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Abstract 

 
Distinct from conventional techniques where the 

Neural Network (NN) is employed to solve the 
problem of paper currency verification, in this paper, 
we shall present a novel method by applying the 
support vector machine (SVM) approach to 
distinguish counterfeit banknotes from genuine ones. 
On the basis of the statistical learning theory, SVM 
has better generalization ability and higher 
performance especially when it comes to pattern 
classification. Besides, discrete wavelet 
transformation (DWT) will also be applied so as to 
reduce the input scale of SVM. Finally, the results of 
our experiment will show that the proposed method 
does achieve very good performance. 

 
 Keywords: Support vector machine, paper currency 

verification, banknote verification 
 
1. Introduction 
 

Modern science brings amazing convenience, but 
it also leads to some crimes. Over the past few years, 
as a result of the great technological advances in 
color printing, duplicating, and scanning, 
counterfeiting problems have become more and more 
serious. In the past, only the printing house has the 
ability to make counterfeit paper currency, but today 
it is possible for any person to print counterfeit 
banknotes simply by using a computer and a laser 
printer at home. Therefore, the issue of efficiently 
distinguishing counterfeit banknotes from genuine 
ones via automatic machines has become more and 
more important. 

So far, many different approaches have been 
proposed to solve the problem of paper currency 
recognition [11]-[13] and verification [6]. In 1995, 
Takeda and Omatu [12] applied the Neural Network 
(NN) technique to paper currency recognition. They 
used the conception of random masks with 
multiplayer perceptrons to condense the input 
training data and reduce the scale of the NN. 
According to the results of their experiments, the 
authors revealed that the NN scale of their method 
was less than 1/10 of that of some previous works. In 
[6], Frosini et al. proposed another neural-based 

paper currency recognition and verification 
technique. Different from [12], the perception 
mechanism of their scheme was based on some low-
cost optoelectronic devices capable of providing 
signals associated with the light refracted by the 
banknote. Not long ago, Takeda and Nishikage [11] 
made use of the concept of axis-symmetrical mask 
and two image sensors to discriminate multiple kinds 
of paper currency. Roughly speaking, connected by 
the intermediaries of the NNs, all of these researches 
are basically the same in essentials while differing 
only in minor details. Although the NN technology 
has the ability of self-organization, generalization 
and parallel processing and has a good fit for pattern 
recognition, it also has some weaknesses. First, only 
when the number of training samples in the NN is 
large enough, it is capable of giving closer 
predictions. If there are only a limited number of 
training examples for a too rich hypothesis class, 
which means too many neurons, then there is pretty 
much chance for overfitting and hence poor 
generalization. Second, if the distribution of training 
samples is not uniform, the result will probably 
converge to a local optimal or will even diverge 
unreasonably. Therefore, the selection of the training 
set is a crucial issue for the NN. 

On the other hand, a new powerful learning 
machine with excellent generalization ability, the 
support vector machine (SVM) [3]-[5], was 
pioneered by Vapnik and his co-workers in the last 
decade of the 20th century. In the domain of pattern 
recognition, the main idea of SVM is to construct a 
hyperplane as a decision surface that maximizes the 
margin of separation between classes. The 
methodology of SVM is rooted in the statistical 
learning theory [14], [15]. To be more precise, SVM 
is an approximate implementation of the structure 
risk minimization induction principle that aims to 
minimize a bound on the generalization error of a 
model rather than minimizing the mean square error 
over the training set. Hence, unlike the NN, SVM 
does not only suffer from no limitations to training 
samples but also has greater prediction ability. In this 
paper, we shall propose a simple and low-cost 
method by applying the SVM approach to settle the 
problem of paper currency verification with high 
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performance. Since the technologies in photography 
are well developed, it is possible to effectively 
collect the crucial features (for instance, watermarks) 
as input data for SVM via some low-cost digital 
cameras or image sensors. Besides, according to our 
background knowledge, we can also use some low-
cost sensors to extract other crucial features. 
Meanwhile, the discrete wavelet transformation 
(DWT) [9] is applied on the extracted crucial 
features to reduce the dimension of the input data. 
Finally, we shall apply this proposed method to the 
verification of the newly issued New Taiwan Dollar 
banknotes to demonstrate the performance. The 
results of our experiment will show that using the 
lower-frequency DWT coefficients as input data 
does not decrease the prediction ability of the system 
but improves its performance instead. 

The remainder of this paper is organized as 
follows. In Section 2, we will briefly describe the 
basic ideas of SVM. In Section 3, we will explain 
what features we extract as discriminative 
information by specific equipment. Then, the 
experimental results and performance analysis will 
be presented in Section 4. Finally, the conclusions 
and the directions of our future work will be given in 
Section 5 
 
2. The Support Vector Machine 
 

In this section, we give a brief introduction to 
SVM. The aim of SVM is to efficiently deal with a 
two-class classification problem. Given two patterns, 
the basic idea of SVM is to construct a good 
separating hyperplane as the decision surface in such 
a way that the margin of separation between these 
two patterns is maximized. We shall first describe 
the construction of an optimal hyperplane for linearly 
separable patterns, and then we shall consider the 
non-separable case. After that, we shall extend the 
basic construction to nonlinear SVM. 

 
2.1 Optimal Separating Hyperplane for Linearly 
Separable Patterns 

Let 1{( , )} d

i iS y R R�� � �ix  be a set of training 

samples, where dR�ix  is the input pattern for the 

ith example and { 1,1}iy � � is the corresponding 
desired output. We assume that both the patterns 
belonging to the subset 1iy �  and the patterns 

belonging to the subset 1iy � �  are linearly 
separable. Here, a set is said to be linearly separable 
if we can find some (w,r), where w is an adjustable 
weight vector and b is a bias, to construct a decision 
surface in the form of a hyperplane 

0b� � �w x                                              (2.1) 
such that 

( ) 0,   1, 2, ...,iy b i� � 	 �iw x .                    (2.2) 

In a linearly separable case, we can rescale ( w , b ) 
to form a canonical hyperplane [15] so that 

( ) 1,   1, 2, ...,iy b i� � 
 �iw x .                     (2.3) 
For a given weight vector w and a bias b, the 

separation between the hyperplane defined in (2.1) 
and the closest data point is called the margin of 
separation, denoted by � . Among all possible 
separating hyperplanes, the one having the maximal 
margin �  is called the optimal separating hyperplane. 

Let ( ow , ob ) denote the weight vector and bias for 
the optimal separating hyperplane. The main task of 
SVM is to find the optimal separating hyperplane 
such that the pair ( ow , ob ) satisfies the constraint: 

( ) 1,   1, 2, ...,i oy b i� � 
 �o iw x .           (2.4) 

The particular data points ( ix , iy ) for which (2.4) 
is satisfied with equality are called support vectors. 
Intuitively, the support vectors are those data points 
which lie closest to the decision hyperplane and are 
the most difficult to classify. Figure 1 illustrates the 
geometric construction of the optimal separating 
hyperplane for a two-dimensional input space. 

Since the distance from a support vector to the 
hyperplane is  

1
� �

w
,                                           ( 2 . 5 ) 

the margin of separation between the two classes 
is  

2
2r �� �

w
.                                      (2.6) 

Equation (2.6) states that maximizing the margin 

 
Figure 1. Illustration of an optimal 
hyperplane for linearly separable patterns 
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of separation between the two classes is equivalent to 
minimizing the Euclidean norm of the weight vector 
w under constraint (2.3). Hence the hyperplane that 
optimally separates the training data set is the one 
that  

minimizes   21
( )

2
� �w w                           (2.7) 

subject to   ( ) 1,   1, 2, ...,iy b i� � 
 �iw x . 

Since ( )� w  is a convex function, minimizing it 
under constraint (2.3) can be achieved by using the 
method of Lagrange multipliers.  

First, we construct a Lagrangian function with 
nonnegative Lagrange multipliers ( 1 1, , ...,   ):  

2

1

1
( , , ) [ ( ) 1]

2 i i
i

L b y b 
�

� � � � �� iw w w x .  (2.8) 

We can then solve the constrained optimization 
problem by the finding the saddle point of the 
Lagrangian function ( , , )L b w , which has to be 
minimized with respect to (w, b) and maximized with 
respect to  . Thus, differentiating ( , , )L b w  with 
respect to w and b and setting the results to be zero, 
we get the following conditions of optimality:  

1

( , , )
(1) 0  implies that ,i i

i

L b
y




�

�
� �

�
� i

w
w x

w
(2.9) 

1

( , , )
(2) 0  implies that 0.i i

i

L b
y

b




�

�
� �

�
�w

  (2.10) 

It is important to note that at the saddle point each 
multiplier with its corresponding constraint must 
satisfy the Karush-Kuhn-Tucker condition [2] as 
follows:  

[ ( ) 1] 0,  1, 2, ...,i iy b i � � � � �iw x . 
Therefore, the support vectors are the ones 

satisfying 0i 	 . 
Since the constrained optimization problem such 

as (2.7), also called the primal problem, deals with a 
convex cost function and linear constraints, we can 
transform it into the following dual problem:  

1 1 1

1
max  ( )

2i i j i j
i i j

W y y


   
� � �

� � �� �� i jx x  (2.11) 

subject to the constraints: 

1

i

(1) 0,

(2) 0,  1, 2, ..., .

i i
i

y

i




�

�


 �

�
 

To solve this dual problem, which is a quadratic 
programming problem, we can use some standard 
quadratic programming methods [1]. After 
determining the optimum Lagrange multipliers 

denoted by 
1 2

( , , ..., )o o o   , we can compute the 

optimum weight vector ow  via (2.9) and get 

1
i

o

i i
i

y
�

� �ow x .                                 (2.12) 

Note that only support vectors (training samples 

ix  that satisfy 0o

i 	 ) are helpful in (2.12). Also, 

through these support vectors, the optimum bias ob  
is given by 

 o ib y� � �o iw x .                              (2.13) 
Therefore, the decision function can be written as  

1

( ) ( )o

i i o
i

f sign y b
�

� � �� ix x x .                  (2.14) 

 
2.2 Optimal Separating Hyperplane for Non-
separable Patterns 

For the case in which it is not possible to construct 
a separating hyperplane without classification errors, 
we introduce slack variables [5] 1 1( , , ..., )� � �  with 

0i� 
  such that  

 ( ) 1 ,   1, 2, ..., .i iy b i�� � 
 � �iw x        (2.15) 
The purpose of the slack variables is to measure 

the deviation of the misclassified points with 1i� 
 . 
The generalized optimal separating hyperplane is 
determined by minimizing  

2

1

1
( , )

2 i
i

w C� �
�

� � � �w                         (2.16) 

subject to constraints (2.15) and 0i� 
 . The 
purpose of minimizing the first term is to control the 
learning capacity as in the separable case; the second 
term is to control the number of misclassified points. 
The parameter C has to be selected by the user; it 
controls the penalty of the classification errors. 

As before, we can solve (2.16) by transforming it 
into a dual problem. That is  

1 1 1

1
max  ( )

2i i j i j
i i j

Q y y


   
� � �

� � �� �� i jx x    (2.17) 

subject to the constraints: 

1

i

(1) 0,

(2) 0 ,  1, 2, ..., .

i i
i

y

C i




�

�


 
 �

�
 

The solution to this dual problem is similar to that 
in a separable case except for the modification of the 
bounds of the Lagrange multipliers. 

 
2.3 Nonlinear Support Vector Machines 

Given a non-separable training set, we can map it 
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to a higher-dimensional feature space through some 
nonlinear mapping, so that we can construct an 
optimal separating hyperplane in this feature space. 
When we map the input pattern x into the feature 
space ( )� x , the dual form for the constrained 
optimization of a support vector machine becomes  

1 1 1

1
max  ( ) ( ) ( )

2i i j i j
i i j

W y y


    � �
� � �

� � �� �� i jx x    (2.18) 

subject to the constraints: 

1

i

(1) 0,

(2) 0 ,  1, 2, ..., .

i i
i

y

C i




�

�


 
 �

�
 

If we denote the inner-product kernel 
( , ) ( ) ( )K � �� �i j i jx x x x , we can construct the 

optimal hyperplane in the feature space without 
explicitly understanding the mapping . Mercer’s 
theorem [14] indicates that given a symmetric 
positive kernel, there exists a mapping  such that 

( , ) ( ) ( )K � �� �x y x y . Once a kernel K satisfies 
Mercer’s condition, we can rewrite (2.18) as  

1 1 1

1
max  ( ) ( )

2i i j i j
i i j

W y y K


   
� � �

� �� �� i jx , x    (2.19) 

and the decision function becomes  

1

( ) ( ( ) )o

i i o
i

f sign y K b
�

� � �� ix x x .       (2.20) 

An important feature that distinguishes the SVM 
technique from other pattern recognition algorithms 
such as neural networks is that due to Mercer’s 
conditions on the kernels, the corresponding 
constrained optimization problems are convex and 
hence have no local optimal. 

There are many kinds of kernel functions for 
nonlinear mapping. Here, we introduce two common 
types of kernel functions, which will be used in our 
experiment: 

Polynomial kernel 
( , ) ( 1) p

PK � � �x y x y ,                         (2.21) 
where the degree p is specified by the user. 
Gaussian radial basis function 

2

( , )GK e �� �� x yx y ,                          (2.22) 
 where the parameter �  determines the 

width of the Gaussian function. 
 

3. Features Extraction 
 

Given two banknotes, one is genuine and the other 
is counterfeit, how can we tell them from each other? 
It seems easy for humans, for we can readily 
distinguish them on the basis of a combined check. 
For instance, we can look closely at the picture as 

well as the paper consistency and also look for some 
special detection signs, such as a watermark, that are 
difficult to imitate. But, unfortunately, we often do 
not check these features very carefully especially 
when there are piles and piles of banknotes to count. 
Therefore, when the typographic techniques for 
printing fake money are becoming more affordable 
than in the past, the requirements for the design of 
effective counterfeit banknote detectors are getting 
more intense. 

To effectively carry out manual inspection aided 
by automatic machines, we can use small digital 
cameras or sensors to collect the needed information. 
However, extracting too many features will not only 
increase the cost but also sometimes lower the 
system performance in terms of execution time. 
Therefore, we have to choose only the critical 
features that are easy to extract but difficult to imitate. 
According to our observation, we have found that, 
for New Taiwan Dollar banknotes, the following 
features are the most difficult to imitate and most 
suitable as discriminative information: 

 
A. Watermark 

For a genuine one-thousand-NT-Dollar bill, one 
can see a clear watermark in it when it is put through 
strong light (see Figure 2), but a counterfeit will not 
have this watermark or will have an obviously 
different one. After acquiring this feature by specific 
equipment, for instance, a small digital camera, we 
can use it as input data for SVM. However, if we use 
the entire watermark as input data, the input scale 
will be very high, and the working time will be long. 
Hence, we have to somehow gain a reduced data set 
as our input data. There are some approaches to 
follow. In our experiment, we use the most important 
lower-frequency DWT coefficients as input data 
because DWT not only works very effectively but 
also keeps important characteristics. 

 
B. Hidden fluorescent fibers 

The genuine one-thousand-NT-Dollar bill contains 
many hidden fluorescent fibers in it, and we can see 
different color fibers under an ultraviolet lamp. 
Oppositely, a counterfeit will not have hidden 
fluorescent fibers. We can extract this feature by 
applying some spectral analysis to the reflected 
signal of some low-cost ultraviolet sensors. 

 
C. Color-Changing Ink 
For the one-thousand-N-T-Dollar bill, the digits 
under the watermark are printed with special ink. 
The ink changes colors when the bill is tilted at 
different angles. Hence, by using low-cost 
optoelectronic devices capable of providing signals 
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associated with light reflected by the banknotes, we 
can analyze the reflected spectral signals to extract 
this crucial feature. 
 
4. Experimental Results 
 

In this section, we shall describe the experiments 
in detail and discuss the experimental results. 

 
4.1 Simulation Procedure 

In order to test the performance of our proposed 
method, we create an environment to simulate the 
actions performed in a real banknote acceptor. Since 
the proposed method only focuses on the function of 
banknotes verification, the simulation will skip the 
multiple paper currency recognition part. In our 
experiments, the sample set consists of 100 genuine 
banknotes and 100 counterfeits that were actually 
collected out there on the street. To make the 
simulation even truer-to-life, some samples are new 
and others are pretty worn out. As mentioned before, 
we only extract three crucial features from each 
sample, which are the watermark, the hidden 
fluorescent fibers, and the color-changing ink. 
Certainly, the more features selected, the better the 
verification result will be; on the other hand, 
however, more features collected also mean that 
more cost and execution time are needed. Therefore, 
according to our observation, we only extract three 
crucial features as discriminative information. Figure 
3 illustrates the simulation procedure of the whole 
scheme. 

Moreover, in order to examine the accuracy of our 
scheme, the experiments follow the n-fold cross 
validation method. That is to say, for each 
experiment, we randomly permute the sample set at 
first. Then, we repeatedly choose 100 ( 1) /n n� �  
percent of the sample set as training samples and let 
the remainder be testing samples, and this goes on 
until all samples are tested.  

 

4.2 Discussions 
Obviously, different kernel functions for the same 

support vector machine always lead to different 
experimental results. Therefore, it is very important 
to select a good kernel function. In our experiments, 
we compare three support vector machines with 
different kernel functions including a linear kernel, 
a polynomial kernel and a Gaussian radial basis 
function (RBF). In addition to the selection of kernel 
functions, the setting of the parameters used in 
different kernel functions is also very important. 
Therefore, we also compare the influences of setting 
different parameters on a support vector machine. 

Table 1 shows the simulation results with ten-fold 
cross validation, where 180 samples are used as 
training set and 20 samples as testing set for each 
simulation. Table 2 presents the results of five-fold 
cross validation. Observing the results, we find that 
the linear kernel achieves nearly perfect verification 
results with the accuracy rate being as high as 
99.01% with a small standard deviation. This means 
that the sample set is linearly separable, and the 
experimental results turn out just as we expected. 
That is, the selected features are really very crucial 
and provide enough discriminative information. Next, 
according to the generalization theory, the 
generalization ability of this system is good since the  

 
Table 1. Experimental results of ten-fold 

cross validation 

Kernel Parameters 
Number 

of SVs 

Accuracy 

(%) 

Standard 

deviation 

Linear C=1 41 99.01 2.01 

Polynomial p=2, c=1 42 99.01 2.01 

Polynomial p=3, c=1 40 99.01 1.95 

RBF 
0.2,  =1000C� �

 
63 97.25 

3.10 

RBF 
0.5,  =1000C� �

 
74 95.1 

3.33 

 
 

 
(a) Normal position (b) Put through strong light

Figure 2. Part of genuine paper currency 
and its watermark 

 
Figure 3. The simulation procedure of the 
proposed scheme 
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Table 2. Experimental results of five-fold 
cross validation 

Kernel Parameters 
Number 

of SVs 

Accuracy 

(%) 

Standard 

deviation 

Linear C=1 40 99.01 1.21 

Polynomial p=2, c=1 39 98.5 1.99 

Polynomial p=3, c=1 40 99.5 1 

RBF 
0.2,  =1000C� �

 
60 97.11 

3.15 

RBF 
0.5,  =1000C� �

 
66 94.32 

3.97 

 
number of support vectors for the classifier is small. 
Besides, we can expect that the system is able to 
work at a very high speed due to the fact that the 
classifier only uses the linear kernel with a small 
number of support vectors. Except for the linear 
kernel, the result also shows that the polynomial 
kernel works better than RBF in our approach 
although RBF works better than other kernel 
functions in many applications. The reason is that the 
generalization ability of RBF is not good enough 
when the same parameters as we use in our approach 
are employed. We have tried a wide variety of 
combinations of parameters for RBF, but the results 
are still not very good, and sometimes the accuracy 
rate would be even lower than 50% when the 
classifier overfits the training data. As we mentioned 
before, the setting of good parameters for a kernel 
function is a very important issue for SVM, but 
unfortunately there seems to exist no algorithm that 
can help us select suitable parameters. 
 
5. Conclusions 
 

In this paper, we have applied SVM to paper 
currency verification. After extracting crucial 
features from banknotes by using some low-cost 
sensors, we have experimented on our SVM 
classifier and achieved very good performance. 
Furthermore, the proposed classifier has very good 
generalization ability and needs low computing 
power when using a linear kernel. Hence it is very 
suitable for implementing an automatic verifier for 
paper currency. 
 Our future work includes applying other 
support vector machines, such as nu-SVM [10], 
SSVM [8] and RSVM [7], for paper currency 
verification and using support vector machines to 
deal with the problem of multiple kinds of paper 
currency identification. Besides, the issue of feature 
selection for different support vector machines also 
attracts us. 
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