
Learning the Kernel Matrix
with Semi-Definite Programming

Gert Lanckriet gert@eecs.berkeley.edu

Department of Electrical Engineering and Computer Science, U.C. Berkeley

Nello Cristianini nello@support-vector.net
Peter Bartlett peter.bartlett@anu.edu.au

BIOwulf Technologies / Division of Computer Science and Department of Statistics, U.C. Berkeley

Laurent El Ghaoui elghaoui@eecs.berkeley.edu

Department of Electrical Engineering and Computer Science, U.C. Berkeley

Michael I. Jordan jordan@cs.berkeley.edu

Division of Computer Science and Department of Statistics, U.C. Berkeley

Abstract

Kernel-based learning algorithms work by
embedding the data into a Euclidean space,
and then searching for linear relations among
the embedded data points. The embedding
is performed implicitly, by specifying the in-
ner products between each pair of points in
the embedding space. This information is
contained in the so-called kernel matrix, a
symmetric and positive definite matrix that
encodes the relative positions of all points.
Specifying this matrix amounts to specifying
the geometry of the embedding space and
inducing a notion of similarity in the input
space—classical model selection problems in
machine learning. In this paper we show how
the kernel matrix can be learned from data
via Semi-Definite Programming techniques.
When applied to a kernel matrix associated
with both training and test data this gives a
powerful transductive algorithm—using the
labelled part of the data one can learn an
“optimal” embedding also for the unlabelled
part. The induced similarity between test
points is learned by using training points
and their labels. Importantly, these learning
problems are convex, so we obtain a method
for learning both the model class and the
function without local minima. Finally, the
novel approach presented in the paper is sup-
ported by positive empirical results.

1. Introduction

Finding a representation of the data that makes it eas-
ier to detect certain given structure is an important
task that usually precedes the use of learning algo-
rithms.

In kernel-based learning methods, such a representa-
tion is implicit in the choice of the kernel—a function
that specifies the inner product between the images of
two given data points in a certain space, dictating their
relative positions in it. The choice of the space itself
is also a component of the choice of a representation.

It is important to observe that we do not necessar-
ily need to choose a kernel function—the embedding
of a finite set of points is entirely specified by writ-
ing a finite-dimensional kernel matrix, also known as a
“Gram matrix.” It is possible to prove that any sym-
metric positive definite matrix is a valid Gram matrix,
in the sense that it specifies the values of some inner
product. This suggests viewing the model selection
problem in terms of Gram matrices rather than kernel
functions.

In this paper we address the problem of transduction—
completing the labelling of a partially labelled dataset.
In other words, we are only required to make predic-
tions on a finite set of points known a priori. Instead
of learning a function, we just need to learn a set of
labels. Equivalently, our data live in a finite set, com-
pletely specified at the start.

We will address this problem by learning a kernel ma-
trix corresponding to the entire dataset, a matrix that

optimizes a certain cost function depending on the
available labels. In other words, we use the available
labels to learn a good embedding, and we apply it to
both the labelled and the unlabelled data. The re-
sulting kernel matrix can then be used in combination
with a number of existing learning algorithms that use
kernels, for example support vector machines.

All this can be done in full generality by using tech-
niques from semi-definite programming, a branch of
convex optimization that deals with optimizing con-
vex functions over the convex cone of positive semi-
definite matrices, or convex subsets thereof. The cost
functions we use are motivated by error bounds, and
are convex.

The paper is organized as follows. In Section 2, the es-
sentials of kernel-based learning are presented. Section
3 introduces semi-definite programming and shows
how this technique can be used to optimize kernel ma-
trices, to obtain a novel algorithm. These pieces are
put together in Section 4, where we explain how to
learn the kernel matrix. Section 5 presents novel error
bounds that motivate our cost functions, and positive
empirical results are reported in Section 6.

2. Kernel Methods

Kernel-based learning algorithms (Cristianini &
Shawe-Taylor, 2000; Schölkopf & Smola, 2002) work
by embedding the data into a Hilbert space, and
searching for linear relations in such a space. The
embedding is performed implicitly, by specifying the
inner product between each pair of points rather than
by giving their coordinates explicitly. This approach
has several advantages, the most important deriving
from the fact that often the inner product in the em-
bedding space can be computed much more easily than
the coordinates of the points themselves.

Given an input set X , and an embedding space F ,
we consider a map Φ : X → F . Given two points
xi ∈ X and xj ∈ X , the function that returns the
inner product between their images in the space F is
known as the kernel function.

Definition A kernel is a function k, such that
k(x, z) = 〈Φ(x),Φ(z)〉 for all x, z ∈ X , where Φ is
a mapping from X to an (inner product) feature space
F .

We also consider the matrix Kij = k(xi, xj):

K = (k(xi,xj))
n
i,j=1 ,

which is known as the “kernel matrix” or “Gram ma-
trix.” It is a symmetric positive definite matrix, and

since it specifies the inner products between all pairs
of points {xi}n

i=1, it completely determines the rela-
tive positions between those points in the embedding
space.

Since in this paper we will consider a finite input set
X , we can characterize kernel functions and matrices
in the following simple way.

Proposition Every positive definite and symmetric
matrix is a kernel matrix, that is, an inner product
matrix in some embedding space. Conversely, every
kernel matrix is symmetric and positive definite.

Notice that, if we have a kernel matrix, we do not need
to know the kernel function, nor the implicitly defined
map Φ, nor the coordinates of the points Φ(xi). We
do not even need X to be a vector space; in fact in this
paper it will be a generic finite set. We are guaranteed
that the data are implicitly mapped to some Hilbert
space by simply checking that the kernel matrix satis-
fies the conditions above.

The solutions sought by kernel-based algorithms such
as the support vector machine (SVM) are linear func-
tions in the feature space:

f(x) = wT Φ(x),

for some weight vector w. The kernel can be exploited
whenever the weight vector can be expressed as a linear
combination of the training points, w =

∑m
i=1 αiΦ(xi),

implying that we can express f as follows:

f(x) =
n∑

i=1

αik(xi,x).

An important issue in applications is that of choosing
a kernel k for a given learning task; intuitively, we wish
to choose a kernel that induces the “right” metric in
the space.

For the special case of two-class classification, several
measures of separation between two sets of data have
been developed. For example, we can define the align-
ment between a kernel and a set of labels, or the mar-
gin of a separation (the distance between the convex
hulls of the two classes), and its noise-tolerant version
the “soft margin.”

We will first define the alignment between two kernels,
then this will be extended to the alignment between
kernel and labels, by constructing a “target kernel”
k(xi,xj) = yiyj with yi ∈ Y = {−1,+1}.

Given an (unlabelled) sample S = {x1, . . . ,xn}, we use
the following inner product between Gram matrices,
〈K1,K2〉F =

∑n
i,j=1 k1(xi,xj)k2(xi,xj).

Alignment The (empirical) alignment of a kernel k1

with a kernel k2 with respect to the sample S is the
quantity

Â(S, k1, k2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F
,

where Ki is the kernel matrix for the sample S using
kernel ki.

This can also be viewed as the cosine of the angle be-
tween two bi-dimensional vectors K1 and K2, repre-
senting the Gram matrices. If we consider K2 = yyT ,
where y is the vector of {±1} labels for the sample,
then

Â(S, K, yyT) =
〈K, yyT 〉√

〈K, K〉〈yyT , yyT 〉
=

〈
K, yyT

〉
m
√
〈K, K〉

,

since
〈
yyT , yyT

〉
= m2.

Secondly, we will define the margin of separation,
which will then be expressed using duality.

Margin Given a linearly separable labelled sample
Sl = {(x1, y1), . . . , (xn, yn)}, the hyperplane (w, b)
that solves the optimization problem

min
w,b

〈w,w〉 (1)

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1, i = 1, . . . , n

realizes the maximal margin classifier with geomet-
ric margin γ = 1/‖w∗‖2 (Cristianini & Shawe-Taylor,
2000), where w∗ is that w that optimizes (1). This
margin is also called hard margin (because of the lin-
ear separability).

Geometrically, γ corresponds to the distance between
the convex hulls (the smallest convex sets that con-
tain the data in each class) of the two classes (Ben-
nett & Bredensteiner, 2000). By transforming (1) into
its corresponding dual problem (Cristianini & Shawe-
Taylor, 2000), we can express the squared inverse mar-
gin w(K) = 1/γ2 corresponding to a kernel matrix K
as follows:

w(K) = 〈w∗,w∗〉 (2)
= max

α
2αT e− αT G(K)α : α ≥ 0, αT y = 0,

where e is the n-vector of ones, α ∈ Rn, G(K) is
defined by Gij(K) = [K]ijyiyj = k(xi,xj)yiyj and
α ≥ 0 ⇔ αi ≥ 0, i = 1, . . . , n.

For a non-linearly separable labelled sample Sl, we
can define the noise-tolerant soft margin (Schölkopf
& Smola, 2002). Geometrically, this corresponds to
the distance between reduced convex hulls of the two
classes (Bennett & Bredensteiner, 2000).

Both the alignment (Cristianini et al., 2001) and the
soft margin (Schölkopf & Smola, 2002) are concen-
trated quantities. This means that we can reliably
estimate their expected value from a finite sample, or
estimate their value on the test set by observing them
on the training set.

These quantities can now be used to obtain bounds
on the generalization of given classifiers (under the as-
sumption that the data have been drawn IID). As we
will see in Section 5, γ can be used to bound the perfor-
mance of support vector machines: for a thresholded
version of f(x), the proportion of errors on the test
data is, with probability 1− δ, bounded by

1
n

n∑
i=1

φ(Yif(Xi))

+
1√
n

(
4 +

√
2 log(1/δ) +

√
BC

nγ2

)
, (3)

where C < n and trace(K) ≤ B. This is valid
when considering a kernel matrix of the form K =∑m

i=1 µiKi for a fixed set {K1, . . . ,Km}. As we will
see in Section 4, this is exactly what we need for learn-
ing the kernel matrix.

3. Semi-Definite Programming

Semi-definite programming (Vandenberghe
& Boyd, 1996) deals with the optimization
of convex functions over the convex cone1

P =
{
X ∈ Rp×p|X = XT , X � 0

}
of symmetric

positive semi-definite matrices, or subsets of this cone.
Given the Proposition in Section 2, P can be viewed
as a search space for possible kernel matrices. This
consideration leads to the key problem addressed in
this paper—we wish to specify a convex cost function
that will enable us to learn the optimal kernel matrix
from P using semi-definite programming. Because
of the convexity, this approach allows us to avoid
problems with local minima.

Definition The general form of a Semi-Definite Pro-
gram (SDP) is

min
x

cT x (4)

subject to F (x) = F0 + x1F1 + . . . + xnFn � 0
Ax = b,

where x ∈ Rp and Fi = FT
i ∈ Rp×p. F (x) � 0 (called

a linear matrix inequality, LMI) restricts F (x) to be
contained in the positive semi-definite cone P. Notice

1S ⊆ Rd is a convex cone if x, y ∈ S, λ, µ ≥ 0 ⇒ λx +
µy ∈ S.

that the objective is linear in the unknowns x, and that
both the LMI and the equality constraint are linear in
x (e.g., with x being the entries of F for an appropriate
choice of the Fi’s).

We will now show how optimizing the alignment as well
as optimizing the margin can be cast as a semi-definite
programming problem. For simplicity, we assume in
this section that all labels are known. Our goal is to
find the optimal embedding (i.e., the optimal kernel
matrix K) such that a measure of separation between
those two sets of data is maximized.

Alignment We want to find the kernel matrix K
which is maximally aligned with the set of labels y:

max
K

Â(S, K, yyT)

subject to K � 0.

This is equivalent to the following optimization prob-
lem:

max
K

〈K, yyT 〉

subject to 〈K, K〉 = 1
K � 0.

Given the linearity of the objective in K, we can re-
place the first constraint by 〈K, K〉 ≤ 1 because of the
maximization. Using the Schur complement lemma2

for this constraint, one can write the optimization
problem as:

max
A,K

〈K, yyT 〉

subject to trace(A) ≤ 1(
A KT

K I

)
� 0

K � 0.

Or, by stacking the constraints in one LMI:

max
A,K

〈K, yyT 〉 (5)

subject to


A KT O O
K I O O
O O 1− trace(A) O
O O O K

 � 0.

2Consider the partitioned symmetric matrix

X = XT =

(
A B

BT C

)
.

S = C − BT A−1B is the Schur complement of A in X
(provided det(A) 6= 0). The Schur complement lemma
then says: if A � 0, then X � 0 if and only if S � 0.

This results in the standard form (4) (consider the
entries of the matrices A and K as the unknowns xi):
when using an alignment criterion, the kernel matrix
K can indeed by optimized in an SDP setting.

Hard margin Inspired by (3), let us try to find the
kernel matrix K for which the corresponding embed-
ding shows maximal margin between the convex hull
of both sets of data, keeping the trace of K constant:

min
K�0

w(K) s.t. trace(K) = c, (6)

with w(K) the squared inverse margin defined in (2)
and c a constant. Assume that K � 0, hence G � 0
(the following can be extended to the general case).
We note that w(K) is convex in K (it is the pointwise
maximum of affine functions of K). Given the convex
constraints in (6), the optimization problem is thus
certainly convex in K. In order to express it as an
SDP, we write this as:

min
K�0,t

t : t ≥ max
α

2αT e− αT G(K)α,

α ≥ 0, αT y = 0, trace(K) = c. (7)

We will now express t ≥ maxα 2αT e − αT G(K)α as
an LMI; we express the constraint using the dual min-
imization problem. This will allow us to drop the min-
imization and use the Schur complement lemma to ob-
tain an LMI.

Define the Lagrangian of the maximization problem
(2) by

L(α, ν, λ) = 2αT e− αT G(K)α + 2νT α + 2λyT α.

By duality, we have

w(K) = max
α

min
ν≥0,λ

L(α, ν, λ) = min
ν≥0,λ

max
α

L(α, ν, λ).

Since G � 0, at the optimum, we have

α = G(K)−1(e + ν + λy),

and can form the dual problem

w(K) = min
ν, λ

(e+ν+λy)T G(K)−1(e+ν+λy) : ν ≥ 0.

We obtain that for any t > 0, the constraint w(K) ≤ t
is true if and only if there exist ν ≥ 0 and λ such that

(e + ν + λy)T G(K)−1(e + ν + λy) ≤ t,

or, equivalently (using the Schur complement lemma),
such that(

G(K) e + ν + λy
(e + ν + λy)T t

)
� 0

holds. Stacking all constraints in one single LMI, (7)
can be expressed as a standard SDP (4):

min
K,t,λ,ν

t (8)

s.t. trace(K) = c,
K O O O
O G(K) e + ν + λy O
O (e + ν + λy)T t O
O O O diag(ν)

 � 0.

Thus when using a margin criterion, the kernel matrix
K can be optimized in an SDP setting. Similar results
have been obtained for the soft margin.

4. Learning the kernel matrix

By assuming all labels to be known, we have thus far
dealt only with optimizing the kernel matrix, rather
than learning it—the SDP approach in the previous
section optimizes the embedding of labelled points, ac-
cording to some measure of separation. In the current
section, we drop the assumption that all labels are
known and address the transductive learning problem.
By optimizing the embedding for the labelled part of
the data, we hope to learn a good embedding also for
the unlabelled part.

Formally, we consider a kernel matrix which has the
following structure:

K =
(

Ktr Ktrt

KT
trt Kt

)
, (9)

where Kij = 〈Φ(xi),Φ(xj)〉, i, j = 1, . . . , ntr, ntr +
1, . . . , ntr + nt with ntr and nt the number of la-
belled (training) and unlabelled (test) data points re-
spectively. By optimizing a cost function over the
“training-data block” Ktr, we want to learn the op-
timal mixed block Ktrt and the optimal “test-data
block” Kt.

This implies that training and test-data blocks must
somehow be entangled: tuning training-data entries
in K (to optimize their embedding) should imply that
test-data entries are automatically tuned in some op-
timal way as well (“optimal” meaning that we can ex-
pect good generalization). This can be achieved by
constraining the search space of possible kernel ma-
trices: we control the capacity of the search space of
possible kernel matrices in order to prevent overfitting
and achieve good generalization on test data. A pos-
sible constraint is given by

K =
m∑

i=1

µiKi, (10)

where the set K = {K1, . . . ,Km} is given and the µi

are to be optimized. K could be a set of initial “bad
guesses” of the kernel matrix (e.g., linear, Gaussian
or polynomial kernels with different kernel parameter
values). The Ki could also be chosen as the rank-one
matrices Ki = viv

T
i , with vi the eigenvectors of K0,

an initial kernel matrix.

Replacing K by Ktr in (5) and (8), the problem of opti-
mizing over the training set, under the additional con-
straint (10), leads to the following semi-definite pro-
gramming formulation for learning the kernel matrix:

Alignment

max
A,µi

〈∑
i

µiKi,tr, yyT

〉
(11)

s.t.


A

∑
i µiK

T
i,tr O O∑

i µiKi,tr I O O
O O 1− trace(A) O
O O O

∑
i µiKi

 � 0,

where Ki,tr represents the training-data block of Ki.
The alignment is optimized over the labelled data (use
of Ki,tr), while the positive semi-definiteness should
hold for the entire kernel matrix K (use of Ki).

Hard margin

min
µi,t,λ,ν

t (12)

s.t. trace

(∑
i

µiKi

)
= c,

∑
i µiKi O O O
O G(

∑
i µiKi,tr) e + ν + λy O

O (e + ν + λy)T t O
O O O diag(ν)

 � 0.

At this point, the SDP approach becomes consistent
with the bound in (3), because K is now indeed con-
sidered as a linear combination K =

∑m
i=1 µiKi for

a fixed set {K1, . . . ,Km}. The margin is optimized
over the labelled data (use of Ki,tr), while the positive
semi-definiteness and the trace constraint are imposed
for the entire kernel matrix K (use of Ki).

Before giving experimental results, we provide a fuller
investigation of the error bound in (3).

5. Error Bounds for Transduction

In the problem of transduction, we have access to the
unlabelled test data, as well as the labelled training
data, and the aim is to optimize accuracy in predicting
the test data. We assume that the data are fixed, and
that the order is chosen randomly, yielding a random

partition into training and test sets. For convenience,
we suppose here that the training and test sets have
the same size.

Fix a sequence of 2n pairs (x1, y1), . . . , (x2n, y2n) from
X × Y. Let π : {1, . . . , 2n} → {1, . . . , 2n} be a ran-
dom permutation, chosen uniformly, and let (Xi, Yi) =
(xπ(i), yπ(i)). The first half of this randomly ordered
sequence is the training data, and the second half is
the test data. For a function f : X → <, we write the
proportion of errors on the test data of a thresholded
version of f as

er(f) =
1
n
|{n + 1 < i < 2n : Yif(Xi) ≤ 0}|.

The following theorem shows that the error of a ker-
nel classifier on the test data can be bounded in terms
of the average of a certain cost function of the train-
ing data margins, as well as properties of the kernel
matrix. For γ > 0, define the margin cost function
φγ : < → <+ as

φγ(a) =

 1 if a ≤ 0,
1− a/γ 0 < a ≤ γ,
0 a > γ.

We consider kernel classifiers obtained by thresholding
kernel expansions of the form

f(x) = 〈w,x〉 =
2n∑
i=1

αik(xi,x), (13)

where w =
∑2n

i=1 αiΦ(xi) is chosen with bounded
norm,

‖w‖ =
2n∑

i,j=1

αiαjk(xi,xj) = α′Kα ≤ 1, (14)

where K is the 2n × 2n kernel matrix with Kij =
k(Xi, Xj). With this constraint, the value of the mar-
gin yf(x) is the distance in feature space between Φ(x)
and the decision boundary, such that γ as defined here
is fully consistent with γ as defined in (1). Let FK

denote the class of functions of the form (13) satisfy-
ing (14).

We are also interested in the class of kernel expansions
obtained from certain linear combinations of a fixed
set {K1, . . . ,Km} of kernel matrices. Define FB as
the class of kernel expansions of the form (13) with
k =

∑m
j=1 βjkj , Kij = k(Xi, Xj), α′Kα ≤ 1, K ≥ 0,

and trace(K) ≤ B.

Theorem 1 Let φ : < → <+ satisfy φ ≥ φγ . With
probability at least 1− δ over the data (Xi, Yi) chosen

as above, every function f ∈ FK has er(f) no more
than

1
n

n∑
i=1

φ(Yif(Xi))

+
1√
n

(
4 +

√
2 log(1/δ) +

√
trace(K)

nγ2

)
.

Moreover, for any set {K1, . . . ,Km} of kernel matri-
ces, there is a constant C < n such that, with proba-
bility at least 1 − δ, every function f ∈ FB has er(f)
no more than

1
n

n∑
i=1

φ(Yif(Xi))

+
1√
n

(
4 +

√
2 log(1/δ) +

√
BC

nγ2

)
.

Notice that, in both cases, the test error is bounded
by a sum of the average over the training data of a
margin cost function plus a complexity penalty term
that depends on the ratio between the trace of the
kernel matrix and the squared margin parameter, γ2.
The kernel matrix here is the full matrix, combining
both test and training data. The proof of the theorem
is in the appendix.

6. Empirical results

In Cristianini et al. (2001) empirical results are given
for optimization of the alignment using a kernel ma-
trix K =

∑N
i=1 µiviv

T
i . The results show that optimiz-

ing the alignment indeed improves the generalization
power of Parzen windows classifiers. It turns out that
in this particular case, the SDP in (11) boils down to
exactly the quadratic program that is obtained in Cris-
tianini et al., (2001) and thus those results fit within
the scope of the current paper.

Here we present results for hard margin support vec-
tor machines. The margin is maximized according
to (12), using a kernel matrix K =

∑3
i=1 µiKi,

where the Ki’s are initial “bad guesses” of the ker-
nel matrix. We use a polynomial kernel function
k1(x1,x2) = (1 + xT

1 x2)d for K1, a Gaussian kernel
function k2(x1,x2) = exp(−0.5(x1−x2)T (x1−x2)/σ)
for K2 and a linear kernel function k3(x1,x2) = xT

1 x2

for K3. Afterwards, all Ki are normalized. In this
setting, no simplifications are possible in (12) and we
obtain a true semi-definite program.

Empirical results on standard benchmark datasets are
summarized in Table 1. The Wisconsin breast cancer

dataset contained 16 missing examples which were not
used. The breast cancer and sonar data were obtained
from the UCI repository while the heart data were ob-
tained from STATLOG. Each dataset was randomly
partitioned into 60% training and 40% test sets. The
reported results are the averages over 30 random parti-
tions. The kernel parameters for K1 and K2 are given
in Table 1 by d and σ respectively. For each of the
kernel matrices, an SVM is trained using the training
block Ktr and tested using the mixed block Ktrt as
defined in (9). Finally, the margin for the initial ker-
nel matrices Ki is compared with the margin for the
optimal K∗, as is the test set performance. First of all,

Table 1. Margin and number of test-set errors (TSE) for
SVMs trained and tested with the initial kernel matri-
ces K1, K2, K3 and with the optimal kernel matrix K∗,
learned using semi-definite programming (12) with c =∑

i trace(Ki). A dash means that no hard margin clas-
sifier could be found.

K1 K2 K3 K∗

Breast cancer d = 2 σ = 0.5
margin 0.010 0.136 - 0.300
TSE 19.7 28.8 11.4

Sonar d = 2 σ = 0.1
margin 0.035 0.198 0.006 0.352
TSE 15.5 19.4 21.9 13.8

Heart d = 2 σ = 0.5
margin - 0.159 - 0.285
TSE 49.2 36.6

notice that not every Ki gives rise to a linearly sep-
arable embedding of the training data, in which case
no hard margin classifier can be found (indicated with
a dash). The matrix K∗, however, always allows the
training of a hard margin SVM and its margin is in-
deed larger than the margin for each of the different
components Ki; this is consistent with the SDP opti-
mization in (12). Furthermore, the number of test set
errors is smaller for K∗ than for each of the different
components Ki. This supports the use of the error
bound (3).

In particular the result obtained for the heart dataset
is worth noting—although K1 and K3 fail to give rise
to a linearly separable embedding, placing them into a
linear combination with K2 improves the margin and
test set performance significantly.

7. Conclusions

In this paper we have presented a new method for
learning a kernel matrix from data, that makes use
of Semi-Definite Programming (SDP) ideas. This ap-

proach is motivated by the fact that every symmetric,
positive definite matrix can be considered as a ker-
nel matrix (corresponding to a certain embedding of
a finite set of data) and vice versa. Secondly, SDP
deals in essence with the optimization of convex cost
functions over the convex cone of positive semi-definite
matrices (or convex subsets of this cone). Thus con-
vex optimization and machine learning concerns merge
to provide a powerful method for learning the kernel
matrix with SDP.

The learning process is conducted in a transductive
setting—using the labelled data one can learn a good
embedding, which can then be applied to the unla-
belled part of the data. After deriving a new general-
ization bound that gives rise to a convex cost function,
we impose convex constraints that control the capac-
ity of the search space of possible kernels and yield
a meaningful learning procedure that can be imple-
mented by SDP. Positive empirical results on standard
benchmark datasets prove the power of this novel ap-
proach to kernel-based learning.

Appendix: Proof of Theorem 1

In the proof, we shall use the following notation. For
a function g : X × Y → <, define

Ê1g(X, Y) =
1
n

n∑
i=1

g(Xi, Yi),

Ê2g(X, Y) =
1
n

n∑
i=1

g(Xn+i, Yn+i).

Define the function class

FB =

{
x 7→

2n∑
i=1

αik(xi, x) : α′Kα ≤ B2

}
.

The proof of the first part involves the following five
steps:

Step 1. For any class F of real functions defined on
X ,

sup
f∈F

er(f)− Ê1φγ(Y f(X))

≤ sup
f∈F

Ê2φγ(Y f(X))− Ê1φγ(Y f(X)).

To see this, notice that er(f) is the average over the
test set of the indicator function of Y f(X) ≤ 0, and
that φγ(Y f(X)) bounds this function.

Step 2. For any class G of [0, 1]-valued functions,

Pr
(

sup
g∈G

Ê2g − Ê1g ≥ E
(

sup
g∈G

Ê2g − Ê1g

)
+ ε

)
≤ exp

(
−ε2n

4

)
,

where the expectation is over the random permutation.
This follows from McDiarmid’s inequality. To see this,
we need to define the random permutation π using
a set of 2n independent random variables. To this
end, choose π1, . . . , π2n uniformly at random from the
interval [0, 1]. These are almost surely distinct. For
j = 1, . . . , 2n, define π(j) = |{i : πi ≤ πj}|, that is,
π(j) is the position of πj when the random variables
are ordered by size. It is easy to see that, for any g,
Ê2g − Ê1g changes by no more than 2/n when one
of the πi changes. McDiarmid’s inequality implies the
result.

Step 3. For any class G of [0, 1]-valued functions,

E
(

sup
g∈G

Ê2g − Ê1g

)
≤ R̂2n(G) +

4√
n

,

where R̂2n(G) = E supg∈G
1
n

∑2n
i=1 σig(Xi), and the

expectation is over the independent, uniform, {±1}-
valued random variables σ1, . . . , σ2n. This result is
essentially Lemma 3 of Bartlett and Mendelson (2001);
that lemma contained a similar bound for i.i.d. Xi,
but the same argument holds for fixed Xi, randomly
permuted.

Step 4. If the class F of real-valued functions de-
fined on X is closed under negations, R̂2n(φγ ◦ F) ≤
1
γ R̂2n(F), where each f ∈ F defines a g ∈ φγ ◦ F by
g(x, y) = φγ(yf(x)). This bound is an adaptation of
the contraction lemma in Ledoux & Talagrand (1991).

Step 5. For the class FB of kernel expansions,

R̂2n(FB) ≤ B

n

√
trace(K).

This is Lemma 26 of Bartlett and Mendelson (2001).

Combining gives the first part of the theorem. To
prove the second part, notice (as in the proof of
Lemma 26 of Bartlett and Mendelson, 2001) that

R̂2n(FB) =
1
n
E sup

β
sup
‖w‖≤1

〈w,
2n∑
i=1

σiΦ(Xi)〉

=
1
n
E sup

β

∥∥∥∥∥
2n∑
i=1

σiΦ(Xi)

∥∥∥∥∥
≤ 1

n

√
E sup

β
σ′Kσ,

where σ = (σ1, . . . , σ2n) is the vector of Rademacher
random variables, and the supremum is over β =
(β1, . . . , βm) for which the matrix K =

∑m
j=1 βjKj

satisfies the conditions K ≥ 0 and trace(K) ≤ B.
Now, trace(K) =

∑m
j=1 βjtrace(Kj), and each trace in

the sum is positive, so the supremum must be achieved
for trace(K) = B. So we can write that R̂2n(FB) is no
more than √

BE supσ′Kσ

n
,

where the supremum is over K =
∑

j βjKj satisfying
K ≥ 0 and trace(K) = 1. Define C = E supσ′Kσ,
and notice that σ′Kσ is no more than λ‖σ‖2 = nλ,
where λ is the maximum eigenvalue of K. Using λ ≤
trace(K) = 1 shows that C ≤ n, which implies the
result.

Acknowledgements

We would like to acknowledge support from ONR
MURI N00014-00-1-0637 and NSF grant IIS-9988642.

References

Bartlett, P. L. & Mendelson, S. (2001). Rademacher
and gaussian complexities: Risk bounds and struc-
tural results. Technical Report, Australian National
University.

Bennett, K. P. & Bredensteiner, E. J. (2000). Du-
ality and geometry in SVM classifiers. Proceedings
of the Seventeenth International Conference on Ma-
chine Learning. San Francisco: Morgan Kaufmann.

Cristianini, N. & Shawe-Taylor J. (2000). An Intro-
duction to Support Vector Machines. Cambridge:
Cambridge University Press.

Cristianini, N., Shawe-Taylor J., Kandola J. & Elis-
seeff A. (2001). On kernel target alignment. Ad-
vances in Neural Information Processing Systems,
14. Cambridge, MA: MIT Press.

Ledoux, M. & Talagrand, M. (1991). Probability in
Banach Spaces: Isoperimetry and Processes. NY:
Springer-Verlag.

Schölkopf, B. & Smola, A. (2002). Learning with Ker-
nels. Cambridge, MA: MIT Press.

Vandenberghe, L. & Boyd S. (1996). Semidefinite pro-
gramming. SIAM Review, 38(1): 49-95.

