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Summary
DNA micro-arrays now permit scientists to screen thousands of genes
simultaneously and determine whether those genes are active, hyperactive or
silent in normal or cancerous tissue.  Because these new micro-array devices
generate bewildering amounts of raw data, new analytical methods must be
developed to sort out whether cancer tissues have distinctive signatures of gene
expression over normal tissues or other types of cancer tissues.

In this paper, we address the problem of selection of a small subset of genes
from broad patterns of gene expression data, recorded on DNA micro-arrays.
Using available training examples from cancer and normal patients, we build a
classifier suitable for genetic diagnosis, as well as drug discovery. Previous
attempts to address this problem select genes with correlation techniques. We
propose a new method of gene selection utilizing Support Vector Machine
methods based on Recursive Feature Elimination (RFE). We demonstrate
experimentally that the genes selected by our techniques yield better
classification performance and are biologically relevant to cancer.

In contrast with the baseline method, our method eliminates gene redundancy
automatically and yields better and more compact gene subsets. In patients with
leukemia our method discovered 2 genes that yield zero leave-one-out error,
while 64 genes are necessary for the baseline method to get the best result (one
leave-one-out error). In the colon cancer database, using only 4 genes our
method is 98% accurate, while the baseline method is only 86% accurate.
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I. Introduction
The advent of DNA micro-array technology has brought to data analysts broad
patterns of gene expression simultaneously recorded in a single experiment
(Fodor, 1997). In the past few months, several data sets have become publicly
available on the Internet. These data sets present multiple challenges, including
a large number of gene expression values per experiment (several thousands to
tens of thousands), and a relatively small number of experiments (a few dozen).

The data can be analyzed from many different viewpoints. The literature already
abounds in studies of gene clusters discovered by unsupervised learning
techniques (see e.g. (Eisen, 1998) (Perou, 1999) (Alon, 1999), and (Alizadeh,
2000)). Clustering is often done along the other dimension of the data. For
example, each experiment may correspond to one patient carrying or not
carrying a specific disease (see e.g. (Golub, 1999)). In this case, clustering
usually groups patients with similar clinical records. Recently, supervised
learning has also been applied, to the classification of proteins (Brown, 2000)
and to cancer classification (Golub, 1999).

This last paper on leukemia classification presents a feasibility study of diagnosis
based solely on gene expression monitoring. In the present paper, we go further
in this direction and demonstrate that, by applying state-of-the-art classification
algorithms (Support Vector Machines (Boser, 1992), (Vapnik, 1998)), a small
subset of highly discriminant genes can be extracted to build very reliable cancer
classifiers. We make connections with related approaches that were developed
independently, which either combine ((Furey, 2000), (Pavlidis, 2000)) or integrate
((Mukherjee,1999), (Chapelle, 2000), (Weston, 2000)) feature selection with
SVMs.

The identification of discriminant genes is of fundamental and practical interest.
Research in Biology and Medicine may benefit from the examination of the top
ranking genes to confirm recent discoveries in cancer research or suggest new
avenues to be explored. Medical diagnostic tests that measure the abundance of
a given protein in serum may be derived from a small subset of discriminant
genes.

This application also illustrates new aspects of the applicability of Support Vector
Machines (SVMs) in knowledge discovery and data mining. SVMs were already
known as a tool that discovers informative patterns (Guyon, 1996). The present
application demonstrates that SVMs are also very effective for discovering
informative features or attributes (such as critically important genes). In a
comparison with several other gene selection methods on Colon cancer data
(Alon, 1999) we demonstrate that SVMs have both quantitative and qualitative
advantages. Our techniques outperform other methods in classification
performance for small gene subsets while selecting genes that have plausible
relevance to cancer diagnosis.
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After formally stating the problem and reviewing prior work (Section II), we
present in Section III a new method of gene selection using SVMs. Before turning
to the experimental section (Section V), we describe the data sets under study
and provide the basis of our experimental method (Section IV). Particular care is
given to evaluate the statistical significance of the results for small sample sizes.
In the discussion section (Section VI), we review computational complexity
issues, contrast qualitatively our feature selection method with others, and
propose possible extensions of the algorithm.

II. Problem description and prior work

II.1. Classification problems
In this paper we address classification problems where the input is a vector that
we call a “pattern” of n components which we call “features”. We call F the n-
dimensional feature space. In the case of the problem at hand, the features are
gene expression coefficients and patterns correspond to patients. We limit
ourselves to two-class classification problems. We identify the two classes with

the symbols (+) and (-). A training set of a number of patterns {x1, x2, … xk, …xl}

with known class labels {y1, y2, … yk, … yl}, yk∈{-1,+1}, is given. The training
patterns are used to build a decision function (or discriminant function) D(x), that
is a scalar function of an input pattern x. New patterns are classified according to
the sign of the decision function:

D(x) > 0 ⇒ x ∈ class (+)
D(x) < 0 ⇒ x ∈ class (-)
D(x) = 0, decision boundary.

Decision functions that are simple weighted sums of the training patterns plus a
bias are called linear discriminant functions (see e.g. (Duda, 73)). In our
notations:

D(x) = w.x+b, (1)
where w is the weight vector and b is a bias value.
A data set is said to be “linearly separable” if a linear discriminant function can
separate it without error.

II.2. Space dimensionality reduction and feature selection
A known problem in classification specifically, and machine learning in general, is
to find ways to reduce the dimensionality n of the feature space F to overcome
the risk of “overfitting”. Data overfitting arises when the number n of features is
large (in our case thousands of genes) and the number l of training patterns is
comparatively small (in our case a few dozen patients). In such a situation, one
can easily find a decision function that separates the training data (even a linear
decision function) but will perform poorly on test data. Training techniques that
use regularization (see e.g. (Vapnik, 1998)) avoid overfitting of the data to some
extent without requiring space dimensionality reduction. Such is the case, for
instance, of Support Vector Machines (SVMs) ((Boser, 1992), (Vapnik, 1998),
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(Cristianini, 1999)). Yet, as we shall see from experimental results (Section V),
even SVMs benefit from space dimensionality reduction.

Projecting on the first few principal directions of the data is a method commonly
used to reduce feature space dimensionality (see, e.g. (Duda, 73)). With such a
method, new features are obtained that are linear combinations of the original
features. One disadvantage of projection methods is that none of the original
input features can be discarded. In this paper we investigate pruning techniques
that eliminate some of the original input features and retain a minimum subset of
features that yield best classification performance. Pruning techniques lend
themselves to the applications that we are interested in. To build diagnostic tests,
it is of practical importance to be able to select a small subset of genes. The
reasons include cost effectiveness and ease of verification of the relevance of
selected genes.

The problem of feature selection is well known in machine learning. For a review
of feature selection, see e.g. (Kohavi, 1997). Given a particular classification
technique, it is conceivable to select the best subset of features satisfying a given
“model selection” criterion by exhaustive enumeration of all subsets of features.
For a review of model selection, see e.g. (Kearns, 1997). Exhaustive
enumeration is impractical for large numbers of features (in our case thousands
of genes) because of the combinatorial explosion of the number of subsets. In
the discussion section (Section VI), we shall go back to this method that can be
used in combination with another method that first reduces the number of
features to a manageable size.

Performing feature selection in large dimensional input spaces therefore involves
greedy algorithms. Among various possible methods feature-ranking techniques
are particularly attractive. A fixed number of top ranked features may be selected
for further analysis or to design a classifier. Alternatively, a threshold can be set
on the ranking criterion. Only the features whose criterion exceeds the threshold
are retained. In the spirit of Structural Risk Minimization (see e.g. Vapnik, 1998
and Guyon, 1992) it is possible to use the ranking to define nested subsets of
features F1 ⊂ F2 ⊂ … ⊂  F, and select an optimum subset of features with a
model selection criterion by varying a single parameter: the number of features.
In the following, we compare several feature-ranking algorithms.

II.3. Feature ranking with correlation coefficients
In the test problems under study, it is not possible to achieve an errorless
separation with a single gene. Better results are obtained when increasing the
number of genes. Classical gene selection methods select the genes that
individually classify best the training data. These methods include correlation
methods and expression ratio methods. They eliminate genes that are useless
for discrimination (noise), but they do not yield compact gene sets because
genes are redundant. Moreover, complementary genes that individually do not
separate well the data are missed.
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Evaluating how well an individual feature contributes to the separation (e.g.
cancer vs. normal) can produce a simple feature (gene) ranking. Various
correlation coefficients are used as ranking criteria. The coefficient used in
(Golub , 1999) is defined as:

wi = (µi(+) – µ i(-)) / (σ i(+)+ σi(-)) (2)
where µ i and σi are the mean and standard deviation of the gene expression
values of gene i for all the patients of class (+) or class (-), i=1,…n. Large positive
wi values indicate strong correlation with class (+) whereas large negative wi
values indicate strong correlation with class (-). The original method of (Golub,
1999) is to select an equal number of genes with positive and with negative
correlation coefficient. Others (Furey, 2000) have been using the absolute value
of wi as ranking criterion. Recently, in (Pavlidis, 2000), the authors have been
using a related coefficient (µi(+) – µi(-))2 /  (σi(+)2 + σi(-)2), which is similar to
Fisher’s discriminant criterion (Duda, 1973).
What characterizes feature ranking with correlation methods is the implicit
orthogonality assumptions that are made. Each coefficient wi is computed with
information about a single feature (gene) and does not take into account mutual
information between features. In the next section, we explain in more details
what such orthogonality assumptions mean.

II. 4. Ranking criterion and classification
One possible use of feature ranking is the design of a class predictor (or
classifier) based on a pre-selected subset of features. Each feature that is
correlated (or anti-correlated) with the separation of interest is by itself such a
class predictor, albeit an imperfect one. This suggests a simple method of
classification based on weighted voting: the features vote proportionally to their
correlation coefficient. Such is the method being used in (Golub, 1999). The
weighted voting scheme yields a particular linear discriminant classifier:

D(x) = w.(x-µ) (3)
where w is defined in Equation (2) and µ = (µ(+) + µ(-))/2.
It is interesting to relate this classifier to Fisher’s linear discriminant. Such a
classifier is also of the form of Equation (3), with

w = S-1 (µ(+) – µ(-)), 
where S is the (n, n) within class scatter matrix defined as

S = ∑
+∈ )(Xx

(x-µ(+))(x-µ(+))T + ∑
−∈ )(Xx

(x-µ(-))(x-µ(-))T

And where µ is the mean vector over all training patterns. We denote by X(+) and
X(-) the training sets of class (+) and (-). This particular form of Fisher’s linear
discriminant implies that S is invertible. This is not the case if the number of
features n is larger than the number of examples l since then the rank of S is at
most l. The classifier of (Golub, 1999) and Fisher’s classifier are particularly
similar in this formulation if the scatter matrix is approximated by its diagonal
elements. This approximation is exact when the vectors formed by the values of
one feature across all training patterns are orthogonal, after subtracting the class
mean. It retains some validity if the features are uncorrelated, that is if the
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expected value of the product of two different feature is zero, after removing the
class mean. Approximating S by its diagonal elements is one way of regularizing
it (making it invertible). But, in practice, features are usually correlated and
therefore the diagonal approximation is not valid.

We have just established that the feature ranking coefficients can be used as
classifier weights. Reciprocally, the weights multiplying the inputs of a given
classifier can be used as feature ranking coefficients. The inputs that are
weighted by the largest value influence most the classification decision.
Therefore, if the classifier performs well, those inputs with the largest weights
correspond to the most informative features. This scheme generalizes the
previous one.  In particular, there exist many algorithms to train linear
discriminant functions that may provide a better feature ranking than correlation
coefficients. These algorithms include Fisher’s linear discriminant, just
mentioned, and SVMs that are the subject of this paper. Both methods are
known in statistics as “multivariate” classifiers, which means that they are
optimized during training to handle multiple variables (or features)
simultaneously. The method of (Golub, 1999), in contrast, is a combination of
multiple “univariate” classifiers.

II.5. Feature ranking by sensitivity analysis
In this Section, we show that ranking features with the magnitude of the weights
of a linear discriminant classifier is a principled method. Several authors have
suggested to use the change in objective function when one feature is removed
as a ranking criterion (Kohavi, 1997). For classification problems, the ideal
objective function is the expected value of the error, that is the error rate
computed on an infinite number of examples. For the purpose of training, this
ideal objective is replaced by a cost function J computed on training examples
only. Such a cost function is usually a bound or an approximation of the ideal
objective, chosen for convenience and efficiency reasons. Hence the idea to
compute the change in cost function DJ(i) caused by removing a given feature or,
equivalently, by bringing its weight to zero. The OBD algorithm (LeCun, 1990)
approximates DJ(i) by expanding J in Taylor series to second order. At the
optimum of J, the first order term can be neglected, yielding:

DJ(i) = (1/2) 
2

2

iw
J

∂
∂

(Dwi)2 (4)

The change in weight Dwi = wi corresponds to removing feature i. The authors of
the OBD algorithm advocate using DJ(i) instead of the magnitude of the weights
as a weight pruning criterion. For linear discriminant functions whose cost
function J is a quadratic function of wi these two criteria are equivalent. This is
the case for example of the mean-squared-error classifier (Duda, 1973) with cost
function J= ∑

∈Xx

||w.x-y||2 and linear SVMs ((Boser, 1992), (Vapnik, 1998),

(Cristianini, 1999)), which minimize J=(1/2)||w ||2, under constrains. This justifies
the use of (wi)2 as a feature ranking criterion.
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II.6. Recursive Feature elimination
A good feature ranking criterion is not necessarily a good feature subset ranking
criterion. The criteria DJ(i) or (wi)2 estimate the effect of removing one feature at
a time on the objective function. They become very sub-optimal when it comes to
removing several features at a time, which is necessary to obtain a small feature
subset. This problem can be overcome by using the following iterative procedure
that we call Recursive Feature Elimination:
1) Train the classifier (optimize the weights wi with respect to J).
2) Compute the ranking criterion for all features (DJ(i) or (wi)2).
3) Remove the feature with smallest ranking criterion.

This iterative procedure is an instance of backward feature elimination ((Kohavi,
2000) and references therein). For computational reasons, it may be more
efficient to remove several features at a time, at the expense of possible
classification performance degradation. In such a case, the method produces a
feature subset ranking, as opposed to a feature ranking. Feature subsets are
nested F1 ⊂ F2 ⊂ … ⊂  F.

If features are removed one at a time, there is also a corresponding feature
ranking. However, the features that are top ranked (eliminated last) are not
necessarily the ones that are individually most relevant. Only taken together the
features of a subset F m are optimal in some sense.

In should be noted that RFE has no effect on correlation methods since the
ranking criterion is computed with information about a single feature.

III. Feature ranking with Support Vector Machines

III.1. Support Vector Machines (SVM)
To test the idea of using the weights of a classifier to produce a feature ranking,
we used a state-of-the-art classification technique: Support Vector Machines
(SVMs) (Boser, 1992; Vapnik, 1998). SVMs have recently been intensively
studied and benchmarked against a variety of techniques (see for instance,
(Guyon, 1999)). They are presently one of the best-known classification
techniques with computational advantages over their contenders (Cristianini,
1999).

Although SVMs handle non-linear decision boundaries of arbitrary complexity, we
limit ourselves, in this paper, to linear SVMs because of the nature of the data
sets under investigation. Linear SVMs are particular linear discriminant classifiers
(see Equation (1)). An extension of the algorithm to the non-linear case can be
found in the discussion section (Section VI). If the training data set is linearly
separable, a linear SVM is a maximum margin classifier. The decision boundary
(a straight line in the case of a two-dimensional separation) is positioned to leave
the largest possible margin on either side. A particularity of SVMs is that the
weights wi of the decision function D(x) are a function only of a small subset of
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the training examples, called “support vectors”. Those are the examples that are
closest to the decision boundary and lie on the margin. The existence of such
support vectors is at the origin of the computational properties of SVM and their
competitive classification performance. While SVMs base their decision function
on the support vectors that are the borderline cases, other methods such as the
method used by Golub et al (Golub, 1999) base their decision function on the
average case. As we shall see in the discussion section (Section VI), this has
also consequences on the feature selection process.

In this paper, we use one of the variants of the soft-margin algorithm described in
(Cortes, 1995). Training consists in executing the following quadratic program:

Algorithm SVM-train:

Inputs:Training examples {x1, x2, … xk, …xl} and class labels {y1, y2, … yk, … yl}.
Minimize over αk:
J = (1/2) ∑

hk

yh yk αh αk (xh.xk + λ δhk) - ∑
k

αk (5)

subject to:
0 ≤ αk ≤ C and ∑

k

αk yk =0

Outputs: Parameters αk.

The summations run over all training patterns xk that are n dimensional feature
vectors, xh.xk denotes the scalar product, yk encodes the class label as a binary
value +1 or –1, δhk is the Kronecker symbol (δhk=1 if h=k and 0 otherwise), and λ
and C are positive constants (soft margin parameters). The soft margin
parameters ensure convergence even when the problem is non-linearly
separable or poorly conditioned. In such cases, some of the support vectors may
not lie on the margin. Most authors use either λ or C. We use a small value of λ
(of the order of 10-14) to ensure numerical stability. For the problems under study,
the solution is rather insensitive to the value of C because the training data sets
are linearly separable down to just a few features. A value of C=100 is adequate.

The resulting decision function of an input vector x is:
D(x) = w.x + b
with
w = ∑

k

αk yk xk and b=〈yk-w.xk〉

The weight vector w is a linear combination of training patterns. Most weights αk

are zero. The training patterns with non-zero weights are support vectors. Those
with weight satisfying the strict inequality 0<αk<C are marginal support vectors.
The bias value b is an average over marginal support vectors.
Many resources on support vector machines, including computer
implementations can be found at: http://www.kernel-machines.org.
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III.2. SVM Recursive Feature Elimination (SVM RFE)
SVM RFE is an application of RFE using the weight magnitude as ranking
criterion.
We present below an outline of the algorithm in the linear case, using SVM-train
in Equation (5). An extension to the non-linear case is proposed in the discussion
section (Section VI).

Algorithm SVM-RFE:
Inputs:
Training examples

X0 = [x1, x2, … xk, …xl]T

Class labels

y = [y1, y2, … yk, … yl]T

Initialize:
Subset of surviving features

s = [1, 2, … n]
Feature ranked list

r = [ ]
Repeat until s = [ ]
Restrict training examples to good feature indices

X = X0(:, s)
Train the classifier

α   = SVM-train(X, y)
Compute the weight vector of dimension length(s)

w = ∑
k

αk yk xk

Compute the ranking criteria
ci = (wi)2, for all i

Find the feature with smallest ranking criterion
f = argmin(c)

Update feature ranked list
r = [s(f), r]

Eliminate the feature with smallest ranking criterion
s = s(1:f-1, f+1:length(s))

Output:
Feature ranked list r.

As mentioned before the algorithm can be generalized to remove more than one
feature per step for speed reasons.
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IV. Material and experimental method

IV.1. Description of the data sets
We present results on two data sets both of which consist of a matrix of gene
expression vectors obtained from DNA micro-arrays (Fodor, 1997) for a number
of patients. The first set was obtained from cancer patients with two different
types of leukemia. The second set was obtained from cancerous or normal colon
tissues. Both data sets proved to be relatively easy to separate. After
preprocessing, it is possible to find a weighted sum of a set of only a few genes
that separates without error the entire data set (the data set is linearly
separable). Although the separation of the data is easy, the problems present
several features of difficulty, including small sample sizes and data differently
distributed between training and test set (in the case of leukemia).

 One particularly challenging problem in the case of the colon cancer data is that
“tumor” samples and “normal” samples differ in cell composition. Tumors are
generally rich in epithelial (skin) cells whereas normal tissues contain a variety of
cells, including a large fraction of smooth muscle cells. Therefore, the samples
can easily be split on the basis of cell composition, which is not informative for
tracking cancer-related genes.

1) Differentiation of two types of Leukemia
In (Golub, 1999), the authors present methods for analyzing gene expression
data obtained from DNA micro-arrays in order to classify types of cancer. Their
method is illustrated on leukemia data that is available on-line.

The problem is to distinguish between two variants of leukemia (ALL and AML).
The data is split into two subsets: A training set, used to select genes and adjust
the weights of the classifiers, and an independent test set used to estimate the
performance of the system obtained. Their training set consists of 38 samples
(27 ALL and 11 AML) from bone marrow specimens. Their test set has 34
samples (20 ALL and 14 AML), prepared under different experimental conditions
and including 24 bone marrow and 10 blood sample specimens. All samples
have 7129 features, corresponding to some normalized gene expression value
extracted from the micro-array image. We retained the exact same experimental
conditions for ease of comparison with their method.

In our preliminary experiments, some of the large deviations between leave-one-
out error and test error could not be explained by the small sample size alone.
Our data analysis revealed that there are significant differences between the
distribution of the training set and the test set. We tested various hypotheses and
found that the differences can be traced to differences in the data sources. In all
our experiments, we followed separately the performance on test data from the
various sources. However, since it ultimately did not affect our conclusions, we
do not report these details here for simplicity.
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2) Colon cancer diagnosis
In (Alon, 1999), the authors describe and study a data set that is available on-
line. Gene expression information was extracted from DNA micro-array data
resulting, after pre-processing, in a table of 62 tissues x 2000 gene expression
values. The 62 tissues include 22 normal and 40 colon cancer tissues. The
matrix contains the expression of the 2000 genes with highest minimal intensity
across the 62 tissues. Some genes are non-human genes.

The paper of Alon et al. provides an analysis of the data based on top down
hierarchical clustering, a method of unsupervised learning. They show that most
normal samples cluster together and most cancer samples cluster together. They
explain that “outlier” samples that are classified in the wrong cluster differ in cell
composition from typical samples. They compute a so-called “muscle index” that
measures the average gene expression of a number of smooth muscle genes.
Most normal samples have high muscle index and cancer samples low muscle
index. The opposite is true for most outliers.

Alon et al also cluster genes. They show that some genes are correlated with the
cancer vs. normal separation but do not suggest a specific method of gene
selection. Our reference gene selection method will be that of Golub et al that
was demonstrated on leukemia data (Golub, 1999). Since there was no defined
training and test set, we split randomly the data into 31 samples for training and
31 samples for testing.

IV.2. Assessment of classifier quality
In (Golub, 1999), the authors use several metrics of classifier quality, including
error rate, rejection rate at fixed threshold, and classification confidence. Each
value is computed both on the independent test set and using the leave-one-out
method on the training set. The leave-one-out procedure consists of removing
one example from the training set, constructing the decision function on the basis
only of the remaining training data and then testing on the removed example. In
this fashion one tests all examples of the training data and measures the fraction
of errors over the total number of training examples.

In this paper, in order to compare methods, we use a slightly modified version of
these metrics. The classification methods we compare use various decision
functions D(x) whose inputs are gene expression coefficients and whose outputs
are a signed number. The classification decision is carried out according to the
sign of D(x). The magnitude of D(x) is indicative of classification confidence.

We use four metrics of classifier quality (see Figure 1):
- Error (B1+B2) = number of errors (“bad”) at zero rejection.
- Reject (R1+R2) = minimum number of rejected samples to obtain zero error.
- Extremal margin (E/D) = difference between the smallest output of the

positive class samples and the largest output of the negative class samples
(rescaled by the largest difference between outputs).
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- Median margin (M/D) = difference between the median output of the positive
class samples and the median output of the negative class samples (re-
scaled by the largest difference between outputs).

Each value is computed both on the training set with the leave-one-out method
and on the test set.

The error rate is the fraction of examples that are misclassified (corresponding
to a diagnostic error). It is complemented by the success rate. The rejection
rate is the fraction of examples that are rejected (on which no decision is made
because of low confidence). It is complemented by the acceptance rate.
Extremal and median margins are measurements of classification confidence.

Notice that this notion of margin computed with the leave-one-out method or on
the test set differs from the margin computed on training examples sometimes
used in model selection criteria (Vapnik, 1998).

Figure 1: Metrics of classifier quality.  The red and blue curves represent example distributions
of two classes: class (-) and class (+). Red: Number of examples of class (-) whose decision
function value is larger than or equal to θ. Blue: Number of examples of class (+) whose decision
function value is smaller than or equal to θ. The number of errors B1 and B2 are the ordinates of
θ=0. The number of rejected examples R1 and R2 are the ordinates of -θR and θR in the red and
blue curves respectively. The decision function value of the rejected examples is smaller than θR

in absolute value, which corresponds to examples of low classification confidence. The threshold
θR is set such that all the remaining “accepted” examples are well classified. The extremal margin
E is the difference between the smallest decision function value of class (+) examples and the
largest decision function value of class (-) examples. On the example of the figure, E is negative.
If the number of classification error is zero, E is positive. The median margin M is the difference in
median decision function value of the class (+) density and the class (-) density.
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median

Total number of
class (+) examples
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D
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class (-) examples

Class (+)
median

0

B2=Number of class (+) errors

B1=Number of class (-) errors

M

E

Cumulated
number of
examples

Smallest symmetric
rejection zone to

get zero error

R2=Number of class (+) rejected

R1=Number of class (-) rejected

θR−θR



13

IV. 3. Accuracy of performance measurements with small sample sizes
Because of the very small sample sizes, we took special care in evaluating the
statistical significance of the results. In particular, we address:
1. How accurately the test performance predicts the true classifier performance

(measured on an infinitely large test set).
2. With what confidence we can assert that one classifier is better than another

when its test performance is better than the other is.

Classical statistics provide us with error bars that answer these questions (for a
review, see e.g. Guyon, 1998). Under the conditions of our experiments, we often
get 1 or 0 error on the test set. We used a z-test with a standard definition of
“statistical significance” (95% confidence). For a test sample of size t=30 and a
true error rate p=1/30, the difference between the observed error rate and the
true error rate can be as large as 5%. We use the formula ε = zη sqrt(p(1-p)/t),
where zη = sqrt(2) erfinv(-2(η-0.5)), and erfinv is the inverse error function, which
is tabulated. This assumes i.i.d. errors, one-sided risk and the approximation of
the Binomial law by the Normal law. This is to say that the absolute performance
results (question 1) should be considered with extreme care because of the large
error bars.

In contrast, it is possible to compare the performance of two classification
systems (relative performance, question 2) and, in some cases, assert with
confidence that one is better than the other is. For that purpose, we shall use the
following statistical test (Guyon, 1998):
With confidence (1-η) we can accept that one classifier is better than the other,
using the formula:

(1-η) = 0.5 + 0.5 erf( zη / sqrt(2) )    (6)
zη = ε t / sqrt(ν)

where t is the number of test examples, ν is the total number of errors (or
rejections) that only one of the two classifiers makes, ε is the difference in error

rate (or in rejection rate), and erf is the error function erf(x) = ∫
x

0

exp(-t2) dt.

This assumes i.i.d. errors, one-sided risk and the approximation of the Binomial
law by the Normal law.

V. Experimental results

V.1. The features selected matter more than the classifier used
In a first set of experiments, we carried out a comparison between the method of
Golub et al and SVMs on the leukemia data. We de-coupled two aspects of the
problem: selecting a good subset of genes and finding a good decision function.
We demonstrated that the performance improvements obtained with SVMs could



14

be traced to the SVM feature (gene) selection method. The particular decision
function that is trained with these features matters less.

As suggested in (Golub, 1999) we performed a simple preprocessing step. From
each gene expression value, we subtracted its mean and divided the result by its
standard deviation. We used the Recursive Feature Elimination (RFE) method,
as explained in Section III. We eliminated chunks of genes at a time. At the first
iteration, we reached the number of genes, which is the closest power of 2. At
subsequent iterations, we eliminated half of the remaining genes. We thus
obtained nested subsets of genes of increasing informative density.  The quality
of these subsets of genes was then assessed by training various classifiers,
including a linear SVM, the Golub et al classifier, and Fisher’s linear discriminant
(see e.g. (Duda, 1973)).

The various classifiers that we tried did not yield significantly different
performance. We report the results of the classifier of (Golub, 1999) and a linear
SVM. We performed several cross tests with the baseline method to compare
gene sets and classifiers (Figure 2 and Table 1-4): SVMs trained on SVM
selected genes or on baseline genes and baseline classifier trained on SVM
selected genes or on baseline genes. Baseline classifier refers to the classifier of
Equation (3) described in (Golub, 1999). Baseline genes refer to genes selected
according to the ranking criterion of Equation (2) described in (Golub, 1999). In
Figure 2, the larger the colored area, the better the classifier. It is easy to see
that a change in classification method does not affect the result significantly
whereas a change in gene selection method does.
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Figure 2: Performance comparison between SVMs and the baseline method (Leukemia
data). Classifiers have been trained with subsets of genes selected with SVMs and with the
baseline method (Golub,1999) on the training set of the Leukemia data. The number of genes is
color coded and indicated in the legend. The quality indicators are plotted radially: channel 1-4 =
cross-validation results with the leave-one-out method; channels 5-8 = test set results; suc =
success rate; acc = acceptance rate; ext = extremal margin; med = median margin. The
coefficients have been rescaled such that each indicator has zero mean and variance 1 across all
four plots. For each classifier, the larger the colored area, the better the classifier. The figure
shows that there is no significant difference between classifier performance on this data set, but
there is a significant difference between the gene selections.
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Training set (38 samples) Test set (34 samples)Number
of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed
All (7129) 0.95 0.87 0.01 0.42 0.85 0.68 -0.05 0.42

4096 0.82 0.05 -0.67 0.30 0.71 0.09 -0.77 0.34
2048 0.97 0.97 0.00 0.51 0.85 0.53 -0.21 0.41
1024 1.00 1.00 0.41 0.66 0.94 0.94 -0.02 0.47
512 0.97 0.97 0.20 0.79 0.88 0.79 0.01 0.51
256 1.00 1.00 0.59 0.79 0.94 0.91 0.07 0.62
128 1.00 1.00 0.56 0.80 0.97 0.88 -0.03 0.46
64 1.00 1.00 0.45 0.76 0.94 0.94 0.11 0.51
32 1.00 1.00 0.45 0.65 0.97 0.94 0.00 0.39
16 1.00 1.00 0.25 0.66 1.00 1.00 0.03 0.38
8 1.00 1.00 0.21 0.66 1.00 1.00 0.05 0.49
4 0.97 0.97 0.01 0.49 0.91 0.82 -0.08 0.45
2 0.97 0.95 -0.02 0.42 0.88 0.47 -0.23 0.44
1 0.92 0.84 -0.19 0.45 0.79 0.18 -0.27 0.23

Table 1: SVM classifier trained on SVM genes obtained with the RFE method (Leukemia
data). The success rate (at zero rejection), the acceptance rate (at zero error), the extremal
margin and the median margin are reported for the leave-one-out method on the 38 sample
training set (V results) and the 34 sample test set (T results). We outline in red the classifiers
performing best on test data reported in Table 5. For comparison, we also show the results on all
genes (no selection).

Training set (38 samples) Test set (34 samples)Number
of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed
All (7129) 0.95 0.87 0.01 0.42 0.85 0.68 -0.05 0.42

4096 0.92 0.18 -0.43 0.29 0.74 0.18 -0.68 0.36
2048 0.95 0.95 -0.09 0.32 0.85 0.38 -0.25 0.33
1024 1.00 1.00 0.09 0.34 0.94 0.62 -0.13 0.34
512 1.00 1.00 0.08 0.39 0.94 0.76 -0.06 0.37
256 1.00 1.00 0.08 0.40 0.91 0.79 -0.04 0.42
128 1.00 1.00 0.09 0.39 0.94 0.82 -0.04 0.49
64 0.97 0.97 0.01 0.44 0.97 0.82 -0.09 0.44
32 1.00 1.00 0.07 0.46 0.91 0.88 -0.07 0.42
16 1.00 1.00 0.16 0.52 0.94 0.91 -0.07 0.39
8 1.00 1.00 0.17 0.52 0.91 0.85 -0.10 0.51
4 1.00 1.00 0.21 0.48 0.88 0.68 -0.03 0.28
2 0.97 0.97 0.00 0.36 0.79 0.47 -0.22 0.27
1 0.92 0.84 -0.19 0.45 0.79 0.18 -0.27 0.23

Table 2: SVM classifier trained on baseline genes (Leukemia data).  The success rate (at zero
rejection), the acceptance rate (at zero error), the extremal margin and the median margin are
reported for the leave-one-out method on the 38 sample training set (V results) and the 34
sample test set (T results). We outline in red the classifiers performing best on test data reported
in Table 5. For comparison, we also show the results on all genes (no selection).
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Training set (38 samples) Test set (34 samples)Number
of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed
All (7129) 0.89 0.47 -0.25 0.28 0.85 0.35 -0.24 0.34

4096 0.97 0.97 0.01 0.41 0.88 0.59 -0.12 0.40
2048 1.00 1.00 0.29 0.56 0.88 0.76 -0.07 0.45
1024 1.00 1.00 0.44 0.67 0.94 0.82 0.01 0.47
512 1.00 1.00 0.39 0.81 0.91 0.88 0.07 0.55
256 1.00 1.00 0.55 0.76 0.94 0.94 0.09 0.62
128 1.00 1.00 0.56 0.81 0.94 0.82 0.02 0.45
64 1.00 1.00 0.47 0.74 1.00 1.00 0.14 0.49
32 1.00 1.00 0.44 0.66 0.94 0.79 0.01 0.40
16 1.00 1.00 0.27 0.63 0.94 0.91 0.03 0.39
8 1.00 1.00 0.25 0.62 0.97 0.94 0.05 0.50
4 0.95 0.89 0.04 0.45 0.88 0.76 -0.09 0.45
2 0.97 0.95 0.03 0.39 0.88 0.44 -0.23 0.44
1 0.92 0.76 -0.17 0.43 0.79 0.18 -0.27 0.23

Table 3: Baseline classifier trained on SVM genes obtained with the RFE method
(Leukemia data).  The success rate (at zero rejection), the acceptance rate (at zero error), the
extremal margin and the median margin are reported for the leave-one-out method on the 38
sample training set (V results) and the 34 sample test set (T results). We outline in red the
classifiers performing best on test data reported in Table 5. For comparison, we also show the
results on all genes (no selection).

Training set (38 samples) Test set (34 samples)Number
of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed
All (7129) 0.89 0.47 -0.25 0.28 0.85 0.35 -0.24 0.34

4096 0.95 0.76 -0.12 0.33 0.85 0.44 -0.20 0.37
2048 0.97 0.97 0.02 0.36 0.85 0.53 -0.13 0.37
1024 1.00 1.00 0.11 0.36 0.94 0.65 -0.11 0.37
512 1.00 1.00 0.11 0.39 0.94 0.79 -0.05 0.40
256 1.00 1.00 0.11 0.40 0.91 0.76 -0.02 0.43
128 1.00 1.00 0.12 0.39 0.94 0.82 -0.02 0.50
64 1.00 1.00 0.07 0.43 0.97 0.82 -0.08 0.45
32 1.00 1.00 0.11 0.44 0.94 0.85 -0.07 0.42
16 1.00 1.00 0.18 0.50 0.94 0.85 -0.07 0.40
8 1.00 1.00 0.15 0.50 0.91 0.82 -0.10 0.51
4 1.00 1.00 0.18 0.45 0.88 0.62 -0.03 0.28
2 0.95 0.92 0.02 0.33 0.82 0.59 -0.22 0.27
1 0.92 0.76 -0.17 0.43 0.79 0.18 -0.27 0.23

Table 4: Baseline classifier trained on baseline genes (Leukemia data).  The success rate (at
zero rejection), the acceptance rate (at zero error), the extremal margin and the median margin
are reported for the leave-one-out method on the 38 sample training set (V results) and the 34
sample test set (T results). We outline in red the classifiers performing best on test data reported
in Table 5. For comparison, we also show the results on all genes (no selection).
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Table 5 summarizes the best results obtained on the test set for each
combination of gene selection and classification method. The classifiers give
identical results, given a gene selection method. This result is consistent with
(Furey, 2000) who observed on the same data no statistically significant
difference in classification performance for various classifiers all trained with
genes selected by the method of (Golub, 1999). In contrast, the SVM selected
genes yield consistently better performance than the baseline genes for both
classifiers. This is a new result compared to (Furey, 2000) since the authors did
not attempt to use SVMs for gene selection. Other authors also report
performance improvements for SVM selected genes using other algorithms
((Mukherjee,1999), (Chapelle, 2000), (Weston, 2000)). The details are reported
in the discussion section (Section VI).

SVM RFE Baseline feature selection No feature selectionSelection
method

Classifier

#genes Error #
(0 rej.)

Reject #
(0 error)

#genes Error #
(0 rej.)

Reject #
(0 error)

#genes Error #
(0 rej.)

Reject #
(0 error)

SVM
classifier

8, 16 0 {} 0 {} 64 1 {28} 6
{4,16,22
,23,28,2
9}

7129 5
{16,19,
22,23,2

8}

11
{2,4,14,16,19
,20,22,23,24,

27,28}
Baseline
classifier

64 0 {} 0 {} 64 1 {28} 6
{4,16,22
,23,28,2
9}

7129 5
{16,19,
22,27,2

8}

22
{1,2,4,5,7,11,

13,14,16-
20,22-29,33}

Table 5: Best classifiers on test data (Leukemia data). The performance of the classifiers
performing best on test data (34 samples) are reported. The baseline method is described in
(Golub, 1999) and SVM RFE is used for feature (gene) selection (see text). For each combination
of SVM or Baseline genes and SVM or Baseline classifier, the corresponding number of genes,
the number of errors at zero rejection and the number of rejections at zero error are shown in the
table. The number of genes refers to the number of genes of the subset selected by the given
method yielding best classification performance. The patient id numbers of the classification
errors are shown in brackets. For comparison, we also show the results with no gene selection.

We tested the significance of the difference in performance with Equation (6).
Whether SVM or baseline classifier, SVM genes are better with 84.1%
confidence based on test error rate and 99.2% based on the test rejection rate.

To compare the top ranked genes, we computed the fraction of common genes
in the SVM selected subsets and the baseline subsets. For 16 genes or less, at
most 25% of the genes are common.

We show in Figure 3-a and -c the expression values of the 16-gene subsets for
the training set patients.  At first sight, the genes selected by the baseline method
look a lot more orderly. This is because they are strongly correlated with either
AML or ALL. There is therefore a lot of redundancy in this gene set. In essence,
all the genes carry the same information. Conversely, the SVM selected genes
carry complementary information. This is reflected in the output of the decision
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function (Figure 3-b and –d), which is a weighted sum of the 16 gene expression
values. The SVM output separates AML patients from ALL patients more clearly.

Figure 3: Best sets of 16 genes (Leukemia data). In matrices (a) and (c), the columns
represent different genes and the lines different patients from the training set. The 27 top lines
are ALL patients and the 11 bottom lines are AML patients. The gray shading indicates gene
expression: the lighter the stronger. (a) SVM best 16 genes. Genes are ranked from left to right,
the best one at the extreme left. All the genes selected are more AML correlated. (b) Weighted
sum of the 16 SVM genes used to make the classification decision. A very clear ALL/AML
separation is shown. (c) Baseline method (Golub, 1999) 16 genes. The method imposes that half
of the genes are AML correlated and half are ALL correlated. The best genes are in the middle.
(d) Weighted sum of the 16 baseline genes used to make the classification decision. The
separation is still good, but not as contrasted as the SVM separation.

V.2. SVMs select relevant genes
In another set of experiments, we compared the effectiveness of various feature
selection techniques. Having established in Section V.1 that the features
selected matter more than the classifier, we compared various feature selection
techniques with the same classifier (a linear SVM). The comparison is made on
Colon cancer data because it is a more difficult data set and therefore allows us
to better differentiate methods.

ALL

AML

ALL

AML

(a) (b)

(c) (d)
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In this section, unless otherwise stated, we use Recursive Feature Elimination
(RFE) by eliminating one gene at a time. We use a number of preprocessing
steps that include: taking the logarithm of all values, normalizing sample vectors,
normalizing feature vectors, and passing the result through a squashing function
of the type f(x)=c antan(x/c) to diminish the importance of outliers. Normalization
consists in subtracting the mean over all training values and dividing by the
corresponding standard deviation.

We first conducted a preliminary set of experiments using the data split of 31
training samples and 31 test samples. We summarize the results of the
comparison between the SVM method and the baseline method (Golub, 1999) in
Table 6. According to the statistical test of Equation (6) computed on the error
rate, the SVM method (SVM classifier trained on SVM genes) is significantly
better than the baseline method (baseline classifier trained on baseline genes).
On the basis of this test, we can accept that the SVM is better than the baseline
method with 95.8% confidence. In addition, the SVM achieves better
performance with fewer genes.

SVM RFE Baseline feature selection No feature selectionSelection
method

Classifier

#genes Error #
(0 rej.)

Reject #
(0 error)

#genes Error #
(0 rej.)

Reject #
(0 error)

#genes Error #
(0 rej.)

Reject #
(0 error)

SVM
classifier

8 3
{36,34,
-36}

29 8 5
{28,36,
11,34,-
36}

24 2000 5
{36,34,

-36, -30,
-2}

30

Baseline
classifier

32 4
{36,34
-36,-30}

21 16 6
{8,36,
34,-36,
-30,2}

21 2000 7  {8,36,
34,-37,

-36, -30,
-2}
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Table 6: Best classifiers on test data (Colon cancer data). The performance of the classifiers
performing best on test data (31 samples) are reported. The baseline method is described in
(Golub, 1999) and SVM RFE is used for feature (gene) selection (see text). For each combination
of SVM or Baseline genes and SVM or Baseline classifier, the corresponding number of genes,
the number of errors at zero rejection and the number of rejections at zero error are shown in the
table. The number of genes refers to the number of genes of the subset selected by the given
method yielding best classification performance. The list of errors is shown between brackets.
The numbers indicate the patients. The sign indicates cancer (negative) or normal (positive).  For
comparison, we also show the results with no gene selection.

Yet, the rejection rate reveals that some of the misclassified examples are very
far from the decision boundary: most of the examples must be rejected to yield
zero error. We examined the misclassified examples. As mentioned previously,
the tissue composition of the samples is not uniform. Most tumor tissues are rich
in epithelial (skin) cells and most normal samples are rich in muscle cells. The
muscle index is a quantity computed by Alon et al (Alon, 1999) that reflects the
muscle cell contents of a given sample. Most misclassified examples have an
inverted muscle index (high for tumor tissues and low for normal tissues). An
analysis of the genes discovered reveals that on such a small training data set
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both methods rank first a smooth muscle gene (gene J02854). Therefore, the
separation is made on the basis of tissue composition rather than the distinction
cancer vs. normal. We conjectured that the size of the training set was
insufficient for the SVM to eliminate tissue composition related genes that are
presumably irrelevant to the cancer vs. normal separation.

In a second set of experiments, to increase the training set size, we placed all the
Colon cancer data into one training set of 62 samples. We used the leave-one-
out method to assess performance.

The best leave-one-out performance is 100% accuracy for the SVMs (SVM
classifier trained on SVM genes) and only 90% for the baseline method (baseline
classifier trained on baseline genes). Using the statistical test of Equation (6), we
can assert with 99.3% confidence that SVMs are better than the baseline
method. An analysis of the genes discovered reveals that the first smooth muscle
gene ranks 5 for the baseline method and only 41 for SVMs. SVMs seem to be
able to avoid relying on tissue composition related genes to do the separation. As
confirmed by biological data presented in Section V.3, the top ranking genes
discovered by SVMs are all plausibly related to the cancer vs. normal separation.
In contrast, the baseline method selects genes that are plausibly related to tissue
composition and not to the distinction cancer vs. normal in its top ranking genes.

It is instructive to examine the support vectors to understand the mechanism of
gene selection used by SVM RFE. The α’s do not vary a lot until the last few
iterations. The number of support vectors goes through a minimum at 7 genes for
7 support vectors (it is coincidental that the two numbers are 7). At this point, the
leave-one-out error is zero. In Table 7, we show the “muscle index” values of
these 7 support vectors. We remind that the muscle index is a quantity computed
by Alon et al (Alon, 1999) that reflects the muscle cell contents of a given
sample. Most normal samples have a higher muscle index than tumor samples.
However, the support vectors do not show any such trend. There is a mix of
normal and cancer samples with either high or low muscle index.

Support vector samples -6 (T) 8 (N) 34 (N) -37 (T) 9 (N) -30 (T) -36 (T)
Muscle index 0.009 0.2 0.2 0.3 0.3 0.4 0.7

Table 7: Muscle index of 7 the support vectors of an SVM trained on the top 7 genes
selected by SVM RFE (Colon cancer data).  Samples with a negative sign are tumor tissues (T).
Samples with positive signs are normal tissues (N). We ranked samples in ordered of increasing
muscle index. In most samples in the data set, normal tissues have higher muscle index than
tumor tissues because tumor tissues are richer in epithelial (skin) cells. This is not the case for
support vectors which show a mix of all possibilities. This particular gene subset selected by SVM
RFE corresponds to the smallest number of support vectors (seven). Coincidentally, it also
corresponds the smallest number of genes (seven) that yields zero training error and zero leave-
one-out error.
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As a feature selection method, SVM RFE differs from the baseline method in two
respects:
- The mutual information between features is used by SVMs (SVMs are

multivariate classifiers) whereas the baseline method makes implicit
orthogonality assumptions (it can be considered as a combination of
univariate classifiers).

- The decision function is based only on support vectors that are “borderline”
cases as opposed to being based on all examples in an attempt to
characterize the “typical” cases.

We assume that the use of support vectors is critical in eliminating irrelevant
tissue composition related genes. To verify experimentally that hypothesis, we
compared SVM RFE with RFE methods using other multivariate linear
discriminant functions that do not make orthogonality assumptions but attempt to
characterize the “typical” cases.
We chose two discriminant functions:
- The Fisher linear discriminant also called Linear Discriminant Analysis (LDA)

(see e.g. (Duda, 1973)) because the baseline method approximates Fisher’s
linear discriminant by making orthogonality assumptions. We compute LDA
by solving a generalized eigenvalue problem (Duda, 1973)).

- The Mean-Squared-Error (MSE) linear discriminant computed by Pseudo-
inverse (Duda, 1973), because when all training examples are support
vectors the pseudo-inverse solution is identical to the SVM solution. The MSE
discriminant is obtained by calculating [w, b]T = [X, 1]T ([X,1][X,1]T)-1 y, where

X = [x1, x2, … xk, …xl]T, y = [y1, y2, … yk, … yl]T, and 1 is an l dimensional

vector of ones. This requires only the inversion of an (l, l) matrix.

We show the result of comparison in Figure 4. All multivariate methods
outperform the baseline method and reach 100% leave-one-out accuracy for at
least one value of the number of genes. LDA may be at a slight disadvantage on
these plots because, for computational reasons, we used RFE by eliminating
chunks of genes that decrease in size by powers of two. Other methods use RFE
by eliminating one gene at a time.
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Figure 4: Comparison of feature (gene) selection methods (Colon cancer data).  We varied
the number of genes selected by Recursive Feature Elimination (RFE) with various methods.
Training was done on the entire data set of 62 samples. The curves represent the leave-one-out
success rate for the various feature selection methods. Black: SVM RFE. Red: Linear
Discriminant Analysis RFE. Green: Mean Squared Error (Pseudo-inverse) RFE. Blue: Baseline
method (Golub, 1999). The solid line indicates that the classifier used is an SVM. The dashed line
indicates that the classifier used is the same as the one used to select the genes. This
corresponds to a single experiment for SVM. For MSE, the dashed and solid lines overlap. For
LDA we could not compute the dashed line, for computational reasons. The baseline method
performs slightly better when used with its own classifier. SVM RFE gives the best results down
to 4 genes.

Down to 4 genes, SVM RFE shows better performance than all the other
methods. We examined the genes ranking 1 through 64 for all the methods
studied. The first gene that is related to tissue composition and mentions “smooth
muscle” in its description ranks 5 for the baseline method, 4 for LDA, 1 for MSE
and only 41 for SVM. Therefore, this is an indication that SVMs might make a
better use of the data than the other methods via the support vector mechanism.
They are the only method tested that effectively eliminates tissue composition
related genes while providing highly accurate separations with a small subset of
genes. In the discussion section (Section VI), we propose a qualitative
explanation of the SVM feature selection mechanism.
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V.3. Results validation with the biology literature
In Section V.2, we found that SVM RFE eliminates from its top ranked genes
smooth muscle genes that are likely to be tissue composition related. In this
section, we individually checked the seven top ranked genes for relevance in
Colon cancer diagnosis (Table 8). The number seven corresponds to the
minimum number of support vectors, a criterion sometimes used for “model
selection”. We did not attempt to find whether it was particularly relevant. Our
findings are based on a bibliographic search and have been reviewed by one of
us who is a medical doctor. However, they have not been subject to any
experimental verification.

Rk Expres-
sion

GAN Description Possible function/relation to Colon cancer

7 C>N H08393 Collagen alpha 2(XI) chain (Homo
sapiens)

Collagen is involved in cell adhesion. Colon
carcinoma cells have collagen degrading activity
as part of the metastatic process (Karakiulakis,
1997).

6 C>N M59040 Human cell adhesion molecule (CD44)
mRNA, complete cds.

CD44 is upregulated when colon
adenocarcinoma tumor cells transit to the
metastatic state (Ghina, 1998).

5 C>N T94579 Human chitotriosidase precursor mRNA,
complete cds.

Another chitinase (BRP39) was found to play a
role in breast cancer. Cancer cells overproduce
this chitinase to survive apoptosis (Aronson,
1999).

4 N>C H81558 Procyclic form specific polypeptide B1-
alpha precursor (Trypanosoma brucei
brucei)

Clinical studies report that patients infected by
Trypanosoma (a colon parasite) develop
resistance against colon cancer (Oliveira, 1999).

3 N>C R88740 ATP synthase coupling factor 6,
mitochondrial precursor (human)

ATP synthase is an enzyme that helps build
blood vessels that feed the tumors
(Mozer,1999).

2 C>N T62947 60S ribosomal protein L24 (Arabidopsis
thaliana)

May play a role in controlling cell growth and
proliferation through the selective translation of
particular classes of mRNA.

1 N>C H64807 Placental folate transporter (Homo
sapiens)

Diminished status of folate has been associated
with enhanced risk of colon cancer (Walsh,
1999).

Table 8: SVM RFE top ranked genes (Colon cancer data).  The entire data set of 62 samples
was used to select genes with SVM RFE. Genes are ranked in order of increasing importance.
The first ranked gene is the last gene left after all other genes have been eliminated. Expression:
C>N indicates that the gene expression level is higher in most cancer tissues; N>C indicates that
the gene expression level is higher in most normal tissues. GAN: Gene Accession Number. All
the genes in this list have some plausible relevance to the cancer vs. normal separation.

The role of some of the best-ranked genes can be easily explained because they
code for proteins whose role in colon cancer has been long identified and widely
studied. Such is the case of CD44, which is upregulated when colon
adenocarcinoma tumor cells become metastatic (Ghina, 1998) and collagen,
which is involved in cell adhesion. Colon carcinoma cells are known to have
collagen degrading activity as part of the metastatic process (Karakiulakis, 1997).
The presence of some other genes in our list can be explained by very recently
published studies. For example, the role of ATP synthase, as an enzyme that
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helps build blood vessels (tumor angiogenesis), to feed the tumors was
published only a year ago (Mozer,1999).

Diminished status of folate has been associated with enhanced risk of colon
cancer in a recent clinical study (Walsh, 1999). To this date, however, no known
biochemical mechanism explained the role of folate in colon cancer. Knowing
that gene H64807 (Placental folate transporter) was identified as one of the most
discriminant genes in the colon cancer vs. normal separation can give
researchers a clue where to start to investigate such mechanisms.

In the case of human chitotriosidase, one needs to proceed by analogy with
another homologous protein of the same family whose role in another cancer is
under study: another chitinase (BRP39) was found to play a role in breast
cancer. Cancer cells overproduce this chitinase to survive apoptosis (Aronson,
1999). An important increase in chitotriosidase activity has been noticed in
clinical studies of Gauchers disease patients, an apparently unrelated condition.
To diagnose Gauchers disease the chitotriosidase enzyme can be very
sensitively measured. The plasma or serum prepared from less than a droplet of
blood is sufficient for the chitotriosidase measurement (Aerts, 1996). This opens
the door to a possible new diagnosis test for colon cancer as well.
In addition we identified 60S ribosomal protein L24 (Arabidopsis thaliana). This
non-human protein is homologous to a human protein located on chromosome 6.
Like other ribosomal proteins, it may play a role in controlling cell growth and
proliferation through the selective translation of particular classes of mRNA.

Finally, one of our most intriguing puzzles has been the “procyclic form specific
polypeptide B1-alpha precursor (Trypanosoma brucei brucei)”. We first found out
that Trypanosoma is a tiny parasitic protozoa indigenous to Africa and South
America. We thought this may be an anomaly of our gene selection method or an
error in the data, until we discovered that clinical studies report that patients
infected by Trypanosoma (a colon parasite) develop resistance against colon
cancer (Oliveira, 1999). With this discovered knowledge there may be the
possibility for developing a vaccine for colon cancer.

To complete our study, we proceeded similarly with the Leukemia data by
running our gene selection method on the entire data set of 72 samples. We
examined the four top ranked genes (Table 9). The number four corresponds to
the minimum number of support vectors (5 in this case). All four genes have
some relevance to leukemia and deserve a more detailed analysis to understand
their exact role in discriminating between AML and ALL variants.

In this last experiment, we also noted that the smallest number of genes that
separate the whole data set without error is two (Zyxin and MacMarcks). For this
set of genes, there is also zero leave-one-out error. In contrast, the baseline
method (Golub, 1999) always yields at least one training error and one leave-
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one-out error. One training error can be achieved with a minimum of 16 genes
and one leave-one-out error with a minimum of 64 genes.

R
k

Expres-
sion

GAN Description Possible function/relation to Leukemia

4 AML>ALL U59632 Cell division control related protein
(hCDCrel-1) mRNA

hCDCrel-1 is a partner
gene of MLL in some leukemias (Osaka, 1999).

3 AML>ALL U82759 GB DEF = Homeodomain protein HoxA9
mRNA

Hoxa9 collaborates with other genes to produce
highly aggressive acute leukemic disease
(Thorsteinsdottir, 1999).

2 ALL>AML HG1612 MacMarcks Tumor necrosis factor-alpha rapidly stimulate
Marcks gene transcription in human
promyelocytic leukemia cells (Harlan, 1991).

1 AML>ALL X95735 Zyxin Encodes a LIM domain protein localized at focal
contacts in adherent erythroleukemia cells
(Macalma, 1996).

Table 9: SVM RFE top ranked genes (Leukemia data).  The entire data set of 72 samples was
used to select genes with SVM RFE. Genes are ranked in order of increasing importance. The
first ranked gene is the last gene left after all other genes have been eliminated. Expression:
ALL>AML indicates that the gene expression level is higher in most ALL samples; AML>ALL
indicates that the gene expression level is higher in most AML samples; GAN: Gene Accession
Number. All the genes in this list have some plausible relevance to the AML vs. ALL separation.

VI. Other explorations and discussion

VI.1. Computational considerations
The fastest methods of feature selection are correlation methods: for the data
sets under study, several thousands of genes can be ranked in about one
second by the baseline method (Golub, 1999) with a Pentium processor.

The second fastest methods use as ranking criterion the weights of a classifier
trained only once with all the features. Training algorithms such as SVMs or
Pseudo-inverse/MSE require first the computation of the (l, l) matrix H of all the
scalar products between the l training patterns. The computation of H increases
linearly with the number of features (genes) and quadratically with the number of
training patterns. After that, the training time is of the order of the time required to
invert matrix H. For optimized SVM algorithms, training may be faster than
inverting H, if the number of support vectors is small compared to l. For the data
sets under study, the solution is found in a couple of seconds on a Pentium
processor, with non-optimized Matlab code.

Recursive Feature Elimination (RFE) requires training multiple classifiers on
subsets of features of decreasing size. The training time scales linearly with the
number of classifiers to be trained. Part of the calculations can be reused. Matrix
H does not need to be re-computed entirely. The partial scalar products of the
eliminated features can be subtracted. Also, the coefficients α can be initialized
to their previous value. Our Matlab implementation of SVM RFE on a Pentium
processor returns a gene ranking in about 15 minutes for the entire Colon
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dataset (2000 genes, 62 patients) and 3 hours on the Leukemia dataset (7129
genes, 72 patients). Given that the data collection and preparation may take
several months or years, it is quite acceptable that the data analysis takes a few
hours.

All our feature selection experiments using various classifiers (SVM, LDA, MSE)
indicated that better features are obtained by using RFE than by using the
weights of a single classifier (see Section VI.2 for details). Similarly, better results
are obtained by eliminating one feature at a time than by eliminating chunks of
features. However, there are only significant differences for the smaller subset of
genes (less than 100). This suggests that, without trading accuracy for speed,
one can use RFE by removing chunks of features in the first few iterations and
then remove one feature at a time once the feature set reaches a few hundreds.
This may become necessary if the number of genes increases to millions, as is
expected to happen in the near future.

The scaling properties of alternative methods that have been applied to other
“feature selection” problems are generally not as attractive. In a recent review
paper (Blum, 1997), the authors mention that “few of the domains used to date
have involved more than 40 features”. The method proposed in (Shürmann,
1996), for example, would require the inversion of a (n, n) matrix, where n is the
total number of features (genes).

VI.2. Analysis of the feature selection mechanism of SVM-RFE

1) Usefulness of RFE
In this section, we question the usefulness of the computationally expensive
Recursive Feature Elimination (RFE). In Figure 5, we present the performance of
classifiers trained on subsets of genes obtained either by “naively” ranking the
genes with (wi)2, which is computationally equivalent to the first iteration of RFE,
or by running RFE. RFE consistently outperforms the naïve ranking, particularly
for small gene subsets.

The naïve ranking and RFE are qualitatively different. The naïve ranking orders
features according to their individual relevance. The RFE ranking is a feature
subset ranking. The nested feature subsets contain complementary features not
necessarily individually most relevant. This is related to the relevance vs.
usefulness distinction (Kohavi, 1997).

The distinction is most important in the case of correlated features. Imagine, for
example, a classification problem with 5 features, but only 2 distinct features both
equally useful: x1, x1, x2, x2, x2. A naïve ranking may produce weight magnitudes
x1(1/4), x1(1/4), x2(1/6), x2(1/6), x2(1/6), assuming that the ranking criterion gives
equal weight magnitudes to identical features. If we select a subset of two
features according to the naïve ranking, we eliminate the useful feature x2 and
incur possible classification performance degradation. In contrast, a typical run of
RFE would produce:
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Figure 5: Effect of Recursive Feature Elimination (Colon cancer data).  In this experiment, we
compared the ranking obtained by RFE with the naïve ranking obtained by training a single
classifier and using the magnitude of the weights as ranking coefficient. We varied the number of
top ranked genes selected. Training was done on the entire data set of 62 samples. The curves
represent the leave-one-out success rate for the various feature selection methods, using an
SVM classifier. The colors represent the classifier used for feature selection. Black: SVM. Red:
Linear Discriminant Analysis. Green: Mean Squared Error (Pseudo-inverse). We do not represent
the baseline method (Golub, 1999) since RFE and the naïve ranking are equivalent for that
method. The solid line corresponds to RFE. The dashed line corresponds to the naïve ranking.
RFE consistently outperforms the naïve ranking, for small gene subsets.

first iteration x1(1/4), x1(1/4), x2(1/6), x2(1/6), x2(1/6),
second iteration x1(1/4), x1(1/4), x2(1/4), x2(1/4)
third iteration x2(1/2), x1(1/4), x1(1/4)
fourth iteration x1(1/2), x2(1/2)
fifth iteration x1(1)
Therefore if we select two features according to RFE, we obtain both x1 and x2,
as desired.

The RFE ranking is not unique. Our imagined run produced: x1 x2 x1 x2 x2,
corresponding to the sequence of eliminated genes read backwards. Several
other sequences could have been obtained because of the symmetry of the
problem, including x1 x2 x2 x1 x2 and x2 x1 x2 x1 x2. We observed in real
experiments that a slight change in the feature set often results in a completely
different RFE ordering. RFE alters feature ordering only for multivariate
classification methods that do not make implicit feature orthogonality
assumptions. The method of (Golub, 1999) yields the same ordering for the
naïve ranking and RFE.
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Figure 6: Feature selection and support vectors.  This figure contrasts on a two dimensional
classification example the feature selection strategy of “average case” type methods and that of
SVMs. The red and blue dots represent examples of class (-) and (+) respectively. The decision
boundary D(x)=0 separates the plane into two half planes D(x)<0 ⇒ x in class (-), and D(x)>0 ⇒ x
in class (+). There is a simple geometric interpretation of the feature ranking criterion based on
the magnitude of the weights: for slopes larger than 45 degrees, the preferred feature is x1,
otherwise it is x2. The example was constructed to demonstrate the qualitative difference of the
methods. Feature x2 separates almost perfectly all examples with a small variance, with the
exception of one outlier. Feature x1 separates perfectly all examples but has a higher variance.
(a) Baseline classifier (Golub, 1999). The preferred feature is x2. (b) SVM. The preferred feature
is x1.
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2) Feature selection mechanism of SVMs
In the experimental section (Section V), we conjectured that SVMs have a
feature selection mechanism relying on support vectors that distinguishes them
from “average case” methods. In this section, we illustrate on an example what
such a mechanism could be.

In Figure 6, we constructed a two-dimensional classification example. The dots
were placed such that feature x2 separates almost perfectly all examples with a
small variance, with the exception of one outlier. Feature x1 separates perfectly
all examples but has a higher variance. We think of feature x1 as the relevant
feature (a cancer-related gene) and as feature x2 as the irrelevant feature (a
tissue composition related gene): most examples are very well separated
according to tissue composition, but one valuable outlier contradicts this general
trend. The baseline classifier (Golub, 1999) prefers feature x2. But the SVM
prefers feature x1.

Therefore the SVM feature selection critically depends on having clean data
since the outliers play an essential role. In our approach, the two problems of
selection of useful patterns (support vectors) and selection of useful features are
tightly connected. Other approaches consider the two problems independently
(Blum, 1997).

VI.3. Generalization of SVM RFE to the non-linear case and other kernel
methods
The method of eliminating features on the basis of the smallest change in cost
function described in Section II.5 can be extended to the non-linear case and to
all kernel methods in general (Weston, 2000-b). One can make computations
tractable by assuming no change in the value of the α’s. Thus one avoids having
to retrain a classifier for every candidate feature to be eliminated.

Specifically, in the case of SVMs ((Boser, 1992), (Vapnik, 1998), (Cristianini,
1999)), the cost function being minimized (under the constraints 0 ≤ αk ≤ C and

∑
k

αk yk =0) is:

J = (1/2) α TH α  – α T1,
where H is the matrix with elements yhykK(xh,xk), K is a kernel function that
measures the similarity between xh and xk, and 1 is an l dimensional vector of
ones. An example of such a kernel function is K(xh,xk)=exp(-γ ||xh-xk||2).
To compute the change in cost function caused by removing input component i,
one leaves the α’s unchanged and one re-computes matrix H. This corresponds
to computing K(xh(-i), xk(-i)), yielding matrix H(-i), where the notation (-i) means
that component i has been removed. The resulting ranking coefficient is:

DJ(i) = (1/2) α TH α  – (1/2) α T H(-i) α
The input corresponding to the smallest difference DJ(i) shall be removed. The
procedure can be iterated to carry out Recursive Feature Elimination (RFE).
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In the linear case, K(xh,xk)=xh.xk and α TH α = ||w ||2. Therefore DJ(i)=(1/2)(wi)2.
The method is identical the one we proposed and studied in the previous
sections for linear SVMs.

Computationally, the non-linear kernel version of SVM RFE is a little more
expensive than the linear version. However, the change in matrix H must be
computed for support vectors only, which makes it affordable for small numbers
of support vectors. Additionally, parts of the calculation such as the dot products
xh.xk between support vectors can be cached.

We performed preliminary experiments on a classical example of non-linear
classification problem, the XOR problem, which indicate that the method is
promising. We added to a 2 by 2 two checker board 50 extra noisy dimensions,
all 52 dimensions generated with uniform distribution on -0.5 to 0.5. We averaged
performance over 30 random trials with a polynomial kernel of degree 2,
K(x,y)=(x.y+1)2. Using our feature ranking method we selected the top two
features. For 30 training examples the correct two features were selected 22/30
times. For 40 training examples the correct two features were selected 28/30
times. We also compared classification performance with and without feature
selection (Table 10). The SVM performs considerably better with feature
selection on this problem.

Training set size Top 2 features selected No feature selection
30 0.1775 ± 0.1676 0.4691 ± 0.0233
40 0.1165 ± 0.1338 0.4654 ± 0.0236
100 0.0350 ± 0.0145 0.4432 ± 0.0259
1000 0.0036 ± 0.0024 0.3281 ± 0.0218
Table 10: Non-linear SVM RFE. Fifty extra noisy dimensions were added to a 2 by 2 two
checker board (XOR problem). All 52 dimensions were generated with uniform distribution on -0.5
to 0.5. The table shows averaged performance and standard deviation on a test set of 500
examples over 30 random trials using a polynomial classifier of degree 2.

The idea of keeping the α’s constant to compute DJ can be extended to the
multi-class problem (Bredensteiner, 1999) other kernel methods such as KPCA
(Schölkopf, 1998), non-classification problems such as regression, density
estimation (see e.g. Vapnik, 1998) and clustering (Ben-Hur, 2000). It is not
limited to RFE type of search. It can be used, for instance, for forward feature
selection (progressively adding features), a strategy recently used, for example,
in (Smola, 2000).

VI.4. Other SVM feature selection methods

1) Penalty-based methods
We explored other methods of feature selection using SVMs. One idea is to
formulate the optimization problem in a way that a large number of weights will
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be forced to zero. We tried the following linear programming formulation of the
problem:

Minimize over wi, wi* and ξk

∑
i

(wi + wi*) + C ∑
k

ξk

subject to:
yk[(w*-w).xk + b] ≥ 1 – ξk

wi > 0
wi*> 0
i=1…n, k=1…l
where C is a positive constant (penalty parameter).
Although the idea is quite attractive, we did not obtain in our experiment results
that matched the performance of SVM RFE. Similar ideas have been proposed
and studied by other authors (Bradley, 1998-a and -b). One drawback of penalty-
based methods is that the number of features chosen is an indirect consequence
of the value of the penalty parameter.

2) Feature scaling methods
The magnitude of the weights of a linear discriminant function is a scaling factor
of the inputs. The idea of ranking features according to scaling factors subject to
training therefore generalizes the scheme that we have been using. Non-linear
discriminant functions such as neural networks and kernel methods can
incorporate such scaling factors. Several authors ((Mukherjee, 2000)
(Jebera, 2000), (Chapelle, 2000), (Weston, 2000-a)) have recently proposed and
studied feature selection methods for SVMs that incorporate scaling factors into
the kernel:

KA(x, y) = K(Ax, Ay)
where A is a diagonal matrix of scaling factors a1, a2, …an. Training is performed
by iterating:
1) Optimize the α’s for a fixed A (regular SVM training).
2) Optimize A for fixed α’s by gradient descent.
There are various flavors of the method depending on which cost function is
being optimized in step 2 and which optimization method is used.
The scaling factors are used to assess feature relevance. It is possible to set a
threshold on feature relevance or select a given number of most relevant
features.

In (Mukherjee, 2000), the authors report on the leukemia data (Golub, 1999) zero
error with no rejects on the test set using the top 40 genes. They were able to
classify 32 of 34 cases correctly using 5 genes. In (Chapelle, 2000), the authors
achieve 1 error on the test set with 5 genes using the same data set. In (Weston,
2000-a), the authors report on the Leukemia data zero error with 20 genes and 1
error with 5 genes. On the colon cancer data (Alon, 1999), the same authors
report 12.8% average error of 50 splits of the data into 50 training examples and
12 test examples.
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We note that the least relevant feature(s) could be eliminated and the process
iterated as in RFE, but no results on this computationally expensive approach
have been reported.

One drawback of feature scaling methods is that they rely on gradient descent.
As such, they are sensitive to the choice of the gradient step, prone to falling in
local minima and may be slow for a large number of features.

3) Wrapper methods and other search techniques
SVM RFE improves feature selection based on feature ranking by eliminating the
orthogonality assumptions of correlation methods. Yet, it remains a greedy sub-
optimal method. It generates nested subsets of features. This means that the
selected subset of m features is included in the subset of m+1 features. But,
assume that we found a feature singleton that provides the best possible
separation. There is no guarantee that the best feature pair will incorporate that
singleton. Feature ranking methods miss that point.

Combinatorial search is a computationally intensive alternative to feature ranking.
To seek an optimum subset of m features or less, all combinations of m features
or less are tried. The combination that yields best classification performance (on
a test set or by cross-validation) is selected. The classifier is used as a so-called
“wrapper” in the feature selection process (Kohavi, 1997).

We tried to refine our optimum feature set by combinatorial search using SVMs in
a wrapper approach. We started from a subset of genes selected with SVM RFE.
We experimented with the leukemia data, using the training/test data split. We
could easily find a pair of genes that had zero leave-one-out error and a very
wide positive extremal margin. Yet, the error rate on the test set was very poor
(13/34 errors).

The failure of these explorations and the success of RFE indicate that RFE has a
built in regularization mechanism that we do not understand yet that prevents
overfitting the training data in its selection of gene subsets.  Other authors have
made similar observations for other greedy algorithms (Kohavi, 1997). Placing
constraints on the search space undoubtedly contributes to reduce the
complexity of the learning problem and prevent overfitting, but a more precise
theoretical formulation is still missing.

As a compromise between greedy methods and combinatorial search, other
search methods could be used such as beam search or best first search (Kohavi,
1997).
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VII. Conclusions and future work

SVMs lend themselves particularly well to the analysis of broad patterns of gene
expression from DNA micro-array data. They can easily deal with a large number
of features (thousands of genes) and a small number of training patterns (dozens
of patients).  They integrate pattern selection and feature selection in a single
consistent framework.

We proposed and applied the SVM method of Recursive Feature Elimination
(RFE) to gene selection. We showed experimentally on two different cancer
databases that taking into account mutual information between genes in the gene
selection process impacts classification performance. We obtained significant
improvements over the baseline method that makes implicit orthogonality
assumptions. We also verified the biological relevance of the genes found by
SVMs. The top ranked genes found by SVM all have a plausible relation to
cancer. In contrast, other methods select genes that are correlated with the
separation at hand but not relevant to cancer diagnosis.

The RFE method was demonstrated for linear classifiers, including SVMs. This
simple method allows us to find nested subsets of genes that lend themselves
well to a model selection technique that finds an optimum number of genes. Our
explorations indicate that RFE is much more robust to data overfitting than other
methods, including combinatorial search.

Further work includes experimenting with the extension of the method to non-
linear classifiers, to regression, to density estimation, to clustering, and to other
kernel methods. We envision that linear classifiers are going to continue to play
an important role in the analysis of DNA micro-array because of the large ratio
number of features over number of training patterns.

Feature ranking methods do not dictate the optimum number of features to be
selected. An auxiliary model selection criterion must be used for that purpose.
The problem is particularly challenging because the leave-one-out error by itself
is of little use since it is zero for a large number of gene subsets. Possible criteria
that we have explored include the number of support vectors and a combination
of the four metrics of classifier quality (error rate, rejection rate, extremal margin,
and median margin) computed with the leave-one-out procedure. We have also
explored with adding penalties for large numbers of features, using bounds on
the expected error rate. Finding a good model selection criterion is an important
avenue of experimental and theoretical research.

Greedy methods such as RFE are known by experimentalists to be less prone to
overfitting than more exhaustive search techniques. A learning theoretic analysis
of the regularization properties of SVM RFE remains to be done.

Finally, we have directed our attention to feature selection methods that optimize
the feature subset for a given family of classifier (e.g. linear discriminant). More
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generally, the simultaneous choice of the learning machine and the feature
subset should be addressed, an even more complex and challenging model
selection problem.
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