An Analysis of Single-Layer Networks in Unsupervised Feature Learning

Adam Coates1, Honglak Lee2, Andrew Y. Ng1

Overview

- A Brief Introduction
- Unsupervised feature learning framework
- Experiments and Analysis
- Q&A

A Brief Intro

- Recent works focus on learning good feature representation
 - greedily pre-train several layers of feature
 - for each layer a set of parameters are chosen:
 - Number of features to learn
 - the location of the features
 - encoding input and output
- A Major drawback is complexity and expense

A Brief Intro

- In this paper :
 - First study the effect of these choices on single layer network
 - It turns out that there are other ingredients:
 - Whitening
 - large number of features
 - dense feature extraction

A Brief Intro

- What they did :
 - Used a simple feature learning framework that incorporates an unsupervised learning algorithm as a black box
 - Analyze performance impact of :
 - whitening
 - number of features trained
 - step size between extracted features
 - receptive field size

- Steps to learn features :
 - 1. Extract random patches form unlabeled training data
 - 2. Apply pre-processing stage
 - 3. Learn a feature mapping
- After learning features :
 - 1. Extract features from equally spaced sub-patches
 - 2. Pool features together to reduce number of feature values
 - 3. Train a linear classifier to predict labels

- Extract random sub-patches :
 - each patch has dimension *w-by-w* and *d* channels
 - each patch can be represented as a vector of size w.w.d
 - the dataset consists of *m* randomly sampled patches

- Pre-Processing :
 - Normalize the data by subtracting the mean and dividing by standard deviation
 - Perform whitening

Whitening Extracted Patches

Base Image

Extracted Patches Covariance

Whitened Patches

Whitened Patches Covariance

- Unsupervised Learning :
 - the "black box" takes dataset X and outputs a function $f: \mathbb{R}^N \to \mathbb{R}^K$ that maps input vector to a feature vector of size K
 - sparse auto-encoders
 - sparse RBMs
 - K-means clustering
 - Gaussian mixtures

- Feature Extraction and Classification
 - using the learned feature extractor, given any image patch
 - compute a representation for the patch
 - do this for many sub-patches of images

(c) Sparse Autoencoder (with and without whitening)

(d) Sparse RBM (with and without whitening)

Experiments

- The above framework includes number of parameters :
 - whitening
 - number of features
 - the step size
 - receptive field

Experiments

Figure 3: Effect of whitening and number of bases (or centroids).

78∟

80_[

80

Experiments

Table 1: Test recognition accuracy (and error) for NORB (normalized-uniforr

Algorithm	Test accuracy (and error)
Convolutional Neural Networks [14]	93.4% (6.6%)
Deep Boltzmann Machines [25]	92.8% (7.2%)
Deep Belief Networks [18]	95.0% (5.0%)
(Best result of [10])	94.4% (5.6%)
K-means (Triangle)	97.0% (3.0%)
K-means (Hard)	96.9% (3.1%)
Sparse auto-encoder	96.9% (3.1%)
Sparse RBM	96.2% (3.8%)

 Table 2: Test recognition accuracy on CIFAR-10

Algorithm	Test accuracy
Raw pixels (reported in [11])	37.3%
RBM with backpropagation [11]	64.8%
3-Way Factored RBM + ZCA (3 layers) [23]	65.3%
Mean-covariance RBM (3 layers) [22]	71.0%
Improved Local Coordinate Coding [31]	74.5%
Convolutional RBM [12]	78.9%
K-means (Triangle)	77.9%
K-means (Hard)	68.6%
Sparse auto-encoder	73.4%
Sparse RBM	72.4%
K-means (Triangle, 4k features)	79.6%

Questions?