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Abstract--We show that standard multilayer feedfbrward networks with as few as a single hidden layer and 
arbitrary bounded and nonconstant activation function are universal approximators with respect to LP(lt) per- 
formance criteria, for arbitrary finite input environment measures p, provided only that sufficiently many hidden 
units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings 
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks 
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a_Function and 
its derivatives. 
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1. I N T R O D U C T I O N  

The approximation capabilities of neural network ar- 
chitectures have recently been investigated by many 
authors, including Carroll and Dickinson (1989), Cy- 
benko (1989), Funahashi (1989), Gallant and White 
(1988), Hecht-Nielsen (1989), Hornik,  Stinchcombe, 
and White (1989, 1990), lrie and Miyake (1988), 
Lapedes and Farber (1988), Stinchcombe and White 
(1989, 1990). (This list is by no means complete.) 

If we think of the network architecture as a rule 
for computing values at l output units given values 
at k input units, hence implementing a class of map- 
pings from R k to R ~, we can ask how well arbitrary 
mappings from R k to R t can be approximated by the 
network, in particular, if as many hidden units as 
required for internal representation and computation 
may be employed. 

How to measure the accuracy of approximation 
depends on how we measure closeness between func- 
tions, which in turn varies significantly with the spe- 
cific problem to be dealt with. In many applications, 
it is necessary to have the network perform simul- 
taneously well on all input samples taken from some 
compact input set X in R k. In this case, closeness is 
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measured by the uniform distance between functions 
on X, that is, 

P~,.x(f, g) = sup If(x) - g(x) i. 

In other applications, we think of the inputs as ran- 
dom variables and are interested in the average per- 
formance where the average is taken with respect to 
the input environment measure/2, where p(R k) < ~. 
In this case, closeness is measured by the LP(p) dis- 
tances 

Pp.~,(f, g) = [fRk [f(x) -- g(x)l" dl~(X)] 'p, 

1 -< p < 0o, the most popular choice being p --- 2, 
corresponding to mean square error. 

Of course, there are many more ways of measur- 
ing closeness of functions. In particular, in many ap- 
plications, it is also necessary that the derivatives of 
the approximating function implemented by the net- 
work closely resemble those of the function to be 
approximated, up to some order. This issue was first 
taken up in Hornik et al. (1990), who discuss the 
sources of need of smooth functional approximation 
in more detail. Typical examples arise in robotics 
(learning of smooth movements) and signal process- 
ing (analysis of chaotic time series); for a recent ap- 
plication to problems of nonparametric inference in 
statistics and econometrics, see Gallant and White 
(1989). 

All papers establishing certain approximation ca- 
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pabilities of multilayer perceptrons thus far have 
been successful only by making more  or less explicit 
assumptions on the activation function ~u, for ex- 
ample,  by assuming ~u to be integrable, or sigmoidal 
respectively squashing (sigmoidal and monotone) ,  
etc. In this article, we shall demonstra te  that these 
assumptions are unnecessary. We shall show that 
whenever  ~u is bounded  and nonconstant ,  then, for 
arbitrary input environment  measures /~, standard 
mul t i layer  f eedfo rward  ne tworks  with act ivat ion 
function ~u can approximate  any function in IJ'(lO 
(the space of all functions on R ~ such that f~, i f (x ) ! '  
d/~(x) < ~) arbitrarily well if closeness is measured 
by p~.,, provided that sufficiently many hidden units 
are available. 

Similarly, we shall establish that whenever  V/ is 
cont inuous,  bounded  and nonconstant ,  then, for ar- 
bitrary compact  subsets X of R ~. standard multilayer 
feedforward networks with activation function ~ can 
approximate  any continuous function on X arbitrar~ 
ily well with respect to uniform distance p,,.x, pro- 
vided that sufficiently many hidden units are avail- 
able. Hence ,  we conclude that it ~s not the specific 
choice of the activation function, but rather  the mul-  
tilayer f eed forward  architecture itself which gwes 
neural networks the potential  of being universal 
learning machines.  

In addition to that. we significantly improve the 
resul ts  on s m o o t h  a p p r o x i m a t i o n  capabi l i t ies  of  
neural nets given in Hornik et al. (1990) by simul- 
taneously relaxing the conditions to be imposed on 
the activation function and providing results for the 
previously uncovered cases of  weighted Sobolev ap- 
proximation with respect to finite input environment  
measures  which do not have compact  support,  for 
example,  Gaussian input distributions. 

2.  R E S U L T S  

For notational convenience we shall explicitly for- 
mulate our results only for the case where there is 
only one hidden layer and one output unit. The cor- 
responding results for the general multiple hidden 
layer mult ioutput  case can easily be deduced from 
the simple case, cf. corollary 2.6 and 2.7 in Hornik 
et at. (1989). 

If there is only one hidden layer and only one 
output  unit, then the set of all functions implemented 
by such a network with n hidden units is 

~,~t~,.) ( q ~ ) =  {h:R~--. R h ( x )  ~ £, IL~u(a'x-0,)}. 

where q/ is the common  activation function of the 
hidden units and ' denotes transpose so that if a has 
components  a t ,  • • . , ae and x has components  ~ ,  
• . . , ~ ,  a 'x  is the dot product a ~  . . . . .  ~ ¢ k .  
(Output  units are always assumed to be linear. ) The 

set of all functions implemented tw such a nc t~  ,~ 
with an arbitrarily large number  of hidden unib: ', 

, r  

In what follows, some concepts from modern anal+ 
ysis will be needed.  As a reference,  we recommend 
Friedman (1982). For 1 > p <: ~ :xc write 

. . . .  ~ i'((X )i'~" 1: 
so that Pv.u(f, g) = IIJ -- gJtv.,, l.,'(/t} is the space of 
all functions f such that lJJ'lle+ : ",--. A subset S 
of Le(/O is dense in L"(IO if for arbitrary f E L;'(/,) 
and c > 0 there is a function ~,, 65_- S such that 

P,.,(f, g) < , , : .  

T h e o r e m  1: l j~u is u n b o u n d e d  and nonconstant ,  then 
;%(~u) is dense in LP(I*) f o r  all f ini te measures tz on 
R ~" 

C(X) is the space of all continuous functions on 
X. A subset S of C ( X )  is dense in C ( X )  if for arbitrary 
f E C(X) and r, > 0 there is a function g E S such 
that P , . x ( f  , g) < ~: 

T h e o r e m  2: I f  ~u is cont inuous,  bounded  and non- 
constant,  then '9~k( q/) is dense in C( X )  /-or all compact  
subsets X o f  R k. 

A k-tuple a - (a~ . . . . .  ~k) ot nonnegative in- 
tegers is called a multiindex. We then write tal = 
a~ m "'" ~ a~ for the order  of the multiindex ~ and 

Of f (x )  = a ~  . . . .  o~> (~) 

for the corresponding partial derivative of a suffi- 
ciently smooth function f of x = ( ~  . . . . .  5,) '  C 
R k ' 

C"(R k) is the space ot all functions f which, to- 
gether with all their partial derivatives D " f  of order 
lal <- m. are continuous on R ~. For all subsets X of 
R k and f E Cm(Rk}, let 

q f:l ........ v: -  max ..... supt..riD" f(x)i 

A subset S of C"(R k) is uni formly  m dense on com- 
pacta in C"(R  a) if for all f E C"(Rk), for all compact  
subsets X of R ~. and for all e > 0 there is a function 
g -- g ( f ,  X .  e) E S such that ~lf gtl ..... x <- t:. 

For f E Cm(Rk), /~ a finite measure  on R k and 
1 < p < ~. let 

1 fii~,: : =  ~_~ ',O"fl;' dlt 

weighted Sobolev  space C'"P(~ ) be defined and let the 
by 

C"4'bd = { f E  C'"(Rq : ![.t~! ...... '::- M. 

Observe that ('m'P(/x) = C"(R ~) ~ // has compact 
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support. A subset S of Cm'p(/2) is dense in Cm'p(/2), if 
for all f ~ C"'~(/2) and e, > 0 there is a function g = 
g( f ,  ~) @ S such that Ill - g[[m.p,u < e. 

We then have the following results. 

Theorem 3: I f  ~, @ Cm(R k) is nonconstant and 
bounded, then !')lk(~ll ) is uniformly m-dense on com- 
pacta in C"(R k) and dense in C~'P(/x) for all finite 
measures/2 on R k with compact support. 

Theorem 4: I f  ~u ~ cm(R k) is nonconstant and all its 
derivatives up to order m are bounded, then ;9~k(~) is 
dense in C'~'~(/2) for all finite measures It on R k. 

3. DISCUSSION 

The conditions imposed on ~ in our theorems are 
very general. In particular, they are satisfied by all 
smooth squashing activation funct ions~such as the 
logistic squasher or the arctangent squasher-- that  
have become popular in neural network applications. 

A lot of corollaries can be deduced from our theo- 
rems. In particular, as convergence in LP(/2) implies 
convergence in/2 measure, we conclude from Theo- 
rem 1 that whenever ~ is bounded and nonconstant, 
all measurable functions on R k can be approximated 
by functions in V)~k(~V) in 12 measure. It follows that 
(cf. Lemma 2.1 in Hornik et al. [1989]) for arbitrary 
measurable functions f and e > 0, we can find a 
compact subset X,: of R k and a function g ~ ':~Ik(~) 
such that 

P,x,(f, g) < c,, ,u(Rk\X,.) < c. 

This substantially improves Theorems 3 and 5 in 
Cybenko (1989) and Corollary 2.1 in Hornik et 
al. (1989), and is of basic importance for the use 
of artificial neural networks in classification and 
decision problems, cf. Cybenko (1989), Sections 3 
and 4. 

If the activation function is constant, only constant 
mappings can be learned, which is definitely not a 
very interesting case. The continuity assumption in 
Theorem 2 can be weakened. For example, Theorem 
2.4 in Hornik et al. (1989) shows that whenever ~u 
is a squashing function, then OIk(~U) is dense in C(X)  
for all compact subsets of R k. In fact, their method 
can easily be modified to deliver the same uniform 
approximation capability whenever ~u has distinct fi- 
nite limits at -+~. Whether  or not the continuity as- 
sumption can entirely be dropped is still an open (and 
quite challenging) problem. 

There are, of course, unbounded functions which 
are capable of uniform approximation. For example, 
a simple application of the Stone-WeierstraB theo- 
rem (cf. Hornik et al. [1989]) implies that OIk(exp) 
is dense in C(X), where of course exp is the standard 
exponential function. However,  our theorems do 
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definitely not remain valid for all unbounded acti- 
vation functions. If ~u is a polynomial of degree d 
(d -> 1), then 0~k(~U) is just the space Pa of all poly- 
nomials in k variables of degree less than or equal 
to d. Hence,  for all reasonably rich input spaces X 
or input environment measures/2, O~k(~U) cannot be 
dense in C(X)  or LP(/2), respectively. Also, if the 
tail behavior of an unbounded function ~, is not com- 
patible with the tail behavior of /~, then x ~ ~, 
(a'x - O) may not be an element of LP(/2) for most 
or all nonzero a ~ R k. 

By allowing for a much larger class of activation 
functions, Theorem 3 significantly improves the re- 
sults in Hornik et al. (1990), where the conclusions 
of Theorem 3 are established under the assumption 
that there exists some l >- m such that ~, C C~(R) and 
0 < fR ]D/~u[ dt < ~ (/-finiteness). However,  many 
interesting functions, such as all nonconstant periodic 
functions, are not l finite. Using Theorem 3 we easily 
infer that if ~u is a nonconstant finite linear combi- 
nation of periodic functions in Cm(R) (in particular, 
if ~, is a nonconstant trigonometric polynomial), then 
O~k(~U) is uniformly m dense on compacta in Cm(Rk). 
Other interesting examples that can now be dealt 
with are functions such as ~,(t) = sin(t)/t (which is 
not I finite for any l), or more generally, all functions 
which are the Fourier transform of some finite signed 
measure which has finite absolute moments up to 
order m (such functions are usually not l finite). 

Theorem 4 gives weighted Sobolev type approx- 
imation results for the previously uncovered case of 
finite input environment measures which are not 
compactly supported. Using Theorem 4 we may con- 
clude that if ~u is the logistic or arctangent squasher, 
or a nonconstant trigonometric polynomial, then 
~,'%(~u) is dense in C"~'f'(/2), for all finite measures/2. 
In particular, we now have a result for inputs that 
follows a multivariate Gaussian distribution. 

The following generalization of our results is im- 
mediate: suppose that ~, is unbounded,  but that there 
is a nonconstant and bounded function ~b E ':~(~u). 
Then, by Theorem 1, 0Zk(¢) is dense in LP(/2). As 
~%(49) C 0~k(~U), we can state that in this case, 0~k(~u) 
contains a subset which is dense in LP(/2). (Observe 
that if the support of/2 is not compact and ~u is un- 
bounded, we do not necessarily have 0zk(~u) C LP(~t); 
hence, we cannot simply state that ':)~k(~/) itself is 
dense in LP(/2).) Similar considerations apply for the 
other theorems. 

If ~ is an open subset of R k, let Cm(yD be the 
space of all functions f which, together with all their 
partial derivatives D~f  of order ]c~ t -< m, are contin- 
uous on ~.  Let us say that a subset S of Cm(~) is 
uniformly m dense on compacta in Cm([D if for all 
f ~ Cm(~), for all compact subsets X of ~ ,  and for 
all e > 0 there is a function g = g ( f ,  X, e) C S such 
that]If  - gl[ ..... x < ~ .  
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It is easily seen that under  the conditions of Theo-  
rem 3, ~,%(u/) is uniformly m dense on compacta  in 
Cm(f~) for all open subsets 1~ of RL In fact, it suffices 
to show that whenever  f @ Cm(f~) and X is a compact  
subset of ~ ,  then we can find a function E x f  
C"(R ~) satisfying Ex f ( x )  = f (x)  for all x ~ X. Now, 
by Problem 3.3.1 in Friedman (1982), we can find a 
function h ~ C*(R ~) such that h = 1 on X. 0 :~ 
h -< 1 on f~\X, and h = 0 outside fL Take E~ f = 
h f  on f~ and E x f  = 0 outside It. 

Suppose that I t  is bounded.  Functions f in C'"([~) 
do not necessarily satisfy Ilf[I . . . . .  ,~ < ~. On the other 
hand, all functions in Cm(Ra), and hence in partic- 
ular all functions in rll~(~u) if ~ ~ Cm(R~), satisfy 
Ilgll . . . . .  x < ~ for each compact  subset X of R ~ 
Hence in general,  it is not possible to approxi- 
mate  functions in C'~(f~) by functions r)~(q/) arbi- 
trarily well with respect to It'[[ ...... ~. 

However ,  one might ask whether  such approxi- 
mation is possible for at least all functions in the 
space Cg'(O) which consists of all functions f 
Cm(l)) for which D~f is bounded and uniformly con- 
tinuous on f~ for 0 -< lal --- m. The following prom- 
inent counterexample  shows that this is not always 
possible. Let  k = 1, I t  = ( - 1 , 0 )  tO (0,1) and let 
f = 0 on ( - 1 , 0 )  and f = 1 on (0,1). Then f ~  
C~(it), but it is obviously impossible to approximate  
f by continuous functions on R uniformly over  It. In 
fact, we always have Ilf - glt{~.,.a ---- 1/2 for all 
g ~ C(R). Roughly speaking, if 1) is bounded,  then 
':)t~(~,) approximates  all functions in C~'(11) arbitrarily 
well with respect to I['ll .... a if the geometry  of ~ is 
such that functions f ~ C~"(it) can be extended to 
functions in Cm(Re). (Cf. also the next paragraph.)  

Classical (nonweighted) Sobolev spaces are de- 
fined as follows. Let  f~ be an open set in R ~, let the 
input environment  measure/z  be standard Lebesgue 
measure on I t ,  for functions f ~ Cm(f~) let 

" ' " m , ,  = 

and let 

(More precisely, standard Sobolev spaces are defined 
as the complet ions of the above H".v(lI)  with respect 
to [l'll,,,p.a. The elements  of these spaces are not nec- 
essarily classically smooth functions, but have gen- 
eralized derivatives. See, for example,  the discussion 
in Horn ik  et al. (1990).) 

It is easily seen that globally smooth functions on 
R t are not dense in Hm'p(I-]) (with respect to II ' l t , . .p,a) 

for most  domains lI .  In the above example,  no func- 
tion in C~(R) can approximate  f in H~~(O), Arbi- 
trarily close approximations by globally smooth 
functions on R ~ are only possible under  certain con- 
ditions on the geometry  of I I  that  somehow exclude 

the possibility that t l  lies on both ~ldes ot p~r-', ,o~ ,~, 
boundary.  Such conditions arc. foe example.  ~!,.a~ ~_~ 
has the segment proper O, {Adam,,~, 1c~75. "]-he~,te~: 
3.18) or that ~ is starshaped r~.itk reapecl ~', . . . .  ~ ,~ ,  
(Maz' ja ,  1985. Theorem l. t  6 _; li~ t~ott~ cas,::, 
can be shown that C,~(R"L ~ht .,p~c~ o~ ,lit (unt- 
tions on R ~ with compact  supporl which arc m 
finitely often continuously differentiabte. ~.s dense m 
H"'~'(f~). Hence,  if in addition ,~! ~s [~oundcd, '"~t ~! 
is dense in tt'~P([~) under the ;~mdmon~ ~1 lheo  
rem 3 

If the underlying input e n v m m m e n t  measure/~ ~ 
not finite, but is regular in the sense that i~{X) - 
for all compact  subsets X of R* _0,.s an examptc v,.c 
may take standard Lebesgue measure on R ~}, then 
~)~¢q~) is dense in all L('o~UO spaces, ! - v 
whenever ~ is bounded and nonconstant.  Hnprowng 
results in Stinchcombe and While (1989). 

Similarly. we can measure closeness of functions 
in Cm{R ~) bv the local weighted Sobolev space dis.. 
tance measure 

o,, ~ . , , ( ( , g ) : -~  2 min{!~ e~i .... .it 

where ] <-- p ~ ~c./6, is the restriction of/~ to sorne 
bounded set X ,  and the X,, exhaust all of RL that is. 
U,;~ ~ X,, = RL It follows straightforwardly that. un- 
der the conditions of Theorem 3 nk(q/i is dense in 
C~(R ~) with respect to p ......... 

Condu~ng Remark 

In this article, we established that multilaver feed- 
forward networks are. under very general conditions 
on the hidden unit activation function, universal ap- 
proxlmators  provided that sufficiently many hidden 
units are available. However .  it should be empha- 
sized that our resul tsdo not mean that all activation 
functions ~u will perform equally well in specific 
learning problems.  In applications, additional issues 
as. for example,  minimal redundancy or computa-  
tional efficiency, have to be taken into account as 
well. 

4. PROOFS 

In order  to establish our  theorems,  we follow an 
approach first utilized by Cybenko  (1989) that is 
based on an application of the Ha,hn-Banach theo- 
rem combined with representat ion theorems for con- 
tinuous linear functionals on the function spaces 
under consideration. 

Proof of ~ ~  1 and 2: As ~, is bounded.  
:%(~,) is a linear subspace of  Le(p) for all finite mea- 
sures ~t on RL If, for some #, ':~k(~) is not dense in 
LP(/~), Corollary 4.8.7 in Fr iedman (1982) yields that 
there is a nonzero continuous linear functional A on 
LP(tt) that vanishes on ~Yck(tu). 
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As well known (Friedman,  1982, Corollary 4.14.4 
and Theorem 4.14.6), A is of the form f ~ A( f )  = 
fRk f g d/2 with some g in Lq(p) ,  where q is the 
conjugate exponent  q = p / ( p  - 1). (For p --- 1 we 
obtain q -- ~; L~(/2) is the space of all functions f 
for which the/2 essential supremum 

[[,fl[ .... = in f  {U > 0 : p {x ~ R ~ : l f (x) l  > N} = 0} 

is finite, that is, the space of all/2 essentially bounded 
functions.) 

If we write a ( B )  = f~  g d/2, we find by H61der's 
inequality that for all B, 

~ 1p g d p  [a(S)[ 

<-}ll,tl,,,,,llgll~,,, <- (#(Rk))'"Ptlgllq,,, < zc 

hence a is a nonzero finite signed measure on R ~ 
such that A( f )  = fR, f g d/2 = fR, f da. As A vanishes 
on ':3zk(~u), we conclude that in particular 

Rk ~u(a'x - O) da(x) = 0 

for all a E R k and 0 C R. 
Similarly, suppose that ~, is continuous and that 

for some compact  subset X of R k, ~,%(~u) is not dense 
in C(X). Proceeding as in the proof  of Theorem 1 in 
Cybenko (1989), we find that in this case there exists 
a nonzero finite signed measure a on R k (a is actually 
concentrated on X)  such that 

~ ~u(a'x - O) da(x) = 0 

for a l l a ~ R  k , 0 ~  R. 
Summing up, in either case we arrive at the fol- 

lowing question. Can there exist a nonzero  finite 
signed measure a on R ~ such that fR~ ~u(a'x -- O) 
da (x )  vanishes for all a ~ R k and 0 ~ R? This ques- 
tion was first asked and investigated by Cybenko 
(1989) who basically gave the following definition. 

Definition. A bounded function ~u is called discrim- 
inatory if no nonzero finite signed measure a on R ~ 
exists such that 

f~, ~u(a'x - O)da(x) = 0 for a l l a E  W , O ~  R. 

In Cybenko (1989), it is shown that if ~, is sigmoidal, 
then ~u is discriminatory. (The proof  can trivially be 
generalized to the case where ~, has distinct and finite 
limits at _+~.) However ,  the following much stronger 
result is true, which, upon combination with the 
above arguments,  establishes Theorem 1 and 2. 

Theorem 5: Whenever  ~u is bounded and noncon- 
stant, it is discriminatory. 

Proof: Throughout  the proof,  certain techniques 
and results from Fourier analysis will be used. As a 

reference we recommend the excellent book by Ru- 
din (1967). 

Suppose that ~u is bounded and nonconstant and 
that a is a finite signed measure on R k such that 
fRk ~u(a'x -- 0) da(x)  = 0 for all a E R k and 0 ~ R. 
Fix u E R k and let a,, be the finite signed measure 
on R induced by the transformation x ~ u'x,  that is, 
for all Borel sets of R we have 

a,,(B) = o{x ~ R k : u'x C B}. 

Then at least for all bounded functions Z on R, 

fRkZ(U'X) d a ( x ) =  f z(,) da,,(t). 

Hence by assumption, 

for all 2, 0 E R. 
To simplify notations, let us write L = LI(R)  for 

the space of integrable functions on R (with respect 
to Lebesgue measure)  and M = M(R)  for the space 
of finite signed measures on R. For f E L, [I filL 
denotes the usual L ~ norm and f the Fourier trans- 
form. Similarly, for r E M, t[rltM denotes the total 
variation of r on R and ~ the Fourier transform. 

By choosing 0 such that ~u(-0)  # 0 and setting 
;. to zero, we find that in particular fR da~(t) = 
6,(0) = 0. For u = 0, a0 i s  concentrated at t = 
0 and a0{0} = 6o = 0, hence a0 = 0. Now suppose 
u # 0. Pick a function w E L whose Fourier trans- 
form has no zero (e.g., take w(t) = exp( - t2 ) ) .  Con- 
sider the integral 

~ (  v/(2(s + t) - O)w(s)ds  da,(t). 
J~J~ 

A s  

I~u(2(s + t) - O)]lw(s)l ds d[a,,b(t) 

Ilwll,_ll<,H,,, sup,~_Rl~u(t)l < ~, 

we may apply Fubini 's theorem to obtain 

0 = f~ [ fRqJ (2 t -  ( 0 -  2s))da,( t)]  w(s) 

= fj. ~ u ( 2 ( s + t ) - O ) w ( s ) d s  da~(t) 

= fR ~,(,~t - O) d(w * ~r,)(t), 

ds 

where w * a ,  denotes the convolution of w and a, .  
By Theorem 1.3.5 in Rudin (1967), L is a closed 
ideal in M, hence in particular w * a ,  is absolutely 
continuous with respect to Lebesgue measure.  Let h 

L be the corresponding Radon -Nikodym deriva- 
tive. Then h = fi~6,, hence in particular h(0) = 0. 
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The above equation is then equivalent to fR qJ 
(2t - 0) h(t)  dt = 0. Let a ~ 0 and ;~ E R. By first 
replacing 2 by 1/a  and 0 by - ),/a and then perform- 
ing the change of variables t +--> at  - ?,, we obtain 
that for all 7 ~ R and for all nonzero real a, 

f ~u(t)h(at - dt = O. /) 

Let us write M~h(t)  for h (a  O. The above equation 
implies that fR ~u(t)f(t) dt vanishes for all f contained 
in the closed translation invariant subspace 1 spanned 
by the family M~h, a ~ O. By Theorem 7.1.2 in Rudin 
(1967), I is an ideal in L. 

Following the notation in Rudin (1967), let us 
write Z ( f )  for the set of all ~o E R where the Fourier 
transform f(co) of f ~ L vanishes, and if 1 is an ideal, 
define Z( I ) ,  the zero set of 1, as the set of ~o where 
the Fourier transforms of all functions in 1 vanish. 

Suppose that h is nonzero. As M~h(~u) = ~hOo/ 
a ) / a ,  we find that Z(1) = {0} and in f ac t , / i s  precisely' 
the set of all integrable functions f with fR f ( t )  
dt = f(0)  = 0. To see this, let us first note that for 
all functions f E 1, we trivially have {0} = Z(I )  C_ 
Z ( f ) .  Conversely, suppose that f has zero integral. 
As the intersection of the boundaries of Z( I )  and 
Z ( f )  (again trivially) equals {0} and hence contains 
no perfect set, Theorem 7.2.4 in Rudin (1%7) im- 
plies that f E I. 

Hence,  if h is nonzero,  the integral fR q/(t)f(t)  dt 
vanishes for all integrable functions which have zero 
integral. It is easily seen that this implies that ~, is 
constant which was ruled out by assumption. Hence 
h = 0 and thus h = ~6 ,  is identically zero, which in 
turn yields that ~, vanishes identically, because fi, 
has no zeros. By the uniqueness Theorem 1.3.7(b) 
in Rudin (1967), a,, = 0. 

Summing up, we find that a,  = 0 for all u ~ R ~. 
To complete the proof,  let ?r ( u ) = f ~, e xp( iu' x ) da ( x ) 
be the Fourier transform of a at u. Then 

~(u) = ( e x p ( i u ' x )  &r(x) 
Jg k 

- f~ exp(it) d~r,,(t) 

= 0, 

that is, ~ = 0. Again invoking the uniqueness Theo- 
rem 1.3.7(b) in Rudin (1%7), a = 0 and the proof  
of Theorem 5 is complete. 

The proofs of the remaining theorems require 
some additional preparation. For functions f defined 
on R ~, let tlfll. :=  supn, Jf(x)l. Let w be the familiar 
function in C"(R ~) with support  in the unit sphere 
given by 

f c  exp ( - i / ( 1  - Ixl0), if Ixl < i ,  
w(x) = [0,  if Ix 1-> 1, 

where Ixi is the euclidean length of x and ~ i:-, 
constant chosen in a way that f k  w(x) dr  = i ~,:~ 
r. > 0, let us write w~(x) = ~ %'(x/,,:). 

If f is a locally integrablc tunction on .k: ~, let L f 
be the convolution w, * f .  The following facts arc 
well known (Adams. 1975. pp. 2~ff.)  

• .l,.f C C~(R ~) with derivative> /)" i f  =. l>' w 
. f .  

• ljJ,:fj[,, < li.fti,,. Thus. if f is bounded, then J,-..[(x) is 
uniformly bounded in x and ~:. 

• If f is continuous, then J , f  ---, c uniformly on com- 
pacta as ;:-~ 0. 

Similarly, if a is a locally finite signed measure on 
R k. let J~a be the convolution w ~: a. that is. 

. /o ' (x)  = ][. w,(.~ y ~ ¢ m t y L  

Then again. J.a E C~(Rk). If cr has compact support. 
J~o- has compact support. 

Finally, the following result can easily be estab- 
lished. (The first assertion is a straightforward ap- 
plication of Fubini's theorem using the symmetry of 
w .  and the second one  follows bv Lebesgue ' s  
bounded convergence theorem. ) 

Lemma.  Suppose that f and a satisfy one of the two 
following conditions: (a) f is continuous and er is a 
finite signed measure with compact support; ( b ) f  Is 
bounded and continuous and a is a finite signed mea- 
sure. Then.  if T, denotes translation bv v. that is, 
T,.f(x) = .f(x - - ) , ) ,  

I I t . " - - ,  t.. T . , . o  . I . , . -  
and 

lim t f L a d x -  I ' do .  

Proof of Theorem 3: If ~:)ik( ~ I ~s not uniformly m 
dense on compacta in cm(Rk), then b y th e  usual dual 
space argument there exists a collection a~,, 
a] -< m of finite signed measures with support in 

some compact subset X of R k such that the functional 

Aif)= ~ j D~.t a~,, 
a<m k 

vanishes on :')~.(~u), but not identically on Cm(Rk). 
For e > 0. define functionals &: by 

a F ~ m  

(All integrals exist because all 3 ~  have compact 
support.)  By part (a) of the above l emma ,  we con- 
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clude that 

= J~( M r ,  f)  w,:(y) dy 

and that 

l im A,(f) = A(f )  

for all f ~ C'(R~). Finally, integration by parts yields 
that 

: = h~ 

dx. 

Let us write qJ~.o(x) = ~u(a'x - 0). Suppose that 
A vanishes on ':)l,(~,). As ~'~.0 E :%(~,) for all a C R k 
and 0 ~ R, we infer that  A(~u,.0) = 0. Observing that 
T,,~u~,o = ~,~,~_o,y, we see that A(T,4u~,0 ) = 0 for all 
a, y E R k, 0 E R. It follows that 

= A X < , , t  = f .  = o 

for all a E R k and 0 E R. As, by assumption, ~u is 
bounded and nonconstant,  Theorem 5 implies that 
h,: ~- 0. Hence A~(f) -- fR* f h,: dx vanishes for all 
functions f E Cm(R *) which in turn yields that 

A ( f )  - l im A , ( f )  = 0 

for all f E C'"(Rk), which was ruled out  by assump- 
tion. We conclude that, under the conditions of 
Theorem 3, r)~k(~u) is uniformly m dense on compacta 
in Cm(Rk), establishing the first half of Theorem 3. 

The second half of Theorem 3 now follows 
easily. We have to show that for all f E C' (R  k) 
and e > 0, there is a function g E r)~,(~u) such that 
Ilf - gltm.p4, < c. Let X be a compact set containing 
the support of / t .  We find that 

Ill - gll~.,,.¢, -< >' Ill - gllm.,.X, 

where ,,' = /~(R k) # {a : -< m}. Hence, if we take 
g ~ r)tk(q/) such that I I /  - g l [  . . . .  x < e/)~, which is 
possible by the first half of Theorem 3 that we just 
established, we find that Ilf - gllm.p,,, < e and the 
proof of Theorem 3 is complete. 

Proof of Theorem 4: The proof of Theorem 4 
parallels the one of Theorem 3. Let us write 
Cm'"(R*) for the space of all functions f E Cm(R k) 
which, along with their derivatives up to order m, 
are bounded, that is, 

C~'(e~) = {f ~ C'°(R~) : IIO~fll,, < ~, I~l-< m}. 

It is easily seen that C'","(R k) is a dense subset of 
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C'*(p) ,  By assumption, ~, E C""(R), hence ~,% 
c cm,"(R c cm,.(i,). 

If r)~k(~u) is not dense in Cm'P(12), the usual dual 
space argument yields the existence of a suitable col- 
lection of functions g~ E Lq(fl), [o~ I --< m, where q is 
the conjugate exponent p / ( p  - 1), such that the 
functional  

A(f)  = Z ( D",t 'g , ,dP 
a]~m J Rk 

vanishes on r)~k(~,), but not identically on Cm'u(R*). 
Now proceed as in the proof of Theorem 3 with the 
finite signed measures a ,  given by da~ = g~ dp, 
C"'"(R k) replacing Cm(Rk), and using part (b) of the 
lemma. 
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