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Abstract Principal component analysis (PCA) is a statistical technique commonly used in
multivariate data analysis. However, PCA can be difficult to interpret and explain since the
principal components (PCs) are linear combinations of the original variables. Sparse PCA
(SPCA) aims to balance statistical fidelity and interpretability by approximating sparse PCs whose
projections capture the maximal variance of original data. In this paper we present an efficient and
paralleled method of SPCA using graphics processing units (GPUs), which can process large
blocks of data in parallel. Specifically, we construct parallel implementations of the four optimi-
zation formulations of the generalized power method of SPCA (GP-SPCA), one of the most
efficient and effective SPCA approaches, on a GPU. The parallel GPU implementation of GP-
SPCA (using CUBLAS) is up to eleven times faster than the corresponding CPU implementation
(using CBLAS), and up to 107 times faster than aMatLab implementation. Extensive comparative
experiments in several real-world datasets confirm that SPCA offers a practical advantage.

Keywords Sparse principal . Component analysis . Powermethod .GPU .Large-scale . Parallel
method

1 Introduction

Principal component analysis (PCA) [15] is a well-established tool used for data analysis and
dimensionality reduction [10] [11] [12] [13] [27] [31]. The goal of PCA is to find a sequence of
orthogonal factors that represent the directions of largest variance. PCA is used in many
applications, including machine learning [32], image processing [28], neurocomputing, engi-
neering, and computer networks, especially for large datasets. However, despite its power and
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popularity, a major limitation of PCA is that the derived principal components (PCs) are difficult
to interpret and explain because they tend to be linear combinations of all the original variables.

Over the past 10 years, sparse principal component analysis (SPCA) has been used to improve
the interpretability of PCs. SPCA aims to find a reasonable balance between statistical fidelity and
interpretability by approximating sparse PCs. Briefly, SPCA methods can be divided into two
groups: (1) ad hocmethods [16] [4] and (2) sparsity penalizationmethods [17] [36] [1] [2] [23] [18].
Ad hoc methods post-process the components obtained from classical PCA; for example, Jolliffe
[16] uses rotation techniques in the standard PCA subspace to find sparse loading vectors, while
Cadima and Jolliffe [4] simply set the PCA loadings with small absolute values to zero. Sparsity
penalization methods usually formulate the SPCA problem as an optimization program by adding a
sparsity-penalized term into the PCA framework. For example, Jolliffe et al.[17] maximize the
Rayleigh quotient of the data covariance matrix under the L1-norm penalty in the SCoTLASS
algorithm. Zou et al.[36] formulate sparse PCA as a regression-type optimization problem by
imposing the LASSO penalty on the regression coefficients. In the DSPCA algorithm,
d’Aspremont et al. [1] solve a convex relaxation of the sparse PCA, while Moghaddam et al.[23]
and d’Aspremont et al.[2] go on to use greedymethods in order to solve the combinatorial problems
encountered in sparse PCA. Finally, Journée et al.[18] propose the generalized power method for
sparse PCA (GP-SPCA), in which sparse PCA is formulated as two single-unit and two block
optimization problems. GP-SPCA has optimal convergence properties when either the objective
function, or the feasible set, are strongly convex [18].

There is ever growing collection, sharing, combination, and use of massive amounts of
data. The analysis of such “big data” has become essential in many commercial and scientific
applications, from image analysis [20] [21] to genome sequencing. Parallel computing algo-
rithms are essential for large-scale, high-dimensional data. Fortunately, modern graphics
processing units (GPUs) have a highly parallel structure that makes them ideally suited to
processing big data algorithms as well as graphics [25].

In this study we consider how to build compact, unsupervised representations of large-scale,
high-dimensional data using sparse PCA schemes, with an emphasis on executing the algorithm in
the GPU environment. The work can be regarded as a set of parallel optimization procedures for
SPCA; specifically, we construct parallel implementations of the four optimization formulations
used in GP-SPCA. To the best of our knowledge, GP-SPCA has not previously been implemented
using GPUs. We compare the GPU implementation (on an NVIDIA Tesla C2050) with the
corresponding CPU implementation (on a six-core 3.33 GHz high-performance cluster) and show
that the parallel GPU implementation of GP-SPCA is up to 11 times faster than the corresponding
CPU implementation, and up to 107 times faster than the corresponding MatLab implementation.
We also conduct extensive comparative experiments of SPCA and PCA on several benchmark
datasets, which provide further evidence that SPCA outperforms PCA in the majority of cases.

The remainder of this paper is organized as follows. GP-SPCA is briefly introduced in
Section 2. The implementation of GP-SPCA on GPUs using CUBLAS is described in
Section 3, and the experiments are presented in Section 4. We conclude in Section 5.

2 Generalized power method of SPCA

Let A∈Rp×n be a matrix encoding p samples of n variables. SPCA aims to find principal
components that are both sparse and explain as much of the variance in the data as possible,
and in doing so finds a reasonable trade-off between statistical fidelity and interpretability. GP-
SPCA considers two single-unit and two block formulations of SPCA, in order to extract m
sparse principal components, with m=1 for two single-unit formulations of SPCA and p≥m≥1
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for the two block formulations of SPCA. GP-SPCA maximizes a convex function on the unit
Euclidean sphere in Rp (form=1) or on the Stiefel manifold in Rp×m (for m>1). Depending on
the type of penalty (either l1 or l0) used to enforce sparsity, there are four formulations of
SPCA, namely single-unit SPCAvia the l1-penalty (GP-SPCA-SL1), single-unit SPCAvia the
l0-penalty (GP-SPCA-SL0), block SPCAvia the l1-penalty (GP-SPCA-BL1), and block SPCA
via the l0-penalty (GP-SPCA-BL0).

Denote the unit Euclidean ball (resp. sphere) in Rk by Bk={y∈Rk|yTy≤1} (resp. Sk={y∈Rk|yTy=
1}). Denote the space of n×m matrices with unit-norm columns by [Sn]m={Y∈Rn×m|Diag(YTY)=
Im}, where Diag( ) is the diagonal matrix, by extracting the diagonal of the argument. Denote the
Stiefel manifold by Sm

p ={Y∈Rn×m|YTY=Im}, and write sign(t) for the sign of the argument t∈R and
t+=max{0,t}. The characteristics of the four variants of GP-SPCA are summarized in Table 1 [18].
And we implement all the four formulations of GP-SPCA on the GPU to boost the efficiency.

GP-SPCA has optimal convergence properties when either the objective functions, or the
feasible set, are strongly convex, which is the case with the single-unit formulations and can be
enforced in the block cases [18].

3 GPU implementation of SPCA (GP-SPCA)

GPUs are typically used for computer graphics processing in general-purpose computing. There is a
discrepancy between the floating-point capability of the CPU and GPU because the GPU is
specialized for intensive, highly-parallel computation, and is therefore specifically designed to devote
more transistors to data processing rather than data caching and flow control, as shown in Fig. 1 [25].

CUDATM is a general-purpose parallel computing architecture designed by NVIDIA, which has
a parallel programming model and instruction set architecture. CUDA guides the programmer to
partition a problem into a sub-problem that can be solved as independent parallel blocks of threads in
a thread hierarchy; Fig. 2 illustrates the hierarchy of threads, blocks, and grids used in CUDA. As
well as the CUDA programming environment, NVIDIA also supplies toolkits for the programmer:
CUBLAS [26] is one such library that implements Basic Linear Algebra Subprograms (BLAS).

Here we implement all formulations of GP-SPCA on the GPU using CUBLAS. The data
space is allocated both on the host memory (CPU) and on the device memory (GPU). Data are
initialized on the host memory before being transferred to the device memory, after which
parallel computation is performed on the device memory. The results are then transferred back
to the host memory when computation is complete.

4 Experiments

In this section, we conduct comparative experiments to evaluate the efficiency of GPU
computing and the effectiveness of GP-SPCA.

5 Efficiency of GPU computing

In order to compare the efficiency of GPU and CPU computing, we first conduct the CPU
implementation of GP-SPCA using GSL CBLAS [9], which is a highly efficient implementation
of BLAS. We also compare the implementation with the MatLab application presented in [18] .

A six-core 3.33 GHz high performance cluster was used for the CPU implementation, and
an NVIDIA Tesla C2050 for the GPU implementation. Twenty test instances were generated
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for each input matrix AP×N (N∈[5.0×102,3.2×104], P=N/10). Here, m=5 is the number of
sparse PCs, and γ∈{0.01,0.05} is the aforementioned parameter that balances the sparsity and
variance of the PCs.

Fig. 1 The difference between GPU and CPU [25] . The GPU is especially well-suited for data-parallel
computation, and the same program is executed on many elements in parallel

Fig. 2 Grids of thread blocks [25]. A program is divided into several grids each of which is partitioned into
blocks of threads that execute independently from each other
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Figure 3 shows the average running time of different input matrices using different
parameters. The difference in processing time (between CPU and GPU) increases with
increasing size of the input matrix, with up to eleven times improvement in speed
over the corresponding CBLAS implementation, and up to 107-times over the MatLab
implementation.

Fig. 3 A comparison of GP-SPCA performed on a GPU (Tesla C2050) and a CPU. The x-axis indicates the size
of the input matrix and the y-axis denotes computation time. a. GP-SPCA-SL0, m=5, γ=0.01. b. GP-SPCA-
BL0, m=5, γ=0.01. c. GP-SPCA-SL1, m=5, γ=0.05 d. GP-SPCA-BL1, m=5, γ=0.05

Fig. 4 Examples of handwriting in the USPS database
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6 Effectiveness of GP-SPCA

To evaluate the effectiveness of GP-SPCA in practice, we next conducted GP-SPCA and PCA
experiments on several benchmark datasets, including the USPS database [14], the
COIL20 database [24], and the Isolet spoken letter recognition database [3] . For
each experiment, we used GP-SPCA and PCA to learn the project functions using
training samples, before mapping all the samples (both training and test samples) into
the lower dimensional subspace where recognition is performed using a nearest
neighbor classifier.

7 USPS database

The USPS database [14] is a handwritten digit database containing 9,298 16 × 16 pixel
handwritten digit images in total (Fig. 4). Each pixel is with 256 grey levels, thus each image
is represented by a 256-dimensional vector. The database was split into 7,291 training images
and 2007 test images as in [5] [6], with the parameter γ set to 0.1.

The results of SPCA and PCA in recognizing the ten handwritten digits are shown in Fig. 5,
from which we can see that SPCA outperforms PCA in most cases.

8 COIL20 database

The COIL20 database [24] contains 1,440 images of 20 objects (for examples, see Fig. 6). The
images of each object are taken five degrees apart as the object is rotated on a turntable, and as

Fig. 5 Recognition of SPCA and PCA on USPS

Fig. 6 COIL20 examples
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a result each object is represented by 72 32×32 pixel images, with 256 grey levels per pixel.
Thus, each image is represented by a 1,024-dimensional vector. We randomly selected two
groups of 24 and 36 examples of each object as training sets, and used the remaining images
for the test sets. The parameter γ was set to 0.3 for 24-example group, and 0.1 for the 36-
example group. All the experiments were repeated five times.

Figure 7. shows that SPCA outperforms PCA in both cases. Figure 8, which shows the
recognition rate of selected objects, demonstrates that SPCA outperforms PCA in most cases.

9 Isolet spoken letter recognition database

The Isolet spoken letter recognition database [3] contains 150 subjects, each of whom speaks
each letter of the alphabet twice. The features include spectral coefficients; contour features,
sonorant features, pre-sonorant features, and post-sonorant features as in [22] . The speakers
were grouped into five sets of 30 speakers; three were used for training and two for testing in
the first experiment and four groups for training the other for testing in the second experiment
(to evaluate robustness). The parameter γ was set to 10−6 for the first experiment and 0.02 for

Fig. 7 The average recognition rates of SPCA and PCA on COIL20 data

Fig. 8 The recognition results of selected objects
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the second, and each experiment was repeated five times. Figs. 9 and 10 show the average
recognition rates and recognition of each character, respectively. SPCA is superior to PCA in
the majority of cases.

Fig. 9 The average recognition rates of SPCA and PCA on Isolet data

Fig. 10 Recognition rates for each character
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10 Conclusion

Sparse PCA is a reasonable method for balancing statistical fidelity and interpretability. In this
paper, we present a paralleled method of GP-SPCA, one of the most efficient SPCA
approaches, using a GPU. Specifically, we construct parallel implementations of the four
optimization formulations for the GPU, and compare this with a CPU implementation using
CBLAS. Using real-world data, we experimentally validate the effectiveness of GP-SPCA and
demonstrate that the parallel GPU implementation of GP-SPCA can significantly improve
performance. This work has several potential applications in large-scale, high-dimension
reduction problems such as video indexing [33] [7] [8]and web image annotation [34] [35]
[19] [29] [30], which will be the subject of future study.
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