

SOFTWARE DEFECT PREDICTION MODEL BASED ON
LLE AND SVM

Chun Shan1, Boyang Chen1, Changzhen Hu1, Jingfeng Xue1, Ning Li2
1School of software, Beijing Institute of Technology, Beijing100081, China

215th Research Institute of China Electronics Technology Group Corporation, Beijing 100083,
China

sherryshan@bit.edu.cn, chenboyang0709@163.com, chzhoo@bit.edu.cn , xuejf@bit.edu.cn,
ning.li@263.net

Keywords: Software Security, Software Defect Prediction,
Support Vector Machine, Locally Linear Embedding

Abstract

Software defect prediction strives to improve software
security by helping testers locate the software defects ac-
curately. The data redundancy caused by the overmuch
attributes in defects data set will make the prediction accu-
racy decrease. A model based on locally linear embedding
and support vector machine (LLE-SVM) is proposed to
solve this problem in this paper. The SVM is used as the
basic classifier in the model. And the LLE algorithm is
used to solve data redundancy due to its ability of main-
taining local geometry. The parameters in SVM are opti-
mized by the method of ten-fold cross validation and grid
search. The comparison between LLE-SVM model and
SVM model was experimentally verified on the same
NASA defect data set. The results indicate that the pro-
posal LLE-SVM model performs better than SVM model,
and it is available to avoid the accuracy decrease caused
by the data redundancy.

1. Introduction

With the high-speed progress of computer science and
software technology, the process of informationization has
been rapidly developed. Software systems are playing an
increasingly important role in the socio-economic and
political life. Software defects are increasing with soft-
ware function variety and software structure complexity.
Software defects may cause software failure, which do
serious harm to software security [1]. So it is necessary to
study software defect prediction technology in this back-
ground. About 80% of the defects come from 20% of the
modules, and more than half of the modules are defects
free [2]. It has very important significance that software
testers find out those modules which contain defects and
this is the goal of defect prediction. Software defect pre-
diction technology can be classified into two kinds. They
are static defect prediction technology and dynamic defect
prediction technology. The static technology is based on
the metric data of defects, which is used to predict the
quantity or distribution of defects; and the dynamic tech-
nology is based on the generate time of defects or failures,
which is used to predict the defects over time [1].

There are many outstanding techniques appeared in the
dynamic defect prediction technology. The software defect
prediction model based on grey prediction theory (GPT)
was mentioned in [3], the idea of the method was: the
number of software defects was a grey value changed
within a certain range, and the random process was a time
related gray process changed in a certain range. The
method using GPT predicted software defects which
might appear in the iteration according to the historical
statistics of software defect number [3]. An improved
model of software defect prediction based on Rayleigh
model was mentioned in [4]. The model correct-
ed the unreasonable hypothesis of Rayleigh model consid-
ering the effect of removing failure on defect prediction
result [4].

There are a lot of static defect prediction technologies
such as support vector machine (SVM) [5], neural net-
work (NN) [6], and Bayesian network (BN) [7]. The ad-
vanced software defect prediction model based on SVM
was mentioned in [8]. The defect prediction was regarded
as a binary classification problem, and SVM model was
used to predict the current version of the project. New
defect information found was added to the history data
and then new incremental data sets would be produced. A
kind of improved prediction model would be constructed
based on the incremental data sets in the new project life
cycle [8]. The technology involved in this paper is static
prediction techniques.

Software defect prediction is a kind of technology which
can reveal the possibility whether a software system con-
tains defects by analyzing the metric data of software.
More and more attributes are being introduced to metric
software with the developing of technology. Facing the
growing number of attributes, one of the problems which
must be solved in software defect prediction area is how
to deal with the data redundancy. This problem may lead
to higher cost and lower prediction accuracy. For this rea-
son a software defect prediction model based on locally
linear embedding and support vector machine is proposed
in this paper. Locally linear embedding algorithm is used
to reduce dimensionalities and maintain the local geome-
try of the metric data set, and support vector machine is
proposed to classify the data set of software defects.

2. Related Research

Support vector machine is one of the most common meth-
ods of software defect prediction, and it is a machine
learning method based on statistical learning theory and
structural risk minimization [9]. SVM method is used to
minimize the structural risk and improve the learning abil-
ity of generalization.

Besides support vector machine, there are some other
models can be used in defect prediction research like clas-
sification and regression tree (CART) [10] and artifi-
cial neural network (ANN) [11]. However the classifica-
tion and regression tree has a poor ability on generaliza-
tion; and there is no unified and complete guidance on the
selection of the network structure of artificial neural net-
work [12]. Support vector machine is an outstanding
method which is good at dealing with small samples and
nonlinear problems [13]. And the data sets of software
defects are just conformed to support vector machine.
Considering the issues above, support vector machine was
chosen to be the basic model for software defect predic-
tion in this paper.

Just like what was described in the section of introduction,
there are more and more attributes being introduced to
software metric, and the metric attributes maybe come
from different metric systems or different metric methods.
Those certainly lead to data redundancy, and data redun-
dancy can cause the prediction accuracy decrease. It is
strongly necessary to solve the problem of data redundan-
cy and improve the prediction accuracy of support vector
machine.

Locally linear embedding algorithm is suitable for solving
the problem of data redundancy. The algorithm can main-
tain the local geometry of data. Some of the data contents
will be lost during attributes reduction. This problem will
affect the accuracy of SVM. The characteristic of LLE can
be used to avoid the loss [14]. The locally linear embed-
ding algorithm provides an outstanding solution on deal-
ing with software defect data set by its ability to maintain
the data local geometry. The LLE algorithm is used to
reduce the dimensionalities of software defect data set in
this paper. The comparison experiments have been done
on the same NASA defect data set between proposed
LLE-SVM model and SVM model.

3. Model Construction of LLE-SVM

3.1 Summary of Model Process
LLE-SVM software defect prediction model contains 5
steps:

1. Get the software defect data set;
2. Select the train set in the defect data set, and reduce
the dimensionalities using LLE. The new data set will be
the input of the third step.
3. Support vector machine with the Gaussian kernel
(RBF) is popular for practical use [15]. RBF is chosen in

this step. Optimize the parameters with ten-fold cross val-
idation and grid search in the defined-size of interval and
step, and then output the best couple of parameters.
4. Test the model with the best parameters.
5. Predict software defects.

The LLE-SVM software defect prediction model is shown
in the following Figure 1.

Get the software defect
data set

Reduce the
dimensionalities of data

set using LLE

Using ten fold cross
validation and grid

search to optimize the
parameters, training

SVM

Test the LLE-SVM
software defect

prediction model

Defect prediction using
LLE-SVM

Figure 1. Process of LLE-SVM Software Defect

Prediction Model

LLE and SVM are the two main parts of the model. The
exhaustive principle of the two parts will be introduced in
the following Section 3.2

3.2 Principle of LLE and SVM
It has been described in Section 2 that the proposed model
reduces the dimensionalities using LLE. The locally linear
embedding algorithm belongs to a group of manifold
learning methods that not only reduce data dimensionali-
ties, but also attempt to discover a true low dimensional
structure of the data [16]. The input of LLE algorithm are
N points iX , where , [1,]D

iX R i N . And as an out-

put, it gives N points iY , where , [1,]d
iY R i N , and

d<D. The specific steps of LLE algorithm on the dimen-
sion reduction is:
1. Find the k nearest neighbors for each point. The for-
mula is :

|| ||ij i jd X X

 (1)
2. Measure reconstruction error resulting from the ap-
proximation of each point by its nearest neighbors and
compute reconstruction weights minimizing this error.
That is to solve the optimization problem in formula 2.

2

1 1

1

min (w) || ||

. 1

N K

i ij ij
i j

N

ij
i

w

s t w

X X

(2)

N is the number of points, ijw
is one of the coefficients

of point I when using point j for representation, ijw =0 if
point j is not a nearest neighbor, all the coefficients consti-
tute the partial reconstruction weigh matrix.

3. Compute low-dimensional embedding which can
best preserve the local geometry represented by the recon-
struction weighs.

2

1 1

min (w) || || min

. :

N K
T

j ij ij
i j

T

w

s t

Y Y YMY

YY I

(3)

TM I W I W

(4)

The second to the (d+1)th feature vectors of M are the
final result.

LLE-SVM model is based on SVM. The data set after
dimensionalities reduction will be input to SVM for train-
ing. The process of SVM is to find a hyper plane which
can classify the data points in the point space. In the area
of software defect prediction, each piece of data represents
a software module, and each piece of data has a label at
the end of them. 1, 1iy , 1 means there are some
defects in this module and -1 means no defect is in the
module. The SVM process is to solve the following opti-
mization problem like formula 5.

2

1

1min{ || || }
2 , 0

. .y (() b) 1 , 1,..., n

n

i
i

i

T
i i i

C

s t ix

(5)

Constant C is the penalty factor, it represents the em-
phasis of the loss of outliers in training process. And i
is a slack variable, only outliers have slack variables. No-
tation (x) represents the kernel of SVM, and we use
RBF as the kernel in this paper. The RBF is:

2

2

| |, exp i
iK x xx x

(6)

We may encounter nonlinear separable situations. The
kernel can transform the data into a high dimensional
space so that it can achieve linear separable. The final
decision function is:

1

(x) sign((,) b)
n

i i i
i

f Ky x x

(7)

SVM has two parameters: penalty factor C and the pa-
rameter of RBF (or g). There are also two parameters
in LLE algorithm: the size of neighborhood k, and the

embedding dimension d. The method of parameters selec-
tion will be introduced in the following Section 3.3.

3.3 Parameters Selection
The methods of ten-fold cross validation and grid search
are used to optimize parameters which are the most popu-
lar methods for optimizing parameters. The size of inter-
val and step for C and g are set, and each couple of C and
g is a grid. Get the average predict accuracy for each grid
using K-fold cross validation (K=10 in this paper) then
choose the C and g which can reach the highest accuracy
as the best parameters.

K-fold cross validation is to divide the data set into K parts,
each part will be the validation set and other K-1 parts will
be the training set, then we will get K models, calculate
the average accuracy as the index of current parameter
values.

There are two parameters in LLE algorithm, the size of
neighborhood k. And the embedding dimension d. No
guidance was given for choosing k, an empirical value that
k=12 was chosen in this paper. The intrinsic dimension
was estimated using the method of maximum likelihood
estimate and the result showed that d=4. An experiment to
find the best value was designed in this paper to compare
d=4 with other d values in the same experiment conditions.

4. Experiments

4.1 Data Set and Experimental Environment
The data set used in the experiment is MDP data set pro-
vided by NASA. It is a representative data set since it has
been widely used in the area of software defect prediction.
The data set contains 13 packages, each package repre-
sents a software system, each piece of data represents a
module in the software system, and there is a label at the
end of each piece of data (Y or N), Y means the module
has defects in it and N means there is no defect in the
module. The package of CM1 was used in our experi-
ments. The attributes in this package are from LOC,
Halstead and McCabe metric system.

The experimental environment in this paper is Matlab
r2010a and libsvm-mat-3.01.

4.2 Evaluation Index
The evaluation indexes of experimental results in this pa-
per are calculated by the statistical values showed in the
following Table 1.

Table 1. Index Matrix
Actual
value Predict value

Error-prone

module
Less error-prone

module
Error-prone

module
True positive

case(TP)
False negative

case(FN)
Less error-
prone mod-

ule

False positive
case(FP)

True negative
case(TN)

Calculate the indexes by the following formulas.

Actual positive case: P TP FN (8)
Actual negative case: N FP TN (9)
Total actual case: C P N (10)

Accuracy
TP TN

C
Accuracy (11)

Precision
TP

Precision
TP FP

 (12)

Recall
TP

P
Recall (13)

F-measure 2

(1 /) (1 /)
F measure

precision recall
 (14)

4.3 Experiments and Results
The CM1 data set was used in our experiments. There are
two experiments that have been done. One is the compari-
son experiment of the capability of LLE-SVM under dif-
ferent d values, and the other one is the comparison exper-
iment of the capability between LLE-SVM and SVM. The
values interval of SVM parameters in the grid search were
both set to [52 , 52], the step was set to 0.01, the normal-
ization interval in the experiment was set to [-1, 1].

1. The value of d (embedding dimension) is involved
when the LLE algorithm is used to reduce the dimension-
alities. We have estimated the intrinsic dimension using
the method of maximum likelihood estimate, and the re-
sult is d=4. There is a rule in locally linear embedding
algorithm that: d<k, we designed an experiment to com-
pare prediction effect of LLE-SVM under different d val-
ues. We reduced the dimensionalities with d=4, d=6, d=8,
d=10 in the experiment one, and the result showed that the
best prediction capability appeared when d=6, then we
added an experiment with the neighbor value of d=6 (d=5,
d=7). The value of k is the size of neighborhood, but no
guidance was given how to choose it. We chose an empir-
ical value that k=12, and followed the rule of d<k. LLE-
SVM models with different d values were made compari-
son on the 4 indexes: accuracy, precision, recall and F-
measure. The result of experiment one is shown in the
following Table 2.

Table 2. Result of Experiment One
 LLE-SVM

d Accuracy Precision Recall F-
measure

4 74.12% 68.63% 83.33% 75.27%

5 76.47% 76.19% 76.19% 76.16%

6 81.18% 82.5% 78.57% 80.49%

7 69.41% 73.53% 60% 66.1%

8 68.24% 70.3% 62.04% 74.21%

10 67.06% 76.9% 47.62% 58.83%

2. We chose the best result of d value in experiment one
(d=6) on behalf of the LLE-SVM model, and used it to
compare with SVM model at the same conditions in ex-
periment two. Also, the comparison was on the 4 indexes
like experiment one. The final result of the comparison
between LLE-SVM model and SVM model is shown in
the following Table 3.

Table 3. Result of Experiment Two

 Accura-
cy Precision Recall F-

measure
LLE-
SVM 81.18% 82.5% 78.57% 80.49%

SVM 69.41% 68.18% 71.43% 69.77%

The result of experiment one shows the prediction capa-
bility of LLE-SVM model with different d values. It can
be discovered that the LLE-SVM model can reach the best
capability when d=6, and the best parameters obtained by
cross validation is : C=13.4543 g=18.3792. The conclu-
sion is: the best d value is d=6 when the size of neighbor-
hood k=12. Table 3 shows the comparison result between
LLE-SVM model and SVM model, the conclusion is:
LLE-SVM model performs better than SVM model at the
same experiment conditions.

The proposed software defect prediction model also has
some shortcomings. We chose an empirical value for the
neighborhood size that k=12, however, it can be further
studied whether other values of k could reach a better ca-
pability. We used the method of interval limited traversal
to select the value of d, we tried to estimate the intrinsic
dimension using the method of maximum likelihood esti-
mate, but the method did not work out the best value of d.
It can be studied how to estimate the intrinsic dimension
and whether the intrinsic dimension is helpful to reach the
best result. The time cost of grid search is too high, and
the optimization method also needs to be improved.

5. Conclusions

In this paper we propose a software defect prediction
model based on locally linear embedding and support vec-
tor machine. The idea is using LLE algorithm to reduce
dimensionalities and maintain the local geometry of data
set at the same time, so that the prediction accuracy will
be improved. We designed experiments to prove it and the
results show that the LLE-SVM model has a higher capa-
bility than SVM model on the 4 indexes in software defect
prediction area. This model is an available way to predict
software defects for solving the problem of data redun-
dancy. The time cost of grid search method is relatively
high yet. And also, it is necessary to find a method by
which we can work out the best d value and choose a fa-
vorable neighborhood size k. These drawbacks are the
major issues for further research.

Acknowledgment

This work was supported by the Key Project of National
Defense Basic Research Program of China under Grant
No.B1120132031.

References

[1] Wang, Q., Wu, S.J., and Li M.S.: ‘Software defect
prediction technology’, Journal of software,
2008(19),pp. 1565-1579. (in Chinese)

[2] Shull, F., Basili, V., Boehm, B., Brown, A.W., Costa,
P., Lindvall, M., Port, D., Rus, I., Tesoriero, R., and
Zelkowitz M.: ‘What we have learned about fighting
defects’. In Software Metrics, 2002. Proceedings.
Eighth IEEE Symposium on IEEE. Ottawa,Ont.,
Canada, June 2002, pp. 249-258.

[3] Li, X.K., and Jin, Y.J.: ‘The study of software defect
prediction model based on grey prediction theory’,
Computer applications and software, 2009, 26(3), pp.
101-103. (in Chinese)

[4] Shi, J.F., Yang, X., Qin, W., and Yan, H.Z.: ‘Study on
the improvement of a software defect prediction
model’, Journal of Beijing Institute of Technology,
2010, 30(9), pp. 1074-1076. (in Chinese)

[5] Elish, K. O., and Elish, M. O.: ‘Predicting defect-
prone software modules using support vector ma-
chines’, Journal of Systems and Software, 2008,
81(5), pp. 649-660.

[6] Zheng, J.: ‘Cost-sensitive boosting neural networks
for software defect prediction’, Expert Systems with
Applications, 2010, 37(6), pp. 4537-4543.

[7] Okutan, A., and Yıldız, O.T.: ‘Software defect p
rediction using Bayesian networks’, Empirical So
ftware Engineering, 2014, 19(1), pp. 154-181.

[8] Wang, T., Li, W.H., Liu, Z., and Shi, H.B.: ‘Sof
tware defect prediction model based on support v
ector machine’, Journal of Northwestern Polytech
nical University, 2011, 29(6), pp. 864-869. (in C
hinese)

[9] Aydin, I., Karakose, M., and Akin, E. :‘A multi-
objective artificial immune algorithm for parameter
optimization in support vector machine’, Applied
Soft Computing, 2011, 11(1), pp. 120-129.

[10] Khoshgoftaar, T.M., Allen, E.B., and Deng, J.: ‘Using
regression trees to classify fault-prone software
modules Reliability’, IEEE Transactions on, 2002,
51(4), pp. 455-462.

[11] Kanmani, S., Uthariaraj, V.R., Sankaranarayanan, V.,
Thambidural, P., ‘Object-oriented software fault pre-
diction using neural networks’, Information and
software technology, 2007, 49(5), pp. 483-492.

[12] Jiang, H.Y., Zong, M., and Liu, X.Y.: ‘Research of
software defect prediction model based on ACO-
SVM’ ,Chinese Journal of computers, 2011, 34(6),

pp. 1148-1154. (in Chinese)

[13] Chen, L.J., Ni, S.H., Xie, C., and Xue, S.W.: ‘Study
on nonlinear dynamic strategy based on particle
swarm optimization algorithm ’, Computer Simula-
tion, 2012, 29(10), pp. 122-126. (in Chinese)

[14] Liu, X.D.: ‘Soft fault diagnosis of analog circuit
based on LLE and SVM’. In System Simulation
Technology & Application 2010, Changchun, Jilin,
China, August 2010, pp. 514-517. (in Chinese)

[15] Keerthi, S. S., and Lin, C. J.: ‘Asymptotic behaviors
of support vector machines with Gaussian ker-
nel’, .Neural computation, 2003, 15(7), pp. 1667-
1689.

[16] Kouropteva, O., Okun, O., and Pietikäinen, M.: ‘In-
cremental locally linear embedding’, Pattern
recognition, 2005, 38(10), pp. 1764-1767.

