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The solution to the minimization in (12.10) is Y = U⊤
M,k, where M = (I−W⊤)(I−

W⊤) and U⊤
M,k are the bottom k singular vectors of M, excluding the last singular

vector corresponding to the singular value 0.

As discussed in exercise 12.5, LLE coincides with KPCA used with a particular
kernel matrix KLLE whereby the output dimensions are normalized to have unit
variance (as in the case of Laplacian Eigenmaps).

12.4 Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma is a fundamental result in dimensionality reduc-
tion that states that any m points in high-dimensional space can be mapped to a
much lower dimension, k ≥ O( log m

ϵ2 ), without distorting pairwise distance between
any two points by more than a factor of (1 ± ϵ). In fact, such a mapping can be
found in randomized polynomial time by projecting the high-dimensional points
onto randomly chosen k-dimensional linear subspaces. The Johnson-Lindenstrauss
lemma is formally presented in lemma 12.3. The proof of this lemma hinges on
lemma 12.1 and lemma 12.2, and it is an example of the “probabilistic method”,
in which probabilistic arguments lead to a deterministic statement. Moreover, as
we will see, the Johnson-Lindenstrauss lemma follows by showing that the squared
length of a random vector is sharply concentrated around its mean when the vector
is projected onto a k-dimensional random subspace.

First, we prove the following property of the χ2-squared distribution (see defini-
tion C.6 in appendix), which will be used in lemma 12.2.

Lemma 12.1
Let Q be a random variable following a χ2-squared distribution with k degrees of
freedom. Then, for any 0 < ϵ < 1/2, the following inequality holds:

Pr[(1 − ϵ)k ≤ Q ≤ (1 + ϵ)k] ≥ 1 − 2e−(ϵ2−ϵ3)k/4 . (12.11)

Proof By Markov’s inequality, we can write

Pr[Q ≥ (1 + ϵ)k] = Pr[exp(λQ) ≥ exp(λ(1 + ϵ)k)] ≤ E[exp(λQ)]
exp(λ(1 + ϵ)k)

=
(1 − 2λ)−k/2

exp(λ(1 + ϵ)k)
,

where we used for the final equality the expression of the moment-generating
function of a χ2-squared distribution, E[exp(λQ)], for λ < 1/2 (equation C.14).
Choosing λ = ϵ

2(1+ϵ) < 1/2, which minimizes the right-hand side of the final
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equality, and using the identity 1 + ϵ ≤ exp(ϵ − (ϵ2 − ϵ3)/2) yield

Pr[Q ≥ (1 + ϵ)k] ≤
(

1 + ϵ

exp(ϵ)

)k/2

≤
(

exp
(
ϵ − ϵ2−ϵ3

2

)

exp(ϵ)

)k/2

= exp
(
− k

4
(ϵ2 − ϵ3)

)
.

The statement of the lemma follows by using similar techniques to bound Pr[Q ≤
(1 − ϵ)k] and by applying the union bound.

Lemma 12.2
Let x ∈ RN , define k < N and assume that entries in A ∈ Rk×N are sampled
independently from the standard normal distribution, N(0, 1). Then, for any 0 <
ϵ < 1/2,

Pr
[
(1 − ϵ)∥x∥2 ≤ ∥ 1√

k
Ax∥2 ≤ (1 + ϵ)∥x∥2

]
≥ 1 − 2e−(ϵ2−ϵ3)k/4 . (12.12)

Proof Let x̂ = Ax and observe that

E[x̂2
j ] = E

[( N∑

i=1

Ajixi

)2
]

= E
[ N∑

i=1

A2
jix

2
i

]
=

N∑

i=1

x2
i = ∥x∥2 .

The second and third equalities follow from the independence and unit variance,
respectively, of the Aij . Now, define Tj = x̂j/∥x∥ and note that the Tjs are
independent standard normal random variables since the Aij are i.i.d. standard
normal random variables and E[x̂2

j ] = ∥x∥2. Thus, the variable Q defined by
Q =

∑k
j=1 T 2

j follows a χ2-squared distribution with k degrees of freedom and
we have

Pr
[
(1 − ϵ)∥x∥2 ≤ ∥x̂∥2

k
≤ (1 + ϵ)∥x∥2

]
= Pr

[
(1 − ϵ)k ≤

k∑

j=1

T 2
j ≤ (1 + ϵ)k

]

= Pr
[
(1 − ϵ)k ≤ Q ≤ (1 + ϵ)k

]

≥ 1 − 2e−(ϵ2−ϵ3)k/4 ,

where the final inequality holds by lemma 12.1, thus proving the statement of the
lemma.

Lemma 12.3 Johnson-Lindenstrauss
For any 0 < ϵ < 1/2 and any integer m > 4, let k = 20 log m

ϵ2 . Then for any set V of
m points in RN , there exists a map f : RN → Rk such that for all u,v ∈ V ,

(1 − ϵ)∥u − v∥2 ≤ ∥f(u) − f(v)∥2 ≤ (1 + ϵ)∥u − v∥2. (12.13)

Proof Let f = 1√
k
A where k < N and entries in A ∈ Rk×N are sampled
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independently from the standard normal distribution, N(0, 1). For fixed u,v ∈ V ,
we can apply lemma 12.2, with x = u − v, to lower bound the success probability
by 1− 2e−(ϵ2−ϵ3)k/4. Applying the union bound over the O(m2) pairs in V , setting
k = 20

ϵ2 log m and upper bounding ϵ by 1/2, we have

Pr[success] ≥ 1 − 2m2e−(ϵ2−ϵ3)k/4 = 1 − 2m5ϵ−3 > 1 − 2m−1/2 > 0 .

Since the success probability is strictly greater than zero, a map that satisfies the
desired conditions must exist, thus proving the statement of the lemma.

12.5 Chapter notes

PCA was introduced in the early 1900s by Pearson [1901]. KPCA was introduced
roughly a century later, and our presentation of KPCA is a more concise derivation
of results given by Mika et al. [1999]. Isomap and LLE were pioneering works on
non-linear dimensionality reduction introduced byTenenbaum et al. [2000], Roweis
and Saul [2000]. Isomap itself is a generalization of a standard linear dimensionality
reduction technique called Multidimensional Scaling [Cox and Cox, 2000]. Isomap
and LLE led to the development of several related algorithms for manifold learning,
e.g., Laplacian Eigenmaps and Maximum Variance Unfolding [Belkin and Niyogi,
2001, Weinberger and Saul, 2006]. As shown in this chapter, classical manifold
learning algorithms are special instances of KPCA [Ham et al., 2004]. The Johnson-
Lindenstrauss lemma was introduced by Johnson and Lindenstrauss [1984], though
our proof of the lemma follows Vempala [2004]. Other simplified proofs of this lemma
have also been presented, including Dasgupta and Gupta [2003].

12.6 Exercises

12.1 PCA and maximal variance. Let X be an uncentered data matrix and let
x̄ = 1

m

∑
i xi be the sample mean of the columns of X.

(a) Show that the variance of one-dimensional projections of the data onto an
arbitrary vector u equals u⊤Cu, where C = 1

m

∑
i(xi − x̄)(xi − x̄)⊤ is the

sample covariance matrix.
(b) Show that PCA with k = 1 projects the data onto the direction (i.e.,
u⊤u = 1) of maximal variance.

12.2 Double centering. In this problem we will prove the correctness of the double


