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Abstract 

Software defect prediction strives to improve software 
security by helping testers locate the software defects ac-
curately. The data redundancy caused by the overmuch 
attributes in defects data set will make the prediction accu-
racy decrease. A model based on locally linear embedding 
and support vector machine (LLE-SVM) is proposed to 
solve this problem in this paper. The SVM is used as the 
basic classifier in the model. And the LLE algorithm is 
used to solve data redundancy due to its ability of main-
taining local geometry. The parameters in SVM are opti-
mized by the method of ten-fold cross validation and grid 
search. The comparison between LLE-SVM model and 
SVM model was experimentally verified on the same 
NASA defect data set. The results indicate that the pro-
posal LLE-SVM model performs better than SVM model, 
and it is available to avoid the accuracy decrease caused 
by the data redundancy. 

1. Introduction 

With the high-speed progress of computer science and 
software technology, the process of informationization has 
been rapidly developed. Software systems are playing an 
increasingly important role in the socio-economic and 
political life. Software defects are increasing with soft-
ware function variety and software structure complexity. 
Software defects may cause software failure, which do 
serious harm to software security [1]. So it is necessary to 
study software defect prediction technology in this back-
ground. About 80% of the defects come from 20% of the 
modules, and more than half of the modules are defects 
free [2]. It has very important significance that software 
testers find out those modules which contain defects and 
this is the goal of defect prediction. Software defect pre-
diction technology can be classified into two kinds. They 
are static defect prediction technology and dynamic defect 
prediction technology. The static technology is based on 
the metric data of defects, which is used to predict the 
quantity or distribution of defects; and the dynamic tech-
nology is based on the generate time of defects or failures, 
which is used to predict the defects over time [1]. 

 
There are many outstanding techniques appeared in the 
dynamic defect prediction technology. The software defect 
prediction model based on grey prediction theory (GPT) 
was mentioned in [3], the idea of the method was: the 
number of software defects was a grey value changed 
within a certain range, and the random process was a time 
related gray process changed in a certain range. The 
method using GPT predicted software defects which 
might appear in the iteration according to the historical 
statistics of software defect number [3]. An improved 
model of software defect prediction based on Rayleigh 
model was mentioned in [4]. The model correct-
ed the unreasonable hypothesis of Rayleigh model consid-
ering the effect of removing failure on defect prediction 
result [4].  
 
There are a lot of static defect prediction technologies 
such as support vector machine (SVM) [5], neural net-
work (NN) [6], and Bayesian network (BN) [7]. The ad-
vanced software defect prediction model based on SVM 
was mentioned in [8]. The defect prediction was regarded 
as a binary classification problem, and SVM model was 
used to predict the current version of the project. New 
defect information found was added to the history data 
and then new incremental data sets would be produced. A 
kind of improved prediction model would be constructed 
based on the incremental data sets in the new project life 
cycle [8]. The technology involved in this paper is static 
prediction techniques. 
 
Software defect prediction is a kind of technology which 
can reveal the possibility whether a software system con-
tains defects by analyzing the metric data of software. 
More and more attributes are being introduced to metric 
software with the developing of technology. Facing the 
growing number of attributes, one of the problems which 
must be solved in software defect prediction area is how 
to deal with the data redundancy. This problem may lead 
to higher cost and lower prediction accuracy. For this rea-
son a software defect prediction model based on locally 
linear embedding and support vector machine is proposed 
in this paper. Locally linear embedding algorithm is used 
to reduce dimensionalities and maintain the local geome-
try of the metric data set, and support vector machine is 
proposed to classify the data set of software defects.  



 

2. Related Research 

Support vector machine is one of the most common meth-
ods of software defect prediction, and it is a machine 
learning method based on statistical learning theory and 
structural risk minimization [9]. SVM method is used to 
minimize the structural risk and improve the learning abil-
ity of generalization. 
 
Besides support vector machine, there are some other 
models can be used in defect prediction research like clas-
sification and   regression tree (CART) [10] and artifi-
cial neural network (ANN) [11]. However the classifica-
tion and regression tree has a poor ability on generaliza-
tion; and there is no unified and complete guidance on the 
selection of the network structure of artificial neural net-
work [12]. Support vector machine is an outstanding 
method which is good at dealing with small samples and 
nonlinear problems [13]. And the data sets of software 
defects are just conformed to support vector machine. 
Considering the issues above, support vector machine was 
chosen to be the basic model for software defect predic-
tion in this paper. 
 
Just like what was described in the section of introduction, 
there are more and more attributes being introduced to 
software metric, and the metric attributes maybe come 
from different metric systems or different metric methods. 
Those certainly lead to data redundancy, and data redun-
dancy can cause the prediction accuracy decrease. It is 
strongly necessary to solve the problem of data redundan-
cy and improve the prediction accuracy of support vector 
machine. 
 
Locally linear embedding algorithm is suitable for solving 
the problem of data redundancy. The algorithm can main-
tain the local geometry of data. Some of the data contents 
will be lost during attributes reduction. This problem will 
affect the accuracy of SVM. The characteristic of LLE can 
be used to avoid the loss [14]. The locally linear embed-
ding algorithm provides an outstanding solution on deal-
ing with software defect data set by its ability to maintain 
the data local geometry. The LLE algorithm is used to 
reduce the dimensionalities of software defect data set in 
this paper. The comparison experiments have been done 
on the same NASA defect data set between proposed 
LLE-SVM model and SVM model. 

3. Model Construction of LLE-SVM 

3.1 Summary of Model Process 
LLE-SVM software defect prediction model contains 5 
steps: 
 
1. Get the software defect data set; 
2. Select the train set in the defect data set, and reduce 
the dimensionalities using LLE. The new data set will be 
the input of the third step.  
3. Support vector machine with the Gaussian kernel 
(RBF) is popular for practical use [15]. RBF is chosen in 

this step. Optimize the parameters with ten-fold cross val-
idation and grid search in the defined-size of interval and 
step, and then output the best couple of parameters.  
4. Test the model with the best parameters. 
5. Predict software defects. 
 
The LLE-SVM software defect prediction model is shown 
in the following Figure 1. 
 

Get the software defect
data set
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dimensionalities of data
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Figure 1. Process of LLE-SVM Software Defect 

Prediction Model 
 
LLE and SVM are the two main parts of the model. The 
exhaustive principle of the two parts will be introduced in 
the following Section 3.2 

3.2 Principle of LLE and SVM 
It has been described in Section 2 that the proposed model 
reduces the dimensionalities using LLE. The locally linear 
embedding algorithm belongs to a group of manifold 
learning methods that not only reduce data dimensionali-
ties, but also attempt to discover a true low dimensional 
structure of the data [16]. The input of LLE algorithm are 
N points iX , where , [1, ]D

iX R i N . And as an out-

put, it gives N points iY , where , [1, ]d
iY R i N , and 

d<D. The specific steps of LLE algorithm on the dimen-
sion reduction is: 
1. Find the k nearest neighbors for each point. The for-
mula is : 

                
|| ||ij i jd X X

            (1) 
2. Measure reconstruction error resulting from the ap-
proximation of each point by its nearest neighbors and 
compute reconstruction weights minimizing this error. 
That is to solve the optimization problem in formula 2. 
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N is the number of points, ijw  
is one of the coefficients 

of point I when using point j for representation, ijw =0 if 
point j is not a nearest neighbor, all the coefficients consti-
tute the partial reconstruction weigh matrix.  
 
3. Compute low-dimensional embedding which can 
best preserve the local geometry represented by the recon-
struction weighs. 
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The second to the (d+1)th feature vectors of M are the 
final result. 
 
LLE-SVM model is based on SVM. The data set after 
dimensionalities reduction will be input to SVM for train-
ing. The process of SVM is to find a hyper plane which 
can classify the data points in the point space. In the area 
of software defect prediction, each piece of data represents 
a software module, and each piece of data has a label at 
the end of them. 1, 1iy , 1 means there are some 
defects in this module and -1 means no defect is in the 
module. The SVM process is to solve the following opti-
mization problem like formula 5.  
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Constant C  is the penalty factor, it represents the em-
phasis of the loss of outliers in training process. And i  
is a slack variable, only outliers have slack variables. No-
tation (x) represents the kernel of SVM, and we use 
RBF as the kernel in this paper. The RBF is: 
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We may encounter nonlinear separable situations. The 
kernel can transform the data into a high dimensional 
space so that it can achieve linear separable. The final 
decision function is: 
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SVM has two parameters: penalty factor C and the pa-
rameter of RBF (or g). There are also two parameters 
in LLE algorithm: the size of neighborhood k, and the 

embedding dimension d. The method of parameters selec-
tion will be introduced in the following Section 3.3.  

3.3 Parameters Selection 
The methods of ten-fold cross validation and grid search 
are used to optimize parameters which are the most popu-
lar methods for optimizing parameters. The size of inter-
val and step for C and g are set, and each couple of C and 
g is a grid. Get the average predict accuracy for each grid 
using K-fold cross validation (K=10 in this paper) then 
choose the C and g which can reach the highest accuracy 
as the best parameters.  
 
K-fold cross validation is to divide the data set into K parts, 
each part will be the validation set and other K-1 parts will 
be the training set, then we will get K models, calculate 
the average accuracy as the index of current parameter 
values. 
 
There are two parameters in LLE algorithm, the size of 
neighborhood k. And the embedding dimension d. No 
guidance was given for choosing k, an empirical value that 
k=12 was chosen in this paper. The intrinsic dimension 
was estimated using the method of maximum likelihood 
estimate and the result showed that d=4. An experiment to 
find the best value was designed in this paper to compare 
d=4 with other d values in the same experiment conditions.  

4. Experiments 

4.1 Data Set and Experimental Environment 
The data set used in the experiment is MDP data set pro-
vided by NASA. It is a representative data set since it has 
been widely used in the area of software defect prediction. 
The data set contains 13 packages, each package repre-
sents a software system, each piece of data represents a 
module in the software system, and there is a label at the 
end of each piece of data (Y or N), Y means the module 
has defects in it and N means there is no defect in the 
module. The package of CM1 was used in our experi-
ments. The attributes in this package are from LOC, 
Halstead and McCabe metric system. 
 
The experimental environment in this paper is Matlab 
r2010a and libsvm-mat-3.01. 

4.2 Evaluation Index  
The evaluation indexes of experimental results in this pa-
per are calculated by the statistical values showed in the 
following Table 1. 

Table 1. Index Matrix 
Actual 
value Predict value 

 
Error-prone 

module 
Less error-prone 

module 
Error-prone 

module 
True positive 

case(TP) 
False negative 

case(FN) 
Less error-
prone mod-

ule 

False positive 
case(FP) 

True negative 
case(TN) 



 

 
Calculate the indexes by the following formulas. 

Actual positive case: P TP FN              (8) 
Actual negative case: N FP TN             (9) 
Total actual case: C P N                  (10) 

Accuracy
TP TN

C
Accuracy            (11) 

Precision
TP

Precision
TP FP

             (12) 

Recall
TP

P
Recall                      (13) 

F-measure 2

(1 / ) (1 / )
F measure

precision recall
 (14) 

4.3 Experiments and Results 
The CM1 data set was used in our experiments. There are 
two experiments that have been done. One is the compari-
son experiment of the capability of LLE-SVM under dif-
ferent d values, and the other one is the comparison exper-
iment of the capability between LLE-SVM and SVM. The 
values interval of SVM parameters in the grid search were 
both set to [ 52 , 52 ], the step was set to 0.01, the normal-
ization interval in the experiment was set to [-1, 1]. 
 
1. The value of d (embedding dimension) is involved 
when the LLE algorithm is used to reduce the dimension-
alities. We have estimated the intrinsic dimension using 
the method of maximum likelihood estimate, and the re-
sult is d=4. There is a rule in locally linear embedding 
algorithm that: d<k, we designed an experiment to com-
pare prediction effect of LLE-SVM under different d val-
ues. We reduced the dimensionalities with d=4, d=6, d=8, 
d=10 in the experiment one, and the result showed that the 
best prediction capability appeared when d=6, then we 
added an experiment with the neighbor value of d=6 (d=5, 
d=7). The value of k is the size of neighborhood, but no 
guidance was given how to choose it. We chose an empir-
ical value that k=12, and followed the rule of d<k. LLE-
SVM models with different d values were made compari-
son on the 4 indexes: accuracy, precision, recall and F-
measure. The result of experiment one is shown in the 
following Table 2. 
 

Table 2. Result of Experiment One 
 LLE-SVM 

d Accuracy Precision Recall F-
measure 

4 74.12% 68.63% 83.33% 75.27% 

5 76.47% 76.19% 76.19% 76.16% 

6 81.18% 82.5% 78.57% 80.49% 

7 69.41% 73.53% 60% 66.1% 

8 68.24% 70.3% 62.04% 74.21% 

10 67.06% 76.9% 47.62% 58.83% 
 

2. We chose the best result of d value in experiment one 
(d=6) on behalf of the LLE-SVM model, and used it to 
compare with SVM model at the same conditions in ex-
periment two. Also, the comparison was on the 4 indexes 
like experiment one. The final result of the comparison 
between LLE-SVM model and SVM model is shown in 
the following Table 3. 
 

Table 3. Result of Experiment Two 

 Accura-
cy Precision Recall F-

measure 
LLE-
SVM 81.18% 82.5% 78.57% 80.49% 

SVM 69.41% 68.18% 71.43% 69.77% 

 
The result of experiment one shows the prediction capa-
bility of LLE-SVM model with different d values. It can 
be discovered that the LLE-SVM model can reach the best 
capability when d=6, and the best parameters obtained by 
cross validation is : C=13.4543 g=18.3792. The conclu-
sion is: the best d value is d=6 when the size of neighbor-
hood k=12. Table 3 shows the comparison result between 
LLE-SVM model and SVM model, the conclusion is: 
LLE-SVM model performs better than SVM model at the 
same experiment conditions. 
 
The proposed software defect prediction model also has 
some shortcomings. We chose an empirical value for the 
neighborhood size that k=12, however, it can be further 
studied whether other values of k could reach a better ca-
pability. We used the method of interval limited traversal 
to select the value of d, we tried to estimate the intrinsic 
dimension using the method of maximum likelihood esti-
mate, but the method did not work out the best value of d. 
It can be studied how to estimate the intrinsic dimension 
and whether the intrinsic dimension is helpful to reach the 
best result. The time cost of grid search is too high, and 
the optimization method also needs to be improved.  

5. Conclusions 

In this paper we propose a software defect prediction 
model based on locally linear embedding and support vec-
tor machine. The idea is using LLE algorithm to reduce 
dimensionalities and maintain the local geometry of data 
set at the same time, so that the prediction accuracy will 
be improved. We designed experiments to prove it and the 
results show that the LLE-SVM model has a higher capa-
bility than SVM model on the 4 indexes in software defect 
prediction area. This model is an available way to predict 
software defects for solving the problem of data redun-
dancy. The time cost of grid search method is relatively 
high yet. And also, it is necessary to find a method by 
which we can work out the best d value and choose a fa-
vorable neighborhood size k. These drawbacks are the 
major issues for further research. 
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