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Abstract

We address the computational complexity of learning in the agnostic framework. For a variety of
common concept classes we prove that, unless P=NP, there is no polynomial time approximation
scheme for finding a member in the class that approximately maximizes the agreement with a
given training sample. In particular our results apply to the classes of monomials, axis-aligned
hyper-rectangles, closed balls and monotone monomials. For each of these classes we prove the
NP-hardness of approximating maximal agreement to within some fixed constant (independent of
the sample size and of the dimensionality of the sample space). For the class of half-spaces, we
prove that, for any € > 0, it is NP-hard to approximately maximize agreements to within a factor
of (418/415 — €), improving on the best previously known constant for this problem, and using a
simpler proof.

An interesting feature of our proofs is that, for each of the classes we discuss, we find patterns
of training examples that, while being hard for approximating agreement within that concept
class, allow efficient agreement maximization within other concept classes. These results bring up
a new aspect of the model selection problem — they imply that the choice of hypothesis class for
agnostic learning from among those considered in this paper can drastically effect the computational
complexity of the learning process.

Keywords: Machine learning, computational learning theory, neural networks, inapproxima-
bility, hardness, half-spaces, axis-aligned hyper-rectangles, balls, monomials.
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1 Introduction

We study the computational complexity of agnostic learning with a variety of common hypothesis
classes. The agnostic framework [14, 20] is a very useful variant of the PAC learning model in which,
informally, the learning algorithm is required to do nearly as well as is possible using hypotheses
from a given class. Haussler’s work [14] (see also [23]) implies that learnability in this model is, in
a sense, equivalent to the ability to come up with a member of the hypothesis class that has high
agreement rate with the training sample, where the agreement rate is the fraction of sample points
that the hypothesis classifies correctly.

In this paper we prove that for a variety of hypothesis classes H, including monomials, axis-
aligned hyper-rectangles, closed balls, and monotone monomials, there is a constant v > 1 for which
the following problem is NP-hard:

given a set of labeled examples, find a function in H that has agreement rate within a
factor of v of the best function in the class.

We also improve on the best previously known constant -y for the class of half-spaces.

It is not hard to see that such a hardness result implies the hardness of finding a hypothesis
that has error rate below the error rate of the best hypothesis in the class plus some fixed € > 0
(see [4]).

The hardness of PAC style learning is a very natural question that has been addressed from a
variety of viewpoints. It has been shown that, given certain cryptographic assumptions that are
stronger than P#NP or even RP#NP, classes such as circuits of a constant (but unknown) depth
and polynomially many linear threshold gates [19] and AND/OR/NOT gates [21] are hard to learn
in the PAC model using any hypotheses. However, such classes are too rich to be considered useful
for learning purposes.

Pitt and Valiant [23] showed that it is NP-hard to decide if there is a 2-term DNF that correctly
classifies all examples in a training sample. Blum and Rivest [6] established a similar result for
two-layer linear threshold networks with only two hidden units, and DasGupta, Siegelmann and
Sontag [8] extended these results to apply to networks with piecewise linear hidden units.

The earliest hardness results for agnostically learning ‘simple’ classes address the problem of
finding a hypothesis that mazimizes the number of agreements (rather than just approximately
maximizing it). Angluin and Laird [2] showed that maximizing agreements with monotone mono-
mials is NP-hard. Kearns and Li [18] established a similar result for general monomials, and
Hoffgen, Simon and Van Horn [16] for half-spaces.

One may argue, however, that for all practical purposes, a learner may be considered successful
if it can produce a hypothesis with accuracy within a small constant factor of the best possible.
We are therefore led to the next level of hardness-of-learning results, showing that guarantees of
this type cannot be achieved.

Judd [17] established NP-hardness results for an approximate sample error minimization prob-
lem for certain linear threshold networks with many outputs. Combining a reduction of Kearns
and Li [18] with recent results on the hardness of approximating Set Cover [10] implies that, unless
NP C DTIME(n!°6!°87)  finding a monomial that has a ratio of misclassifications within a fac-
tor (1/2 — €)logn of the minimum is not possible for any ¢ > 0. Hoffgen, Simon and Van Horn
[16] showed that approximately minimizing disagreements using half-spaces to within a factor of
(1—€) logn is impossible, again unless NP C DTIME(n!°81°8™). Arora, Babai, Stern and Sweedyk [3]
improved the inapproximable factor to glog™* ¢ " given the slightly stronger assumption that NP
Z DTIME(nPo(logn)),



While the work described in the preceding paragraph considers the minimization problem, we
show the hardness of the corresponding maximization task. Why prefer one over the other? Note
that the task of approximating the optimal solution to within a constant factor emphasizes good
performance on different kinds of samples in the two cases. Minimizing disagreements to within
a constant factor tends to emphasize performance on clean data, and maximizing agreements to
within a constant factor tends to emphasize performance on noisier data. For example, if the best
hypothesis in the class agrees with 99% of the sample, an algorithm that minimized disagreements
to within a factor of 2 would have to be correct on 98% of the data, where an algorithm that
maximized agreement to within a factor of 1.1 would only need to be correct on 90% of the sample.
On the other hand, if the best hypothesis got only 80% right, then an algorithm that minimized
disagreements to within a factor of 2 would only need to get 60% right, where an algorithm that
maximized agreement to within a factor of 1.1 would have to get over 72% right. Also, as mentioned
above, if for all inputs, the maximum agreement is at least a constant fraction ¢ of the input size,!
our results imply that minimum disagreement problem cannot be approximated in polynomial time
to within an additive constant of (1 — 1/7).

Two previous papers that we know of have addressed the difficulty of maximizing agreement
with a sample. Bartlett and Ben-David [4] showed that approximating the agreement ratio of a one-
hidden-layer neural network to within a (multiplicative) constant factor that depends on the number
of hidden units in the network is NP-hard.? Amaldi and Kann [1] showed that approximately
maximizing agreements using half-spaces is APX-complete. Also, it is not too hard to see that the
following facts

e weak learning implies strong learning [24]

e half-spaces, balls, monomials and axis-aligned rectangles are weak approximators to DNF
(see [20])

together imply that a fully polynomial time approximation scheme for approximately maximizing
agreements using any of half-spaces, balls, monomials or axis-aligned rectangles would imply the
learnability of DNF.

In this paper we consider several common concept classes — monomials and monotone monomials
over the boolean cube, and half-spaces, balls and hyper-rectangles in Fuclidean spaces. For each of
these classes, we show that there exists some constant, v > 1, such that approximating the optimal
agreement ratio in the class to within this constant factor is NP-hard. In the case of half-spaces,
we improve on the constant of Amaldi and Kann, and our proof is simpler as well.

Worst-case hardness results in learning theory are often subject to the criticism that the in-
stances witnessing the hardness of the problem are not representative of ‘real life’ instances. Con-
sequently, such results may not reflect the ‘practical’ hardness of the learning task. There is no
precise definition for our vague and intuitive notion of ‘realistic’ instances. However, the patterns
of instances upon which our hardness proofs rely are ‘nicely clustered’ ensembles. Specifically, for
each of the samples used to witness our hardness results there is a ball (either in the Euclidean
metric or in the Ly, metric) that separates the positively labeled points from the negatively labeled
ones.

An interesting consequence of our constructions is that for any of the hypothesis classes that
we discuss there are input distributions that, while being NP-hard to learn using that class, are
efficiently learnable using some of the other hypothesis classes. In particular, there are input

'For all the classes considered in this work & > 1/2.
*For some related results, see the recent paper by Kuhlmann [22].



patterns that are hard to approximate using rectangles but are easily fully separable by balls, and
vice versa. These results have implications to the issue of model selection. It is common to discuss
the model selection problem from the point of view of information complexity — i.e. the tradeoff
between the the ability of a hypothesis in the class to explain the data and generalization ability.
Our analyses show that the choice of model class can further influence the computational complexity
of finding a good hypothesis, and that a poor choice can simultaneously hurt the algorithm both
by failing to explain the data and by making it hard to find a good hypothesis. (The influence of
the choice of hypothesis space on the computational complexity of learning in the PAC model was
addressed by Pitt and Valiant [23].)

There is yet another implication of our results to model selection issues. Once a learner sees
the training data, it would be desirable to be able to choose the hypothesis class, relative to which
the learning process will proceed, so as to maximize the fit between the class and the data. We
show that the task of estimating the agreement rate of the optimal hypothesis in any of the above
mentioned classes (to within a constant factor) is NP-hard. It follows that the task of choosing a
class to work with for a given data is in itself computationally difficult.

The paper is organized as follows: after providing the basic definitions in Section 2, Section
3 lists our computational hardness results. Sections 4 and 5 are where we prove these hardness
results. In Section 6 we discuss the implications of our results on the computational aspects of
model selection.

2 Preliminaries

In this work, we consider several maximization problems. A maximization problem II associates
with any possible input I a set of feasible solutions C;. Each input and feasible solution pair is
associated a profit denoted gri(c, I) € R. We denote the optimal profit of a maximization problem
as follows:

tr (1) = 1.
opty (1) gggqu(c, )

Definition 1 A vy-approximation algorithm A for the mazimization problem 11 is an algorithm that
on any input I outputs a feasible solution A(I) € C1 such that:

yau(A(I), I) > opty(I).

Naturally, this definition is meaningful for v > 1.
This work concerns maximum agreement problems.

Definition 2 For a domain D and a class C of functions from D to {0,1}, we define the Maximum
Agreement problem C-MA as follows: The input of the problem consists of a sample S, which is
a finite multi-set of elements from D x {0,1}. The first component of an example is called its
point, while the second component of the example is called its label. The set C is the set of feasible
solutions. We say some function f € C agrees with an example (x,y) if f(x) = y. The profit
function q for a Maximum Agreement problem is simply the number of examples in S with which
the solution agrees.

We will many times view the elements of C as subsets of D, rather than as functions from D to
{0,1}. We say a subset C C D agrees with an example (z,y) if its characteristic function agrees
with (z,y).

The first type of maximum agreement problems we consider are problems based on boolean
formulas. We shall consider the C-MA problems for the following boolean classes C:
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Monomials A monomial over the variables w1, ...,w, is a conjunction of some literals defined
over these variables. We will denote the Monomials-MA problem as MMA.

Monotone Monomials A monotone monomial is simply a monomial that includes only positive
literals. We will denote the MonotoneMonomials-MA problem as MMMA.

Anti-Monotone Monomial An anti-monotone monomial is a monomial that includes only neg-
ative literals. We will denote the AntiMonotoneMonomials-MA problem as AMMA.

The second type of maximum agreement problems we consider are problems where the definition
of the class C is based on geometric concepts. We shall consider the C-MA problems for the following
geometric classes C:

Closed Balls A ball G in R" is represented by @ € R" and § € R such that G = {Z : d(W, Z) < 6}.
We will denote the Balls-MA problem as BMA.

Half-spaces A half-space H in R" is represented by @/ € R™ and # € R and defined to be:
H ={Z:4-%>0}. We will denote the Half-Space-MA problem as HMA.

Hyper Rectangles An Axis Aligned Hyper-rectangle R is represented by 7,5 € R™ where R =
[1;21[rs, si]. We will denote the Hyper-Rectangle-MA problem as RMA.

Our basic hardness results will use reductions from MAX-E2-SAT. MAX-E2-SAT is defined as
follows: Given as input a set of 2-clauses (each clause is a disjunction of two literals) over a set
of n variables wy, ..., wy,, find an assignment & € {0,1}" such that the number of clauses that are
satisfied is maximized. We will denote the profit function for MAX-E2-SAT by qures- The following
theorem, due to Hastad [13], shows that approximating the optimal solution to MAX-E2-SAT is
hard.

Theorem 3 Assuming P#NP, there is no polynomial time (22/21 — €)-approzimation algorithm
for MAX-E2-SAT, for any € > 0.

3 Main Results

To show the hardness of the various maximum agreement problems presented above, we use two
basic reductions from MAX-E2-SAT, one to Monomial Maximum Agreement, and the other to Ball
Maximum Agreement. These two reductions, along with Theorem 3, allow us to prove the following
two theorems:

Theorem 4 If NP#P, then for any € > 0 there is no polynomial time (770/767 — €)-approzimation
algorithm for Monomial Maximum Agreement.

Theorem 5 If NP#£P, then for any € > 0 there is no polynomial time (418/415— €)-approzimation
algorithm for Ball Maximum Agreement.

Since the set of restrictions of indicator functions for axis-aligned rectangles to {0,1}" are
exactly the indicator functions for monomials, Theorem 4 directly implies the following.

Theorem 6 If NP#P, then for any € > 0 there is no polynomial time (770/767 — €)-approzimation
algorithm for Axzis-Aligned Rectangle Mazimum Agreement.



Finally, we also show how the construction used in the proof of Theorem 4 may also be used to
prove the following:

Theorem 7 If NP#£P, then for any e > 0 there is no polynomial time (770/767 — €)-approzimation
algorithm for Monotone Monomial Mazimum Agreement.

A variation of the reduction used for the Balls Maximum Agreement problem (utilizing the
same gadget construction) is used to prove the theorem on hardness of the Half-space Maximum
Agreement problem. This problem was shown to be impossible to approximate in polynomial time
to within 462/461 — € by Amaldi and Kann [1]. We improve upon their hardness result by proving
the following:

Theorem 8 If NP#P, then for any € > 0 there is no polynomial time (418/415— €)-approzimation
algorithm for Half-space Mazimum Agreement.

In Section 6 we provide some further initial results on the influence model selection has on the
computational complexity of learning.

4 Monomials And Axis-Aligned Hyper-Rectangles

In this section, we establish the hardness results for Monomials and Axis-Aligned Hyper-rectangles.

4.1 Gadget Construction for Monomials

In the instance transformation, for each of the 2n possible literals in an instance I of MAX-E2-SAT,
there will be a variable in the instance f(I) of MMA. For each literal £ over a variable in I, let wy
be the corresponding variable in f(I).

For each clause C, if #; and /¢ are the literals in C, define ¢(C) to consist of five examples as
follows:

e The first two examples are labeled 1 and each of their points sets exactly one variable to be
true. The first of these examples sets only wy, to be true, and the second sets only wy, to be
true.

e The next two examples are labeled 0, and their points set exactly two variables to be true.
The first of these examples sets only wy, and wyg, to be true, and the second sets only wy,
and wg, to be true.

o The last example is also labeled 0, and its point also sets exactly two variables to be true:
wp, and wy,.

For some instance I of MAX-E2-SAT with m clauses, f(I) consists of all examples in any ¢(C)
for a clause C in I, together with 5m copies of an example labeled 1 whose point does not set any
variable to true.

For the solution transformation g, given some monomial M the assignment g(M) is defined as
follows: each variable v; is set to “true” if and only if @,, does not appear in M.



4.2 Analyzing the Reduction

Fix an algorithm B for maximizing agreements using monomials. Consider the algorithm A for
MAX-E2-SAT defined as follows: given an instance I of MAX-E2-SAT, A constructs a sample f(I),
and pass it to algorithm B. After B outputs a monomial M, A will construct an assignment g(M),
and output it.

Fix an arbitrary instance I of MAX-E2-SAT. Let n be the number of variables and m be the
number of clauses in I. Let M be the monomial output by B on input f(I). Let optypa(f(1)) be
the maximum number of examples in f(I) that any monomial agrees with. Assume that v € (0,3/7)
satisfies

avma (M, f(I)) > (1 —y)optaa (£ (1))

Let a = g(M) be the assignment output by A.
Lemma 9 optya(f()) > optygas(Z) + 8m.

Proof: Let a* be an optimal assignment for I. Define M* to be Aywy, where £ ranges over those
literals not satisfied by a*.

Since M* has only negated literals, it is satisfied by the assignment that sets all variables to
false, and therefore correctly classifies the 5m examples where this point is labeled 1.

Choose a clause C, and let #1 and /5 be the literals in C. We claim that if a* satisfies C, at
least 4 of the examples in ¢(C) are classified correctly by M*, otherwise at least 3 are. Adding the
5m copies of the assignment that sets all variables to false will then complete the proof.

First, since for each literal ¢ using a variable in I, either wy or wjy is included in M*, the two
points in ¢(C) in which these two components are both set to true do not satisfy M*, and therefore
are classified correctly, no matter how many literals of C are satisfied by a*.

From here we divide our analysis into cases based on how many literals of C' are satisfied by a*.

If a* doesn’t satisfy C, then M™ does not contain the point in ¢(C) that sets exactly wy, and
wy, to true, and therefore classifies this point correctly, bringing us to at least a total of three of
the examples in ¢(C) in this case.

Suppose that a* satisfies exactly one of the literals in C, and assume without loss of generality
that it is #;. Then the point in ¢(C) that sets only wy, to true satisfies M*, and the point that sets
wy, and wy, to true does not satisfy M*, so both of these examples of ¢(C') are classified correctly
by M*, leading to at least a total of four in this case.

If both literals in C are satisfied by a*, then both points in ¢(C') which set the single variables
wy, and wy, respectively to true satisfy M*, and they are both classified correctly, again yielding
total of four.

As discussed above, this completes the proof. [

Lemma 10 M does not contain any unnegated literals.

Proof: We have

ouma (M, f(I)) > (1= y)optyma(f (1))
> (1 —7)(optumos(f) +8m) (by Lemma 9)
> (1—7)(3/4m + 8m)
> bm



since v < 3/7. Therefore, since there are a total of 10m examples in f(I), M must agree with the
5m examples in which the assignment which sets all variables to false is labeled with 1, completing
the proof. 0

Lemma 11 For any clause C in I, if a does not satisfy C, then M agrees with at most 3 of the
examples in ¢(C).

Proof: Choose one of the literals in C, and let 4 be its variable. If v; € C, then w,, is included in
M, and so M disagrees with the example in which the assignment which only sets w,, to true is
labeled 1. If v; € C, then w,, is not included in M, and so

e if Wy, is not included in M then M disagrees with the example in which the point which only
sets w,, and wy, to true is labeled 0, and

e if Wy, is included in M, then M disagrees with the example in which the point which only
sets wy, to true is labeled 1.

So M disagrees with at least one example for each of the literals in C, completing the proof. []
Lemma 12 For any clause C in I, M agrees with at most 4 of the examples in ¢(C).

Proof: If M agrees with both of the examples that are labeled 1, then it must disagree with the

example in which the point where both variables corresponding to literals in C' are set to true is

labeled 0. []
Now we are ready to sum up the analysis of this reduction.

Lemma 13

gurzs(a, I) > (1 — 35v/3)optyeas(1)-
Proof: We have

guras(a,I) > quma(M, f(I)) —8m (by Lemmas 11 and 12)
> (1 —v)optyma(f (1)) — 8m (by assumption)
> (1 —)(optymes(L) +8m) — 8m (by Lemma 9)
= (1 —7y)optymas(l) — 8ym
> (1 —v)optymes() — (32/3)7 optymas({) (since optyypag (1) > (3/4)m)
= (1 —35y/3)optymas (1),
completing the proof. 0

This, combined with Theorem 3, immediately proves Theorem 4.

4.3 A Hardness Result for Monotone Monomials

Since, by Lemma 10, the optimal solution (as well as any approximate solution with cost not
less than 4/7 of the optimal) contains only negated literals, the same hardness result applies to
classification by anti-monotone monomials (monomials with all literals negated).

Lemma 14 If there is a polynomial time y-approximation algorithm for MMMA, then AMMA can
be y-approximated in polynomial time.



Proof: Suppose B is such an approximation algorithm for MMMA. Given an instance I of AMMA,
run B with input I where I is constructed from I by flipping every component in every sample
point between 1 and 0. Given the monotone monomial M = B(T), output the monomial M’ which
is constructed from M by negating every literal. It is immediate that the profit M’ achieves on I
is the same as the profit M achieves on I, and that M’ is indeed anti-monotone. Additionally, the
optimal solution to AMMA with input I has the same profit as the optimal solution to MMMA
with input I. []
This last Lemma, along with Lemma 10 and Theorem 4 immediately prove Theorem 7.

5 Balls and Half-Spaces

Next, we turn to the problems of Ball Maximum Agreement and Half-space Maximum Agreement.
The reductions for both these problems rely on the same basic construction, detailed below.

5.1 Gadget Construction for Balls and Half-Spaces

Choose an algorithm B for the problem of maximizing agreements using balls. As in Section 4.2,
we will use B to construct an algorithm A for MAX-E2-SAT using a reduction. That is, given an
instance I of MAX-E2-SAT, A will construct a sample f(I), and pass it to algorithm B. After B
outputs a ball G, A will construct an assignment g(G), and output it.

In the instance transformation f, corresponding to each variable in the instance I of MAX-E2-
SAT, there will be one component of the points in the examples of the sample f(I). Let us suppose
there are a total of m clauses in I, which use a total of n variables, and suppose the variables are
V1, ..., Up. Associated with each clause C in I, there will be a collection ¢(C) of examples in f([I).
All of the points in examples in ¢(C) will have nonzero entries only in components that correspond
to variables appearing in C. In Figure 1, the projections of the examples in one possible value of
¢(C) onto the two components corresponding to the variables in C are plotted. The “missing +”
is in the position corresponding to the assignment to the two variables in C' that fails to satisfy C.

Now, let us specify ¢ formally. For each clause C' and each variable v; from I, define

1 if’UjEC
P;(C) =< -1 ifg; €C

0 otherwise.

Then ¢(C) consists of
e An example consisting of the point i¢c = (11 (C), ..., ¥, (C)) and the label 1.

e Two more examples whose label is 1, and each of whose points is obtained by negating one
of the nonzero components of i¢.

e Two examples whose label is 0, and each of whose points is obtained by zeroing out one of
the nonzero components of 4.

e Two more examples whose label is 0, and whose points are obtained by negating the single
nonzero components of the two 0-labeled examples described in the previous bullet point.

If ¢ is defined this way, then f(I) is the multi-set consisting of all examples in ¢(C) for all
clauses C'in 1.



Now we turn to the solution transformation g. Choose some ball G, specified by a center point
w and a radius 6. Then let g(G) be the assignment in which the ith variable is set to “true” if and
only if w; is nonnegative.

We use the exact same construction to show the reduction to Half-space Maximum Agreement.
The only part that changes is the solution transformation g. Given a half-space H, specified by a
vector w € R™, and a threshold § € R. g(H) will then be the assignment in which the variable v;
is set to “true” if and only if w; is nonnegative.

5.2 Analysis of the Balls Reduction

Fix an arbitrary instance I of MAX-E2-SAT. Let n be the number of variables and m be the
number of clauses. Let G be the ball output by an algorithm B on input f(I), and let @ € R™ and
0 € Q be its representation. Let a = g(G) be the assignment output by A.

Lemma 15 For any clause C in I, if a does not satisfy C, then G agrees with at most 4 of the
examples in $(C).

Proof: Assume without loss of generality that the first two variables appear in C, and suppose
that C = {v1,v2} (the other cases can be handled similarly). Since a does not satisfy C, the
definition of g implies that the first and second coordinates of w, the center of G, are non-positive.
We claim the following hold:

(a) If (1,-1,0,...,0) € G, then (0,-1,0,...,0) € G (recall that the first of those is labeled 1 in
#(C), and the second is labeled 0).
(_

(b) If (—1,1,0,...,0) € G, then (—1,0,0,...,0) € G.

(c) If (1,1,0,...,0) € G, then both (1,0,0,...,0) and (0,1,0, ...,0) are in G.

To see that this is indeed the case, simply check that d((1,-1,0,...,0),4) > d((0,-1,0,...,0), )
for any point @ whose first two coordinates are non-positive. Hence, any ball centered in such a

point that contains (1,—1,0,...,0) must contain (0,—1,0,...,0) as well. The same can be easily
verified for (b) and (c). 0

Lemma 16 For any clause C in I, G agrees with at most 5 of the examples in ¢(C).

Proof: Clearly, if G is to agree with more than 4 points from ¢(C), it must include at least
one point that is labeled positively. Assume again, w.l.o.g., that C = {v1,v2}. If both the points
(1,-1,0,...,0) and (1,1,0,...,0) are in G, then (1,0,0,...,0) must also be in G, as G is convex.
Also, if both (—1,1,0,...,0) and (1,1,0,...,0) are in G, then (0,1,0,...,0) must also be in G.
Thus, similarly, if G includes two positive points, it must include at least one negative point.
Finally, note that, if it includes all 3 positive points, it must include at least two negative points.
Thus, no more than 5 points are correctly classified. 0

Let optygeg(f) be the maximum number of clauses in I than can be satisfied by any truth
assignment, and let optgya (f(I)) be the maximum number of examples in f(I) that any ball
agrees with.

Lemma 17 optgya (f(I)) > optyges (1) + 4m

10



Proof: Let a* be the optimal assignment for I. Define w™* by

. _ ) 1 ifa*(v;) = true
R I a*(v;) = false.

Let 6* = v/n — 2, G* = {Z : d(Z,%w*) < 0*}, and C be some clause. Since each point @ € ¢(C)
that is labeled 0 has exactly one non-zero coordinate, and all the coordinates of w* are either 1 or
—1, we have d(@,w*) > v/n — 1. Therefore, G* agrees with all 0 labeled points in ¢(C). On the
other hand, if C is satisfied by a*, then the point 4 that has two coordinates set to the same sign
and value as in w* is labeled 1 in ¢(C). Hence, we have d(u, w*) = v/n — 2 and u € G*.

Thus, for each clause C that is satisfied by a*, H* agrees with at least 5 examples in ¢(C), and
for each clause C that is not satisfied by a*, H* agrees with at least 4 of the examples in ¢(C).
This completes the proof. []

Now we are ready to sum up the analysis of our reduction

Lemma 18 If

gma (G, f(I)) > (1 — v)optgpa (f(1))
then

guezs(a, I) > (1 — 19v/3)optypas (1)-

Proof: We have

q(a,I) > q(G, f(I)) —4m (by Lemmas 15 and 16)
> (1 —7v)optpma(f(I)) — 4m (by assumption)
> (1 —)(optames () + 4m) —4m (by Lemma 17)
= (1 —7)optymes(f) — 4ym
> (1 —=7)optypas(I) — (16/3)y optymas (1) (since optymos (1) > (3/4)m)
= (1 —197/3)optnmas(d),
completing the proof. [

Using this last Lemma, and Theorem 3, and doing some calculations proves Theorem 5.

5.3 Analysis of the Half-Space Reduction

The analysis of the reduction for the HMA problem is very similar to that of the BMA problem.

Fix I, n and m as for the analysis of the balls reduction. Let H be the half-space output by B
on input f(I), and let @ € R™ and 6 be its representation, i.e. H = {Z : W -& > 0}. Let a = g(H)
be the assignment output by A.

Lemma 19 For any clause C in I, if a does not satisfy C, then H agrees with at most 4 of the
examples in ¢(C).

Proof: Assume without loss of generality that the first two variables appear in C, and suppose
that C' = {v1,v2} (the other cases can be handled similarly). We claim that the following hold:

(a) If (1,-1,0,...,0) € H, then (0,—-1,0,...,0) € H (recall that the first of those is labeled 1 in
¢(C), and the second is labeled 0).
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(b) If (—1,1,0,...,0) € H, then (~1,0,0, ...,0) € H.
(e) If (1,1,0,...,0) € H, then both (1,0,0,...,0) and (0,1,0,...,0) are in H.

Taking (a), (b), and (c) together, at least as many points that are labeled 0 in ¢(C) as are
labeled 1 are contained in H. Since overall ¢(C) has one more point labeled 0 than labeled 1, this
implies that the number of points labeled 0 that are not in H is at most one more than the number
of points labeled 1 that are not in H. Therefore, overall, H agrees with at most one more point
than it disagrees with, which implies that H agrees with at most 4 points in ¢(C). So if we can
prove (a), (b), and (c), we are done.

Since a doesn’t satisfy C, it must set v; and vy to “false”, which implies w; and ws are at most
0.

To prove (a), note that if H contains (1,—1,0,...,0), then w; — wy > @. But since w; < 0, this
implies —wq > 0, which means (0, —1,0,...,0) € H. One can prove (b) similarly.

If (1,1,0,...,0) € H, then wy + we > 6, but since w; and wo are at most 0, then wy > 6 and
wy > 6, proving (c) and completing the proof. 0

Lemma 20 For any clause C in I, H agrees with at most 5 of the examples in ¢(C).

Proof: The proof is based on the proof for the previous lemma. Again, we assume that C =
{v1,v2}. We now note that the construction of ¢(C) is symmetrical, except for one quadrant (the
one that corresponds to the non-satisfying assignment) having one less positive example than the
other quadrants. By Lemma 19 we know that for a non-satisfying assignment, a half-space can
agree with at most 4 points of ¢(C). Consider now what happens if we add the “missing” positive
point at position (—1,—1,0,...,0): Any half-space will now agree with at most one additional
point. Thus, a half space corresponding to a non-satisfying assignment will agree with at most 5
points. On the other hand, the resulting construction is completely symmetrical, so we have that
any other half-space also agrees with at most 5 points. Clearly, when using the original construction
for ¢(C) (i-e., not including the “missing” positive example), the number of points with which a
half space agrees may only be smaller. 0

Let optygos(f) be the maximum number of clauses in I than can be satisfied by any truth
assignment, and let optyya (f(Z)) be the maximum number of examples in f(I) that any half-
space agrees with.

Lemma 21 optyya(f(Z)) > optyges(I) + 4m

Proof: Let a* be the optimal assignment for I. Define w* by

« | 1 ifa*(v;) = true
t 7] -1 if a*(v;) = false.

Let 0* =2, H* = {Z : W* - £ > 6*} and C be some clause. Since each point in ¢(C) that is labeled
0 has a single nonzero component in {—1,1}, it cannot be in H*. Therefore H* agrees with all the
examples in ¢(C) that are labeled 0. Since each point @ that is labeled 1 in ¢(C) has two nonzero
components, and they are in {—1,1}, @* - 4 > 2 if and only if both of these have the same sign as
the corresponding components of @*. If a* satisfies C, then the definition of ¢(C) implies that one
such point is labeled 1 in ¢(C).

Thus, for each clause C that is satisfied by a*, H* agrees with at least 5 examples in ¢(C), and
for each clause C that is not satisfied by a*, H* agrees with at least 4 of the examples in ¢(C).
This completes the proof. []

Now we are ready to sum up the analysis of our reduction
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Lemma 22 If

quva(H, f(I)) > (1 — v)optgma (f (1))
then

guezs(a, I) > (1 — 197v/3)optygas (I)-

Proof: We have

qla,I) > q(H, f(I))—4m (by Lemmas 19 and 20)
> (L —=7)optyna(f(1)) — 4m (by assumption)
> (1 —7)(optymes () + 4m) —4m (by Lemma 21)
= (1 —7)optymes() — 4ym
> (1 —7)optypas(l) — (16/3)y optygas (1) (since optygas (1) > (3/4)m)
= (1 —197/3)optymas (1),
completing the proof. 0

Using this last Lemma, and Theorem 3, and doing some calculations proves Theorem 8.

6 Computational Aspects of Model Selection

The constructions we used for our reductions illustrate an aspect of model selection related to the
computational complexity of learning: While each of our constructions yields data sets that are
computationaly hard to learn using one concept class, they are easy to learn using another concept
class. More generally, there exists, for each of the concept classes we considered above, a subset
of its legal inputs for which the maximum agreement problem can be solved in polynomial time.
On the other hand, these subsets, of “easy” inputs for one concept class, include inputs for which
maximizing agreements using the other concept classes we consider is NP-hard. Therefore, when
considering the problem of model selection, one must take into account not only the approximation
error of a class, but also the computational complexity of using that class with data like that in
hand3.

We now turn to listing the conditions under which the various Maximum Agreement problems
we consider become easy to solve:

Claim 23 ([7]) The RMA problem may be solved in polynomial time for inputs that are separable
by an azis-aligned rectangle.

Claim 24 The BMA problem for inputs that satisfy:

1. There exists a ball of radius 1 that contains all the positive points and none of the negative
points of the input.

2. All negative points are at distance at least 1 + ¢ (for some constant c¢) from the center of all
balls of radius 1 that captures all positive points.

is solvable in polynomial time.

3In the examples we show here, the two considerations, namely approximation error and computational complexity,
happen to coincide: exact fitting goes hand in hand with low computational complexity. The question remains whether
this is true in general, though.

13



In the proof of this claim, we use the following result of Ben-David et al. [5]:

Theorem 25 [5, Theorem 5.1] There exists a family (Ag)g>1 of polynomial time algorithms such
that the following holds: For alln > 2 and k > 1, A on input S C R" outputs a point y € R" such
that the closed ball B(y,1+ \/1/k) contains at least as many points of S as the optimal closed ball
of radius 1.

We are now ready to sketch the proof of Claim 24:
Proof Sketch: We describe an algorithm to solve the Ball Maximum Agreement problem for
such inputs, based on the unsupervised learning algorithm for balls of [5]. We use this algorithm
in the following way: We strip the original input of all the negative points, and pass as input to
the algorithm of Ben-David et al. all the positive points. We receive as output a ball of radius
1+ /1/k, which we use as the output to the Maximum Agreement problem.

It is easy to see that, on the kinds of inputs we consider, if we pick k so that \/1/k < ¢/2,
the resulting ball will include all positive points and none of the negative ones, hence solving the
Maximum Agreement problem exactly. 0

Corollary 26 For the set of labeled inputs that are separable by an azis-aligned hyper-rectangle, the
Axis-Aligned Hyper-Rectangle Mazimum Agreement problem may be solved in polynomial time, yet
the Ball Mazimum Agreement problem cannot be approzimated for these inputs, to within 418/415—
€, in polynomial time (for any € > 0), unless P=NP.

Proof: Recall the construction of sample points used in Section 5.1. It can be easily verified
that, by slightly increasing the non-zero component of the 0-labeled points (from 1 to, say v/2),
the reduction remains valid by modifying the proof of Lemma 15. The resulting construction is
clearly separable by rectangles, since the rectangle defined by the interval [—1, 1] in all coordinates
would include only 1-labeled points. Therefore, by Claim 23, a separating rectangle may be found
in polynomial time. [
Furthermore, by making a slight modification to the construction, we can show the following:

Corollary 27 For the set of labeled inputs satisfying the conditions of Claim 24, the Closed Ball
Mazimum Agreement problem may be solved in polynomial time, yet the Open Half-space Mazimum
Agreement problem® cannot be approzimated for these inputs, to within 418/415 — €, in polynomial
time (for any € > 0), unless P=NP.

Proof: We consider the construction given in Section 5.1, but with the labeling reversed. Now,
all positive points are at a distance of 1 from the origin, while all negative points are at a distance
of v/2 from the origin. This input clearly satisfies the conditions of Claim 24 with ¢ = /2 — 1, and
hence a separating ball may be found in polynomial time. On the other hand, the complement of
a closed half-space is an open half-space. Therefore, it is immediate to see that this new gadget is
hard to approximate to within 418/415 — e using open half-spaces. 0

On the other hand, we can also provide a construction that is easy for balls to classify, and hard
for rectangles to approximate. The construction we used for Monotone Monomials (which is thus
also hard for rectangles to classify correctly) is very easy for balls: Note that all points labeled 1
have at most one coordinate that is set to 1, while all 0 labeled points have at least two coordinates
set to 1. By adding a single positive point of the form (—1,0,...,0), the input would satisfy the
conditions of Claim 24 with ¢ = /2 — 1, making it easy to separate with a ball. On the other hand,
it is easy to see that the hardness result for hyper-rectangles remain essentially unchanged. Hence
we have:

“By open half-space we mean that the half-space is defined as H = {Z: @ - % > 6}.
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Corollary 28 For the set of labeled inputs satisfying the conditions of Claim 24, the Closed Ball
Mazimum Agreement problem may be solved in polynomial time, yet the Axis Aligned Rectangle
Mazimum Agreement problem cannot be approximated for these inputs, to within 770/767 — €, in
polynomial time (for any € > 0), unless P=NP.

We therefore see that the same sample may be computationally easy to learn using one hy-
potheses class, while being NP-hard to learn using a different class. Furthermore, these is no clear
hierarchy in the power of these hypotheses classes: While balls are superior to rectangles on some
inputs, rectangles are superior to balls on other inputs.

While our proofs, as they appear above, establish the hardness of actually finding a solution to
the approximation problem, we also claim that approximating the optimal agreement rate for these
problems is as hard as finding the optimal solution. Clearly, finding a solution is at least as hard as
finding its profit. To see that the converse is also true, note that all the reductions we used in our
construction would work just the same if all we wanted was to estimate the profit of the optimal
solution. By examining Hastad’s proof for the hardness of approximating MAX-E2-SAT, one can
verify that the result still holds even if all that is required is to approximate the number of clauses
that may be satisfied. Thus, we have the following results:

Corollary 29 It is NP-hard to approzximate the optimal agreement rate for the Monomial Mazi-
mum Agreement problem, to within a factor of (770/767 — €), for any € > 0..

Corollary 30 It is NP-hard to approzimate the optimal agreement rate for the Ball Mazimum
agreement problem, to within a factor of (418/415 — €) for any € > 0.

Corollary 31 It is NP-hard to approximate the optimal agreement rate for the Axis-Aligned Rect-
angle Mazimum Agreement problem, to within a factor of (770/767 — €), for any € > 0.

Corollary 32 It is NP-hard to approximate the optimal agreement rate for the Monotone Mono-
mial Mazimum Agreement problem, to within a factor of (770/767 — €), for any € > 0.

Corollary 33 It is NP-hard to approximate the optimal agreement rate for the Half-space Mai-
mum agreement problem, to within a factor of (418/415 — €) for any € > 0.

7 Conclusion

In this paper, we have established the hardness of approximately maximizing agreement with
a sample using a variety of simple hypothesis classes, and discussed consequences of our proofs
concerning the problem of model selection.

We do not know of any nontrivial approximation algorithms for the problems addressed in this
paper; the emphasis of this critereon on performance on dirty samples suggests that this framework
may be useful for evaluating algorithms for learning using simple hypotheses. Such algorithms could
then potentially be applied in practice in conjunction with boosting [12, 11]. Ben-David, Eiron and
Simon [5] consider a different notion of approximation for densest region detection. Their results
may be used to construct efficient algorithms for the maximum agreement problem for some of the
classes we consider. Given a margin parameter yu, these algorithms output, for every input sample,
a member of H that classifies correctly as many sample points as any member of H can classify
with margin > p (where the margin of a point relative to a hypothesis is the radius of the largest
ball around the point that does not intersect the boundary of the hypothesis).

15



Algorithms with approximation guarantees for the corresponding minimization problems in the
cases of half-spaces, monomials and axis-aligned rectangles follow from the work of Kearns and Li
[18] (see [15, 20]). An efficient algorithm for maximizing agreement with a sample using axis-aligned
rectangles in the case of a constant number of attributes was described by Dobkin, Gunopulos and
Maass [9].
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Figure 1: One possible value of the examples in ¢(C) of the gadget used for Balls and Half-spaces:
only the components with nonzero values, i.e. those that correspond to variables in C, are shown.
Examples whose label is 1 are plotted with a “+”, and those whose label is 0 are plotted with a

“_»
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