
 

Consider the problem of predicting one’s risk of cancer based on the average 
number of cigarettes smoked per day.  
 
Let X be a random variable that is the average number of cigarettes a person smokes 
per day. Let C1 be the class of high risk of lung cancer and C2 be the one with low 
risk. 
 
We use Bayesian decision theory to solve this problem. This means we have to 
determine P(C1|X) and P(C2|X) for a given X and choose the class with the higher 
probability. According to Bayes rule we have 
 
P(C1|X) = P(X|C1)P(C1) /P(X) 
(posterior) = (likelihood)*(prior)/(normalization) 
 
and similarly for P(C2|X).  
 
What is P(X)? P(X) = P(X|C1)P(C1) + P(X|C2)P(C2) 
 
Suppose we randomly sampled 1100 people from the population and suppose 100 
of them have lung cancer and 1000 are controls. We asked each person the average 
number of cigarettes they smoked over some previous time period and obtained the 
following data. 
 
Average 
number of 
cigarettes 
smoked per 
day 

Between 0 
and 4 

Between 5 
and 9 

Between 10 
and 14  

Between 15 
and 19 

C1 5 20 35 40 
C2 900 80 15 5 
 
Estimate probabilities P(C1), P(C2), P(X between a and b|C1) (for the four ranges of 
a and b above), and P(X between a and b|C2) from the table data above. 
 
Solution: 
 
Why is P(C1) = Number of people in class C1/(total samples) ? 
What is P(C1) conceptually? It is the probability that a person has lung cancer.  
  
Assumptions: 
 
Each individual is chosen independently and identically (i.i.d). 
 
To estimate P(C1) imagine  a coin-tossing analogy 
 



 

P(C1) = 100/1100  
P(C2) = 1000/1100 
 
P(X between 0 and 4|C1) = 5/100 = .05 
P(X between 5 and 9|C1) = 20/100 = .2 
P(X between 10 and 14|C1) = .35 
P(X between 15 and 19|C1) = .4 
 
P(X between 0 and 4|C2) = 900/1000 = .9 
P(X between 5 and 9|C2) =  .08 
P(X between 10 and 14|C2) = .015 
P(X between 15 and 19|C2) = .005 
 
Now suppose you encounter an individual who smokes an average of 2 cigarettes 
per day. Are they at high risk for lung cancer? 
 
You need to calculate P(C1|X) and P(C2|X) and pick the higher probability to make 
your decision. 
 
P(C1|X=2) = P(X=2|C1)P(C1)/P(X) 
                     = (.05 * 100/1100)/P(X) = .0045/P(X) 
 
P(C2|X=2) = P(X=2|C2)P(C2)/P(X) 
                     = (.9 * 1000/1100)/P(X) = 0.818/P(X) 
 
P(C1|X=2) + P(C2|X=2) should sum to 1. Does it? Let’s check. 
 
.0045/P(X) + .818/P(X) = (.0045+.818)/P(X) = .823/.823 = 1 
 
P(X) = P(X|C1)P(C1) + P(X|C2)P(C2) =  .0045 + .818 =  0.823 
 
Since P(C2|X=2) > P(C1|X=2) person X is at low risk for lung cancer 
 
But what if someone smoked an average of 10 per day? 
 
P(C1|X=10) = P(X=10|C1)P(C1) 
                        = .35 * 100/1100 = 35/1100 
  
P(C2|X=10) = .015 * 1000/1100  = 15/1100 
  
So if someone smoked an average of 10 per day they would be at high risk for lung 
cancer 
 
Let’s move on. In practice you may have more than one variable to create a decision 
rule. For example for our current problem, suppose we add average number of 



 

hours a person exercises. 
 
X = average number of cigarettes a person smokes per day 
Y = average number of hours a person exercises per day 
 
Bayesian decision theory dictates we calculate  
 
P(C1|X,Y) and P(C2|X,Y) 
 
P(C1|X,Y) = P(X,Y|C1)P(C1) 
 
If we assumed that X and Y are independent then what is P(X,Y|C1)?  
 
P(X,Y|C1) = P(X|C1)P(Y|C1) 
 
We already have P(X|C1) and P(X|C2) 
 
P(X between 0 and 4|C1) = 5/100 = .05 
P(X between 5 and 9|C1) = 20/100 = .2 
P(X between 10 and 14|C1) = .35 
P(X between 15 and 19|C1) = .4 
 
P(X between 0 and 4|C2) = 900/1000 = .9 
P(X between 5 and 9|C2) =  .08 
P(X between 10 and 14|C2) = .015 
P(X between 15 and 19|C2) = .005 
 
Suppose someone gave us P(Y|C1) as well 
 
P(Y between 0 and .25|C1) = .8 
P(Y between .25 and .5|C1) = .15 
P(Y between .5 and .75|C1) = .04 
P(Y between .75 and 1|C1) = .01 
 
P(Y between 0 and .25|C2) = .5 
P(Y between .25 and .5|C2) = .35 
P(Y between .5 and .75|C2) = .1 
P(Y between .75 and 1|C2) = .05 
 
Suppose we added a third variable Z = age of person. So now P(X,Y,Z|C1) = 
P(X|C1)P(Y|C1)P(Z|C1). How do we determine P(Z|C1)? We need to collect data. 
Suppose we collected the data into the table below 
 
 
 



 

 
Age of person Between 0 

and 15 
Between 15 
and 30 

Between 30 
and 45 

Above 45 

C1 1 3 30 66 
C2 100 600 250 50 
 
From the above table we can estimate the probabilities that we need. 
 
------------------------------------------- 
 
Let’s assume that X and Y are not independent. 
 
P(C1|X,Y) = P(X,Y|C1)P(C1) 
 
How can we estimate these probabilities? Consider the table shown below: 
 
Average number of cigarettes 
smoked per day and average 
number of hours exercised per 
day is between 0 and 0.25 

Betwee
n 0 and 
4 

Betwee
n 5 and 
9 

Between 10 
and 14  

Between 15 
and 19 

C1 5 20 35 40 
C2 900 80 15 5 
 
Average number of cigarettes 
smoked per day and average 
number of hours exercised per 
day is between 0.25 and 0.5 

Betwee
n 0 and 
4 

Betwee
n 5 and 
9 

Between 10 
and 14  

Between 15 
and 19 

C1 3 15 20 25 
C2 917 70 10 3 
 
Average number of cigarettes 
smoked per day and average 
number of hours exercised per 
day is between 0.5 and 0.75 

Betwee
n 0 and 
4 

Betwee
n 5 and 
9 

Between 10 
and 14  

Between 15 
and 19 

C1 2 10 17 20 
C2 950 50 5 2 
 
Average number of cigarettes 
smoked per day and average 
number of hours exercised per 
day is between 0.75 and 1 

Betwee
n 0 and 
4 

Betwee
n 5 and 
9 

Between 10 
and 14  

Between 15 
and 19 

C1 1 2 10 30 
C2 960 40 5 2 
 



 

P(C1) = 255/(255+1007+1007+1000+1000) = 255/(4014+255) = 0.0597 
 
P(X is between 5 and 9, Y between 0.5 and 0.75|C1) = 10/255 = .039 
 
What is the above probability if X and Y are independent? 
 
P(X is between 5 and 9, Y between 0.5 and 0.75|C1)= 
P(X is between 5 and 9|C1) * P(Y between 0.5 and 0.75|C1)= 
 
What is P(X between 5 and 9|C1) = 47/255 
What is P(Y between 0.5 and 0.75)|C1) = 49/255 
 
And so the answer changes if we assume independence and becomes 
47*49/(255*255). 
 
---------------------------------- 
 
If we have two variables X and Y where each variable has say four categories (or  
intervals). 
 
P(X between some interval and Y between some interval)  
 
Since we have four intervals for each X and Y we have 4 * 4 = 16 probabilities to 
estimate. 
 
Now suppose we have another variable Z that also has four categories. How many 
total probabilities do we have to estimate? 4 * 4 * 4 = 64. 
 
Suppose we have 10 variables each with four categories. How many total 
probabilities do we have to estimate? 4^10 = 1,048,576 
 
If we have 20 variables then how many total probabilities? 4^20 = 
1,099,511,627,776 or approximately 10^12. 
 
-------------------------------------------------- 
 
Going to one variable, what if we assumed that P(X|C1) follows a Gaussian 
distribution. 
 
Recall when we started the module we talked about coin tosses. Specifically we 
talked about tossing a coin n times and counting the number of n trials where we 
have k heads. We noticed that the P(heads=k) was given by a binomial distribution 
which becomes Gaussian as n approaches infinity or as you get more samples. 
 
P(X=k|C1) = Gaussian(m1, sd1) 



 

 
P(X=k|C2) = Gaussian(m2,sd2) 
 
Are we ready to do some prediction?  
 
What is P(C1|X=1.5)? We know that P(C1|X=1.5) = P(X=1.5|C1)P(C1) 
 
Suppose P(C1)=.1 and P(C2)=.9. What is P(X=1.5|C1)? We assumed it is Gaussian 
with mean m1 and standard deviation sd1. Therefore 
 
P(X=1.5|C1) = Gaussian(X=1.5,mean=m1,sd=sd1) 
 
We can’t use the above likelihoods in our Bayesian decision rule because we don’t 
know m1, m2, sd1, and sd2. We need these values to calculate 
 
P(C1|X=k) and P(C2|X=k) 
 
We need data to estimate m1, m2, sd1, and sd2, just like we used data to calculate 
the likelihoods directly (see above). We collect data as we did previously. Assume 
we have the data below (as an example) 
 
Suppose we sampled 10 people who have lung cancer and recorded their mean 
number of cigarettes smoked per day: 
 
C1: 10, 5, 8, 15, 17, 18, 2, 3, 11, 12 (training data) 
 
Xi represents the average number of cigarettes smoked per day by individual i. 
 
Pr(x1=10, x2=5, x3=8, x4=15, x5=17, x6=18, x7=2, x8=3, x9=11, x10=12|C1)= 
Pr(x1=10|C1)Pr(x2=5|C1)Pr(x3=8|C1)Pr(x4=15|C1)Pr(x5=17|C1)Pr(x6=18|C1)Pr(x
7=2|C1)Pr(x8=3|C1)Pr(x9=11|C1)Pr(x10=12|C1) 
 
Suppose we sampled 10 people who are controls (don’t have lung cancer) and 
recorded their mean number of cigarettes smoked per day: 
 
C2: 2, 0, 0, 1, 10, 0, 2, 4, 1, 0 (training data) 
 
Unknown: 10, 2, 15 (test data) 
 
We want to find Gaussian parameters that maximize the likelihood. This means we 
have to find m1 and sd1 that maximizes 
Pr(x1=10|C1)Pr(x2=5|C1)Pr(x3=8|C1)Pr(x4=15|C1)Pr(x5=17|C1)Pr(x6=18|C1)Pr(x
7=2|C1)Pr(x8=3|C1)Pr(x9=11|C1)Pr(x10=12|C1) 
 
------------------ 



 

Suppose we have f(x). How to find x that maximizes f(x)? 
 
We find df/dx and solve for df/dx = 0. This works mainly if there is only one unique 
global maximum. 
 
The maximum likelihood method tells us that the mean and variance that maximize 
the likelihood are just the sample mean and variance. 
 
Let log be the natural log (also denoted as ln) 
Recall that  

1. ln(xy) = ln(x) + ln(y) 
2. ln(x)^y = y ln(x) 
3. ln(x/y) = ln(x) – ln(y) 
4. ln(e) = 1 
5. ln(a * e^x) = ln(a) + ln(e)^x  = ln(a) + x*ln(e) = ln(a) + x 

 
 
Suppose we find x* such that ln(f(x*)) is maximum over all x. 
 
Question: Is x* also the maximum of f(x)? 
 
Yes because ln(x) is monotonically increasing 
 
------------------ 
 
So now returning to our problem. 
 
Suppose we sampled 10 people who have lung cancer and recorded their mean 
number of cigarettes smoked per day: 
 
C1: 10, 5, 8, 15, 17, 18, 2, 3, 11, 12 
 
Xi represents the average number of cigarettes smoked per day by individual i. 
 
We assume that P(X=k|C1) is Gaussian distributed. What is the mean and variance of 
that Gaussian distribution? 
 
So our Gaussian mean m1 = 10.1 and the variance v1 = 28.97 (sd1 = 5.38) 
 
Suppose we sampled 10 people who are controls (don’t have lung cancer) and 
recorded their mean number of cigarettes smoked per day: 
 
C2: 2, 0, 0, 1, 10, 0, 2, 4, 1, 0 
 
We assume here also that P(X=k|C2) is Gaussian with mean m2 and variance v2. 



 

What are the maximum likelihood estimates of the mean and variance?  
 
m2 = 2          v2 = (0 + 4 + 4 + 1 + 64 + 4 + 0 + 4 + 1 + 0) / 10 = 8.2          sd2 = 2.86 
 
 
Now we are ready to make decisions: 
 
P(C1) = .06 
P(C2) = 1-.06 = .94 
 
Suppose we have an individual who smokes average of 5 cigarettes per day. To 
determine if they are at high risk of lung cancer we calculate 
 
P(C1|X=5) and P(C2|X=5) 
 
P(C1|X=5) = P(X=5|C1)P(C1) = Gaussian(X=5,m1=10.1, sd1=5.38)(0.06) 
 
P(C2|X=5) = P(X=5|C2)P(C2) = Gaussian(X=5,m1=2, sd1=2.96)(0.94) 
 
 
Now suppose we have two random variables X (mean number of cigarettes smoked 
per day) and Y (mean number of hours exercised per day).  
 
Let x = (X, Y) 
 
We assume that P(X,Y|C1) is Gaussian distributed. What does the multivariate 
Gaussian distribution look like?  
 
Let’s do multivariate for two variables X and Y. Our mean is a vector of two 
dimensions and what is Σ? Σ is a matrix of dimension 2 by 2.  
 
Σ =  ( Var(X)     Cov(X,Y) 
        (Cov(Y,X)  Var(Y) 
  
What does Σ look like if X and Y are independent? 
 
Σ =  ( Var(X)     0 
        (0               Var(Y) 
  
 
Two-dimensional training data 
 
C1: (10, .1), (5, 0.01), (8, .2), (15, .1), (17, .25), (18, .5), (2, .01), (3, .01), (11, .1), (12, 
.2) 
C2: (2, .1), (0, .2), (0, 1), (1, 1), (10, 2), (0, .01), (2, .1), (4, .5) (1, .5), (0, .75) 



 

 
Test data: x’ = (15, 1) 
 
We use Bayesian decision theory. This means we have to calculate 
 
P(C1|x’) and P(C2|x’) and select the class with the higher probability. 
 
Assume that P(C1) = .04, P(C2) = .96 
 
P(C1|x’) = P(x’|C1)P(C1) 
 
So all we need to do is find P(x’|C1). There are two ways. We could take the tabular 
approach that we did earlier. Or we can assume that P(x’|C1) is Gaussian.  Let us 
take the Gaussian approach.  
 
If we assume that P(x’|C1) is Gaussian then we can write P(x’|C1) as P(x’|m1, Σ1). 
We need to estimate the mean and variance of our Gaussian distribution. Our slides 
give us the maximum likelihood estimates. 
 
m1 =  (10.1, .15) 
 
Σ1 = (28.5    .6   ) 
          (.6         .02) 
 
Inverse of Σ1 = (.093     -2.72 ) 
                              (-2.72  129.4) 
 
 
What is the rule to multiply (a  b)  with (e  f) ?  
                                                      (c  d)            (g h) 
 
The result is (ae+bg      af+bh)  
                         (ce+dg      cf+dh)  
 
Evaluate :   (28.5*.093 + .6*-2.72         28.5*-2.72 + .6*129.4)    =   (1    0) 
                      (.6*.093 + .02*-2.72            .6*-2.72 + .02*129.4 )          (0    1) 
 
Similarly we have P(x’|C2) = P(x’|m2, Σ2) 
 
m2 = (2, .62) 
 
Σ2 = (8.6      1.16 ) 
          (1.16    0.33) 
 
 



 

Inverse of Σ2 = (.22       -.76  ) 
                              (-.76      5.65) 
 
Now we calculate,  
  
P(x’=(15,1)|m1, Σ1) = Gaussian(x’=(15,1), m1, Σ1) 
  
and 
 
P(x’=(15,1)|m2, Σ2) = Gaussian(x’=(15,1), m2, Σ2) 
 
------------------------ 
 


