wise products | rational rth-order no points on any rth- C| N, 2
of components of x variety r r order surface r r

where 0(m” log m) is a remainder term which, for some
K, is asymptotically bounded by Km" log m.

In general, for rth-order polynomial separating sur-
faces, the number L,.(r) of separable truth functions of
m variables is bounded above by

Lm(r) S C (2"‘, (m + r>> = 2mr+1/7!+0(mr log m)_ (19)
r

Koford [16] has observed that augmenting the vector
xE E? to yield a vector ¢(x), as in (17), is particularly
easy to implement when the coefficients are binary. In
addition, Koford notes—as do Aizerman [10] and
Greenberg and Konheim [12]—that, if the augmented
vector ¢(x) is used as an input to a linear threshold de-
vice, then the standard fixed increment training pro-
cedure will converge [17] (by the Perceptron con-
vergence theorem) in a finite number of steps to a
separating ¢-surface if one exists.

Table I lists several examples of families of separating
surfaces. All patterns x should be considered as vectors
in an m-dimensional space. The function ¢(x)=(1, x)
is an (m+1)-dimensional vector. The final column of
Table I lists the separating capacities of the ¢-surfaces,
a measure of the expected number of random patterns
which can be separated. The separating capacity will be
made plausible as a useful idea in Section IV. '

IV. SEPARABILITY OF RANDOM PATTERNS

Two kinds of randomness are considered in the pat-
tern dichotomization problem:

1) The patterns are fixed in position but are classified
independently with equal probability into one of
two categories.

2) The patterns themselves are randomly distributed
in space, and the desired dichotomization may be
random or fixed.

Under these conditions the separability of the set of
pattern vectors becomes a random event depending on
the dichotomy chosen and the configuration of the pat-
terns. The probability of this random event and the

maximum number of random patterns that can be
separated by a given family of decision surfaces are to
be determined.

Suppose that the patterns x1, xs, - - -, xx are chosen
independently according to a probability measure u on
the pattern space. The necessary and sufficient condition
on # such that, with probability 1, xi, %3, - -+ -, xn
are in general position is d-space is that the probability
be zero that any point will fall on any given (d—1)-
dimensional subspace. In terms of ¢-surfaces, a set of
vectors chosen independently according to a probability
measure u is in ¢-general position with probability 1
if and only if every ¢-surface {xEEd:w~¢(x) =O} has
4 measure zero.

Suppose that a dichotomy of X = {xl, Xgy * ot v, xN} is
chosen at random with equal probability from the 2¥
equiprobable possible dichotomies of X. Let X be in
¢-general position with probability 1, and let P(N, d)
be the probability that the random dichotomy is ¢-
separable, where the class of ¢-surfaces has d degrees of
freedom. Then with probability 1 there are C(NV, d)
¢-separable dichotomies, and

/N —1
P, = e, g - e (), @
k=0
which is just the cumulative binomial distribution cor-
responding to the probability that N —1 flips of a fair
coin result in d —1 or fewer heads.

One of the first applications of the function-counting
theorems to random pattern vectors was by Wendel
[7], who found the probability that N random points
lie in some hemisphere. Let the set of vectors
X={x, %3, - -+, xx} be in general position on the
surface of a d-sphere with probability 1. In addition, let
the joint distribution of {x,, X, + - ,xN} be unchanged
by the reflection of any subset through the origin. Under
these restrictions Wendel proves that the probability
that a set of N vectors randomly distributed on the
surface of a d-sphere is contained in some hemisphere
is P(N, d).

The proof of this result follows immediately from
Schlifli's theorem and the reflection invariance of the
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joint probability distribution of X. This invariance im-
plies that the probability (conditioned on X) that a
random dichotomy of X be separable is equal to the un-
conditional probability that a particular dichotomy of
X (all N points in one category) be separable.

V. SEPARATING CAPACITY OF A SURFACE

It will be shown that the expected maximum number
of randomly assigned vectors that are linearly separable
in d dimensions is equal to 2d. It is thus possible to con-
clude that a linear threshold device has an information
storage capacity—relative to learning random dichoto-
mies of a set of patterns—of two patterns per variable
weight. This result was originally conjectured by
Widrow and Koford and experimentally as reported by
Widrow [18] for the case of pattern vectors chosen at
random from the set of vertices of a binary d-cube.
Brown [19] found experimentally that the conjecture
held for patterns distributed at random in the unit
d-sphere. This conjecture was supported theoretically
by Winder [20], by Efron and Cover [21]-[23], and
subsequently by Brown [24].

Let {xl, Koy + v v } be a sequence of random patterns
as previously shown, and define the random variable N
to be the largest integer such that {xi, xs, - - -, xn} is
¢-separable, where ¢ has d degrees of freedom. Then,
from (20),

PN =n} = P(n,d) — P(n+ 1, d)

@) ("_1> 0,1,2
= (=) , n = s , I
7 \d-1

(21)

which is just the negative binomial distribution (shifted

d units right with parameters d and %). Thus N cor-

responds to the waiting time for the dth failure in a
series of tosses of a fair coin, and

E(N) = 2d

Median (N) = 2d. (22)

The asymptotic probability that N patterns are
separable in d = (N/2)+(a/2)+/N dimensions is

N o
P(N,7-I-—2—\/N)~¢’(a) (23)
where ®(a) is the cumulative normal distribution
we) = —— [ e (24)
a ir _we x.
In addition, for >0,
lim P(2d(1 4+ ¢€),d) =0
d— o
P(2d,d) = 3
lim P(2d(1 — ¢),d) =1 (25)

d™0
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as was shown by Winder [20]. Thus the probability of
separability shows a pronounced threshold effect when
the number of patterns is equal to twice the number of
dimensions. These results [21] confirm Koford’s con-
jecture and suggest that 2d is a natural definition of
the separating capacity of a family of decision surfaces
having d degrees of freedom.

If the number of patterns is fixed at NV and the dimen-
sionality of the space in which the patterns lie is allowed
to increase, it follows that the probability that the di-
mension d* at which the set of patterns first becomes
separable is given by

Pr{d* =d} = P(N,d) — P(N,d — 1)

@M(N_l
d—1

It

), d=1,2,---,N. (26)

Thus d* is binomially distributed (shifted one unit right
with parameters N and 1), and

N+1
2

E(@@*) = 27
Equation (26) is partial justification for past statements
that linear threshold devices are self-healing or can ad-
just around their defects [18] because the separating
probability of a linear threshold device is relatively in-
sensitive to the number of parameters d ford> (N+1)/2.
The fact that 2d is indeed a critical number for a system

of linear inequalities in d unknowns will be further
established in Sections VI and VII.

VI. GENERALIZATION AND LEARNING

Let X be a set of NV pattern vectors in general position
in d-space. This set of pattern vectors, together with a
dichotomy of the set into two categories X+ and X,
will constitute a fraining set. On what basis can a new
point be categorized into one of the two training cate-
gories? This is the problem of generalization.

Consider the problem of generalizing from the train-
ing set with respect to a given admissible family of de-
cision surfaces (that family of surfaces that can be im-
plemented by linear threshold devices). By some process,
a decision surface from the admissible class will be
selected which correctly separates the training set into
the desired categories. Then the new pattern will be
assigned to the category lying on the same side of the
decision surface. Clearly, for some dichotomies of the
set of training patterns, the assignment of category will
not be unique. However, it is generally believed that,
after a “large number” of training patterns, the state of
a linear threshold device is sufficiently constrained to
yield a unique response to a new pattern. It will be
shown that the number of training patterns must exceed
the statistical capacity of the linear threshold device
before unique generalization becomes probable.

The classification of a pattern y with respect to the
training set {X + X ‘} is said to be ambiguous relative to
a gwen class of ¢-surfaces, if there exists one ¢-surface
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in the class that induces the dichotomy { X+\U {y}, X~}
and another ¢-surface in the class that induces the
dichotomy {X+, X-U{y}}. That is, there exist two
¢-surfaces, both correctly separating the training set,
but yielding different classifications of the new pattern
y. Thus, if w; and w, are the parameter weight vectors
for the two ¢-surfaces, then

wi-p(x) >0 and we-p(x) >0 for x © X+
w-¢(x) <0 and wy-¢(x) <O forx © X—
and either

wi-¢p(y) > 0 and we-¢(y) <O (28)

or

wi-¢(y) <0 and w;y-¢(y) > 0.

In addition, vy is said to be ambiguous with respect to
the training set if the training set is not separable.

In Fig. 2, for example, points y; and y; are unambigu-
ous and point y» is ambiguous with respect to the train-
ing set { X+, X~} relative to the class of all lines in the
plane (not necessarily through the origin). Points y; and
y; are uniquely classified into sets X+ and X, respec-
tively, by any line separating X+ and X—, while y, is
classified into X~ by /4, and into X* by /..

Fig. 2.

Ambiguous generalization.

Theorem 6 establishes the probability that a new
pattern is ambiguous with respect to a random dichot-
omy of the training set. This probability is independent
of the configuration of the pattern vectors.

Theorem 6: Let X\J{y}={x1, %3, - - -, 2y, ¥} be in
¢-general position in d-space, where ¢ = (1, @2, - - -, Pa).
Then y is ambiguous with respect to C(&, d—1) di-
chotomies of X relative to the class of all ¢-surfaces.
Hence, if each of the ¢-separable dichotomies of X has
equal probability, then the probability 4 (N, d) that y
is ambiguous with respect to a random ¢-separable

dichotomy of X is
da—2 N -1
. (")
C(N,d —1) > k

C(N, d) =1 /N — 1
mE()

A(N, d) = (29)

k=0

Proof: From Lemma 1 of Section II, the point y is
ambiguous with respect to {X X ‘} if and only if there
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exists a ¢-surface containing y which separates
{ X+, X“}. The proposition then follows from Theorem
3 on noting that the separating vector w obeys the linear
constraint

w-¢(y) = 0.

Applying the proposition to the example in Fig. 2,
where X has ten points, it can be seen that each of the
y:'s is ambiguous with respect to C(10, 2) =20 dichoto-
mies of X relative to the class of all lines in the plane.
Now C(10, 3) =92 dichotomies of X are separable by the
class of all lines in the plane. Thus, a new pattern is
ambiguous with respect to a random, linearly separable
dichotomy of X with probability

€(10,2) 5
C(10,3) 23

(30)

4(10, 3) = (31)

The behavior of 4 (N, d) is indicated by examination
of its asymptotic form. Consider Badahur’s expansion
[25] of the cumulative binomial distribution, for N >2d,

i /N 1 /N 1
Z()=_(d>p<zv+1,1;N—d+1;7> (32)

=0 \ 2 2

where F is the hypergeometric function

1
F<N+ 1,1; N —d+ 1;—2—>

N+11 (N+DWV+2) 1
= _ — 4 - (33)
E+1 2 G+U0GE+2 4
and
E=N—d (34)

Let [x] denote the greatest integer less than x, and let
N=[Bd], 8>2. Then the terms of the expansion of
F([8d]+1,1; [8d] —d+1; 1) are uniformly bounded and
positive, and the limit, as d increases, of the jth term is
(8/2(B—1))7. Thus, by the M-test of Weierstrass,

i (N
=7 .

8—1

= y > 2 35

52 I (33)
and

1, 0<B8<2
A*@) = lim A(N,d) =1 1 36
®) Nil[lgd]( ) 4 . g>2 (36)

a—e B -1

The graph of 4*(B8) isshown in Fig. 3. Note the relatively
large number of training patterns required for un-
ambiguous generalization. If it is recalled that the
capacity of a linear threshold device is 3=2 patterns
per variable weight, it will again be seen that the capac-
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Fig. 3. Asymptotic probability of ambiguous generalization.

ity is a critical number in the description of the behavior
of a linear threshold device.

_If the patterns themselves are randomly distributed,
the comments of Section IV concerning randomly dis-
tributed patterns and random dichotomies of the pat-
tern set apply in full here. The crucial condition is that
the pattern set be in general position with probability 1.

Thus, if a linear threshold device is trained on a set of
N points chosen at random according to a uniform dis-
tribution on the surface of a unit sphere in d-space, and
these points are classified independently with equal
probability into one of two categories, then it is readily
seen that the probability of error on a new pattern
similarly chosen, conditioned on the separability of the
entire set, is just 34 (N, d).

VII. EXTREME PATTERNS

For any dichotomy of a set of points, there exists a
minimal sufficient subset of extreme points such that any
hyperplane correctly separating the subset must sepa-
rate the entire set correctly. Thus for any dichotomy
{X*‘, X‘} of a set of points in E¢, there exists a minimal
set Z contained in Xt\U X~ such that w satisfies

w-x > 0, xE Xt
w-x <0, rc X~ (37)
if, and only if, w satisfies the extremal constraints
w-x > 0, xE XtNZ
w-x <0, TEX " NZ. (38)

The set Z will be called the set of extreme points of the
dichotomy. The vectors in Z form the boundary matrix
investigated by Mays [26].

From this definition it follows that a point is an ex-
treme point of the dichotomy { X+, X~} if and only if
it is ambiguous (in the sense of Section VI) with respect
to { X+, X~ } . Thus, for a set of N points in general posi-
tion in E¢, each of the IV points is ambiguous with re-
spect to precisely C(N—1, d—1) dichotomies of the re-
maining N — 1 points. Hence, each of these C(N—1,d—1)
dichotomies is the restriction of two homogeneously
linearly separable dichotomies of the original set of N
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points—the two dichotomies which differed only in the
classification of the remaining point. Since there were
C(N, d) homogeneously linearly separable dichotomies
of N points, it is clear that if one of the C(V, d) separable
dichotomies is selected at random according to an equi-
probable distribution over the class, then a given point
will be an extreme point with probability

2C(N — 1,d — 1)/C(N, d).

Then the expected number of extreme points R(N, d)
will be equal to the sum of the IV probabilities that each
point is an extreme point. Since these probabilities are
equal,

INC(N —1,d - 1)

E{R(N,d)y = 39
{R(V, &)} D (39)
Utilizing 35, we may show that
‘ B
. R(N, d) > 0<p<2
lim E {—} =12 (40)
N=[gd] 2d
- 1: B _>. 2

See Cover [21] and [23] for related geometrical results.

Note that the limiting average number of extreme
vectors is independent of 8 for 8>2. The capacity has
played a role again. Also observe that, since R(N, d) is
a positive random variable, the probability is less than
1/t that R exceeds its mean value by a factor ¢.

The conclusion may be drawn that the average
amount of necessary and sufficient information for the
complete characterization of the set of separating sur-
faces for a random, separable dichotomy of N points
grows slowly with &V and asymptotically approaches 2d
(twice the number of degrees of freedom of the class of
separating surfaces). The implication for pattern-
recognition devices is that the essential information in
an infinite training set can be expected to be stored
in a computer of finite storage capacity.

VIII. CONCLUSIONS

The original work of Winder, Joseph, Cameron,
Schlifli, and others on counting the number of linearly
separable dichotomies of a set of points has been de-
veloped as a unified whole and extended to counting
1) the number of nonlinearly separable dichotomies of
a set of points, and 2) the separable dichotomies of
random collections of points. Application of this work
to the vertices of a binary #n-cube has yielded upper
bounds on the number of polynomially separable
Boolean functions. It has been shown that the natural
separating capacity of a family of separating surfaces is
two pattern points for each degree of freedom, thus ex-
tending the work done by Koford and Winder. The
separating capacity was seen to arise naturally as a
critical parameter in defining the probability of un-
ambiguous generalization, and in defining the number
of extreme points characterizing the set of pattern
points.
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It was shown that, for a random set of linear inequali-
ties in d unknowns, the expected number of extreme
inequalities, which are necessary and sufficient to imply
the entire set, tends to 2d as the number of consistent
inequalities tends to infinity, thus bounding the ex-
pected necessary storage capacity for linear decision
algorithms in separable problems. The results, even those
dealing with randomly positioned points, have been
combinatorial in nature, and have been essentially inde-
pendent of the configuration of the set of points in the
space.
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