
An Analysis of Single-Layer 
Networks in Unsupervised 

Feature Learning
Adam Coates1, Honglak Lee2, Andrew Y. Ng1



Overview

• A Brief Introduction 

• Unsupervised feature learning framework 

• Experiments and Analysis 

• Q&A



A Brief Intro
• Recent works focus on learning good feature representation 

• greedily pre-train several layers of feature 

• for each layer a set of parameters are chosen: 

• Number of features to learn 

• the location of the features 

• encoding input and output 

• A Major drawback is complexity and expense



A Brief Intro
• In this paper : 

• First study the effect of these choices on single 
layer network 

• It turns out that there are other ingredients: 

• Whitening 

• large number of features 

• dense feature extraction



A Brief Intro
• What they did : 

• Used a simple feature learning framework that incorporates 
an unsupervised learning algorithm as a black box 

• Analyze performance impact of : 

• whitening 

• number of features trained 

• step size between extracted features 

• receptive field size



Unsupervised feature 
learning framework

• Steps to learn features : 

1. Extract random patches form unlabeled training data 

2. Apply pre-processing stage 

3. Learn a feature mapping 

• After learning features : 

1. Extract features from equally spaced sub-patches 

2. Pool features together to reduce number of feature values 

3. Train a linear classifier to predict labels 



Unsupervised feature 
learning framework

• Extract random sub-patches : 

• each patch has dimension w-by-w and d 
channels 

• each patch can be represented as a vector of 
size w.w.d 

• the dataset consists of m randomly sampled 
patches



Unsupervised feature 
learning framework

• Pre-Processing : 

• Normalize the data by subtracting the mean and 
dividing by standard deviation 

• Perform whitening



Whitening



Unsupervised feature 
learning framework

• Unsupervised Learning : 

• the “black box” takes dataset X and outputs a function     
                  that maps input vector to a feature vector of 
size K 

• sparse auto-encoders 

• sparse RBMs 

• K-means clustering 

• Gaussian mixtures

f :!N → !K



Unsupervised feature 
learning framework

• Feature Extraction and Classification 

• using the learned feature extractor, given any 
image patch 

• compute a representation for the patch 

• do this for many sub-patches of images



Unsupervised feature 
learning framework

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using different learn-
ing algorithms. Best viewed in color.

3.2.2 Classification

Before classification, it is standard practice to reduce the dimensionality of the image representation
by pooling. For a stride of s = 1, our feature mapping produces a (n�w+1)-by-(n�w+1)-by-K
representation. We can reduce this by summing up over local regions of the y

(ij)’s extracted as
above. Specifically, we split the y

(ij)’s into four equal-sized quadrants, and compute the sum of the
y

(ij)’s in each. This yields a reduced (K-dimensional) representation of each quadrant, for a total
of 4K features that we use for classification.

Given these pooled (4K-dimensional) feature vectors for each training image and a label, we apply
standard linear classification algorithms. In our experiments we use (L2) SVM classification. The
regularization parameter is determined by cross-validation.

4 Experiments and Analysis

The above framework includes a number of parameters that can be changed: (i) whether to use
whitening, (ii) the number of features K, (iii) the stride s, and (iv) receptive field size w. In this

5

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using different learn-
ing algorithms. Best viewed in color.

3.2.2 Classification

Before classification, it is standard practice to reduce the dimensionality of the image representation
by pooling. For a stride of s = 1, our feature mapping produces a (n�w+1)-by-(n�w+1)-by-K
representation. We can reduce this by summing up over local regions of the y

(ij)’s extracted as
above. Specifically, we split the y

(ij)’s into four equal-sized quadrants, and compute the sum of the
y

(ij)’s in each. This yields a reduced (K-dimensional) representation of each quadrant, for a total
of 4K features that we use for classification.

Given these pooled (4K-dimensional) feature vectors for each training image and a label, we apply
standard linear classification algorithms. In our experiments we use (L2) SVM classification. The
regularization parameter is determined by cross-validation.

4 Experiments and Analysis

The above framework includes a number of parameters that can be changed: (i) whether to use
whitening, (ii) the number of features K, (iii) the stride s, and (iv) receptive field size w. In this

5



Experiments
• The above framework includes number of 

parameters : 

• whitening 

• number of features 

• the step size 

• receptive field



Experiments

100 200 400 800 1200 1600
50

55

60

65

70

75

80

# Features

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance for Raw and Whitened Inputs

 

 

 kmeans (tri) raw
 kmeans (hard) raw
 gmm raw
 autoencoder raw
 rbm raw
 kmeans (tri) white
 kmeans (hard) white
 gmm white
 autoencoder white
 rbm white

100 200 400 800 1200 1600
50

55

60

65

70

75

80

Figure 3: Effect of whitening and number of bases (or centroids).

6 8 12
60

62

64

66

68

70

72

74

76

78

Receptive field size (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Receptive Field Size

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

60

62

64

66

68

70

72

74

76

78

1 2 4 8
40

45

50

55

60

65

70

75

80

Stride between extracted features (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Feature Stride

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

40

45

50

55

60

65

70

75

80

Figure 4: Effect of receptive field size and stride.

section, we present our experimental results on the impact of these parameters on performance. First,
we will evaluate the effects of these parameters using cross-validation on the CIFAR-10 training
set. We will then report the results achieved on both CIFAR-10 and NORB test sets using each
unsupervised learning algorithm and the parameter settings that our analysis suggests is best overall
(i.e., in our final results, we use the same settings for all algorithms).5

Our basic testing procedure is as follows. For each unsupervised learning algorithm in Section 3.1.2,
we will train a single-layer of features using either whitened data or raw data and a choice of the
parameters K, s, and w. We then train a linear classifier as described in Section 3.2.2, then test the
classifier on a holdout set (for our main analysis) or the test set (for our final results).

4.1 Visualization

Before we present classification results, we first show visualizations of the bases (centroids) learned
by the algorithms we have implemented. The bases learned from sparse autoencoders, sparse RBMs,
K-means, and Gaussian mixture models are shown in Figure 2. It is well-known that autoencoders
and RBMs yield localized filters that resemble Gabor filters and we can see this in our results both
when using whitened data and, to a lesser extent, raw data. However, these visualizations also
show that similar results can be achieved using clustering algorithms. In particular, while clustering
raw data leads to centroids consistent with those in [5] and [27], we see that clustering whitened
data yields sharply localized filters that are very similar to those learned by the other algorithms.
Thus, it appears that such features are easy to learn with clustering methods (without any parameter
tweaking) as a result of whitening.

4.2 Effect of whitening

We now move on to our characterization of performance on various axes of parameters, starting
with the effect of whitening, which visibly changes the learned bases as seen in Figure 2. Figure 3

5To clarify: The parameters used in our final evaluation are those that achieved the best (average) cross-
validation performance across all models: whitening, 1 pixel stride, 6 pixel receptive field, and 1600 features.

6



Experiments
100 200 400 800 1200 1600

50

55

60

65

70

75

80

# Features

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance for Raw and Whitened Inputs

 

 

 kmeans (tri) raw
 kmeans (hard) raw
 gmm raw
 autoencoder raw
 rbm raw
 kmeans (tri) white
 kmeans (hard) white
 gmm white
 autoencoder white
 rbm white

100 200 400 800 1200 1600
50

55

60

65

70

75

80

Figure 3: Effect of whitening and number of bases (or centroids).

6 8 12
60

62

64

66

68

70

72

74

76

78

Receptive field size (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Receptive Field Size

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

60

62

64

66

68

70

72

74

76

78

1 2 4 8
40

45

50

55

60

65

70

75

80

Stride between extracted features (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Feature Stride

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

40

45

50

55

60

65

70

75

80

Figure 4: Effect of receptive field size and stride.

section, we present our experimental results on the impact of these parameters on performance. First,
we will evaluate the effects of these parameters using cross-validation on the CIFAR-10 training
set. We will then report the results achieved on both CIFAR-10 and NORB test sets using each
unsupervised learning algorithm and the parameter settings that our analysis suggests is best overall
(i.e., in our final results, we use the same settings for all algorithms).5

Our basic testing procedure is as follows. For each unsupervised learning algorithm in Section 3.1.2,
we will train a single-layer of features using either whitened data or raw data and a choice of the
parameters K, s, and w. We then train a linear classifier as described in Section 3.2.2, then test the
classifier on a holdout set (for our main analysis) or the test set (for our final results).

4.1 Visualization

Before we present classification results, we first show visualizations of the bases (centroids) learned
by the algorithms we have implemented. The bases learned from sparse autoencoders, sparse RBMs,
K-means, and Gaussian mixture models are shown in Figure 2. It is well-known that autoencoders
and RBMs yield localized filters that resemble Gabor filters and we can see this in our results both
when using whitened data and, to a lesser extent, raw data. However, these visualizations also
show that similar results can be achieved using clustering algorithms. In particular, while clustering
raw data leads to centroids consistent with those in [5] and [27], we see that clustering whitened
data yields sharply localized filters that are very similar to those learned by the other algorithms.
Thus, it appears that such features are easy to learn with clustering methods (without any parameter
tweaking) as a result of whitening.

4.2 Effect of whitening

We now move on to our characterization of performance on various axes of parameters, starting
with the effect of whitening, which visibly changes the learned bases as seen in Figure 2. Figure 3

5To clarify: The parameters used in our final evaluation are those that achieved the best (average) cross-
validation performance across all models: whitening, 1 pixel stride, 6 pixel receptive field, and 1600 features.

6

100 200 400 800 1200 1600
50

55

60

65

70

75

80

# Features
C

ro
ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance for Raw and Whitened Inputs

 

 

 kmeans (tri) raw
 kmeans (hard) raw
 gmm raw
 autoencoder raw
 rbm raw
 kmeans (tri) white
 kmeans (hard) white
 gmm white
 autoencoder white
 rbm white

100 200 400 800 1200 1600
50

55

60

65

70

75

80

Figure 3: Effect of whitening and number of bases (or centroids).

6 8 12
60

62

64

66

68

70

72

74

76

78

Receptive field size (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Receptive Field Size

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

60

62

64

66

68

70

72

74

76

78

1 2 4 8
40

45

50

55

60

65

70

75

80

Stride between extracted features (pixels)

C
ro

ss
−V

al
id

at
io

n 
Ac

cu
ra

cy
 (%

)

Performance vs. Feature Stride

 

 

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

40

45

50

55

60

65

70

75

80

Figure 4: Effect of receptive field size and stride.

section, we present our experimental results on the impact of these parameters on performance. First,
we will evaluate the effects of these parameters using cross-validation on the CIFAR-10 training
set. We will then report the results achieved on both CIFAR-10 and NORB test sets using each
unsupervised learning algorithm and the parameter settings that our analysis suggests is best overall
(i.e., in our final results, we use the same settings for all algorithms).5

Our basic testing procedure is as follows. For each unsupervised learning algorithm in Section 3.1.2,
we will train a single-layer of features using either whitened data or raw data and a choice of the
parameters K, s, and w. We then train a linear classifier as described in Section 3.2.2, then test the
classifier on a holdout set (for our main analysis) or the test set (for our final results).

4.1 Visualization

Before we present classification results, we first show visualizations of the bases (centroids) learned
by the algorithms we have implemented. The bases learned from sparse autoencoders, sparse RBMs,
K-means, and Gaussian mixture models are shown in Figure 2. It is well-known that autoencoders
and RBMs yield localized filters that resemble Gabor filters and we can see this in our results both
when using whitened data and, to a lesser extent, raw data. However, these visualizations also
show that similar results can be achieved using clustering algorithms. In particular, while clustering
raw data leads to centroids consistent with those in [5] and [27], we see that clustering whitened
data yields sharply localized filters that are very similar to those learned by the other algorithms.
Thus, it appears that such features are easy to learn with clustering methods (without any parameter
tweaking) as a result of whitening.

4.2 Effect of whitening

We now move on to our characterization of performance on various axes of parameters, starting
with the effect of whitening, which visibly changes the learned bases as seen in Figure 2. Figure 3

5To clarify: The parameters used in our final evaluation are those that achieved the best (average) cross-
validation performance across all models: whitening, 1 pixel stride, 6 pixel receptive field, and 1600 features.

6



Experiments
Table 1: Test recognition accuracy (and error) for NORB (normalized-uniform)

Algorithm Test accuracy (and error)
Convolutional Neural Networks [14] 93.4% (6.6%)
Deep Boltzmann Machines [25] 92.8% (7.2%)
Deep Belief Networks [18] 95.0% (5.0%)
(Best result of [10]) 94.4% (5.6%)
K-means (Triangle) 97.0% (3.0%)
K-means (Hard) 96.9% (3.1%)
Sparse auto-encoder 96.9% (3.1%)
Sparse RBM 96.2% (3.8%)

Table 2: Test recognition accuracy on CIFAR-10
Algorithm Test accuracy
Raw pixels (reported in [11]) 37.3%
RBM with backpropagation [11] 64.8%
3-Way Factored RBM + ZCA (3 layers) [23] 65.3%
Mean-covariance RBM (3 layers) [22] 71.0%
Improved Local Coordinate Coding [31] 74.5%
Convolutional RBM [12] 78.9%
K-means (Triangle) 77.9%
K-means (Hard) 68.6%
Sparse auto-encoder 73.4%
Sparse RBM 72.4%
K-means (Triangle, 4k features) 79.6%

4.6 Final classification results

We have shown that whitening, a stride of 1 pixel, a 6 pixel receptive field, and a large number of
features works best on average across all algorithms for CIFAR-10. Using these parameters we ran
our full pipeline on the entire CIFAR-10 training set, trained a SVM classifier and tested on the
standard CIFAR-10 test set. Our final test results on CIFAR-10 are reported in Table 2 along with
results from other publications. Quite surprisingly, the K-means algorithm attains state-of-the-art
performance, with 77.9% accuracy using 1600 features. In fact, for this model, we have also tried
using even more features—up to 4000 features—yielding even higher performance of 79.6%.

Based on our analysis here, we have also run each of these algorithms on the NORB “normalized
uniform” dataset. We use all of the same parameters as for CIFAR, including the 6 pixel receptive
field size and 1600 features. The results are summarized in Table 1. Here, all of the algorithms
achieve very high performance. Again, surprisingly, K-means achieves the highest performance
with 97.0% accuracy (though in this case it is not a significant lead).

5 Conclusion
In this paper we have conducted extensive experiments on the CIFAR dataset using multiple unsu-
pervised feature learning algorithms to characterize the effect of various parameters on classification
performance. While confirming the basic belief that more features and dense extraction are useful,
we have shown more importantly that these elements can, in fact, be as important as the unsu-
pervised learning algorithm itself. Surprisingly, we have shown that even the K-means clustering
algorithm—an extremely simple learning algorithm with no parameters to tune—is able to achieve
state-of-the-art performance on both CIFAR and NORB datasets when used with the network pa-
rameters that we have identified in this work. This suggests that while more complex algorithms
may have greater representational power, they may not always be the best overall. Here we have
shown that fast, simple algorithms that enable us to choose network parameters carefully can be
highly competitive.

Acknowledgments
Supported by DARPA Deep Learning program under contract number FA8650-10-C-7020. Adam
Coates is supported in part by a Stanford Graduate Fellowship.

References
[1] A. Agarwal and B. Triggs. Hyperfeatures multilevel local coding for visual recognition. In European

Conference on Computer Vision, 2006.

8



Questions?


