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Abstract—Neural spike sorting is an indispensable step in the
analysis of multiunit extracellular neural signal recording. The
applicability of spike sorting systems has been limited, mainly to
the recording of sufficiently high signal-to-noise ratios, or to the
cases where supervised classification can be utilized. We present a
novel unsupervised method that shows satisfactory performance
even under high background noise. The system consists of an
efficient spike detector, a feature extractor that utilizes projection
pursuit based on negentropy maximization (Huber, 1985 and
Hyvarinen et al., 1999), and an unsupervised classifier based on
probability density modeling using mixture of Gaussians (Jain
et al., 2000). Our classifier is based on the mixture model with
a roughly approximated number of Gaussians and subsequent
mode-seeking. It does not require accurate estimation of the
number of units present in the recording and, thus, is better suited
for use in fully automated systems. The feature extraction stage
leads to better performance than those utilizing principal com-
ponent analysis and two nonlinear mappings for the recordings
from the somatosensory cortex of rat and the abdominal ganglion
of Aplysia. The classification method yielded correct classification
ratio as high as 95%, for data where it was only 66% when a

-means-type algorithm was used for the classification stage.

Index Terms—Mixture of Gaussians, neural spike sorting, pro-
jection pursuit, unsupervised classification.

I. INTRODUCTION

T HE EXTRACELLULAR recording of neural signals is
of prime importance in investigating information trans-

mission within nervous system, since it enables the simulta-
neous monitoring of the activities of multiple neurons. Recorded
waveform usually consists of action potentials from several neu-
rons that are in close proximity to the electrode site under inves-
tigation, thus, they must be classified into spike trains from each
cell for further analysis in which each spike train is considered to
be a point process [1]. This procedure for classifying multiunit
neural signals into multiple spike trains is referred to as neural
spike sorting, and a considerable amount of study has occurred
during the past several decades as summarized in [2] and [3].
Currently it is possible to obtain a satisfactory result even under
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very high background noise as shown in [4] and [5], when a
supervised classifier is used. For the online or first offline anal-
ysis of experimental data where no template waveforms for each
unit are available and the number of units in the recording is un-
known, the application of a supervised classifier is not possible.
Although several studies on unsupervised neural spike sorting
such as those described by Zouridakis and Tam [25], Feeet al.
[6], and Sahani [7] have been reported recently, their perfor-
mance under low signal-to-noise ratio (SNR) conditions has not
been demonstrated.

The goal of this study was to develop an unsupervised neural
spike sorting system that shows high performance under low
SNR. Our approach was to combine action potential detectors
that have been partially described in [5] and [8], a dimension-
ality reduction scheme that provides effective discriminative
features, and a proper unsupervised classification method. For
feature extraction we use a linear projection that shows higher
separability than conventional methods. Our classification
method permits the robust estimation of the distribution shape
of each cluster and is insensitive to the parameters that are to be
predetermined. The importance of the feature extraction stage
arises from “the curse of dimensionality” [9]. The training of
employed unsupervised classifier was not successful under the
low SNR targeted in this paper, if raw data of approximately
25–40 dimensions (time samples of action potential) were used
without dimensionality reduction. In the case where the SNR
is sufficiently high, conventional methods such as principal
component analysis (PCA) or simplead hocfeatures such as
peak-to-peak amplitude and/or spike duration, can be useful
[10]. However, under high background noise, they become
inadequate as discriminative features. Here, we employ a
projection pursuit method based on negentropy maximization
(PP/NEM) [11], [12] and show that it is more capable of ex-
tracting discriminative features for spike sorting. These features
usually form hyper-ellipsoidal clusters and, thus, the failure
rate of classification is prohibitively high if a clustering method
based solely on Euclidean distance is used. Since the aim was
to develop a method by which the shape of distribution can
be considered, a clustering algorithm based on the modeling
of probability density function (pdf) by mixture of Gaussians
(MoG) was used. This type of algorithm is frequently used for
this purpose [13]. Our focus here is on solving the problem of
determining the number of Gaussians in the mixture model.
We show that it is possible to obtain robust unsupervised spike
sorting, by a rough estimation of the number of Gaussians and
subsequent mode-seeking. We demonstrate that it is possible
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Fig. 1. Block diagram of the overall unsupervised sorting system.

to obtain a high success rate by combining this classification
scheme with PP/NEM.

Fig. 1 shows the block diagram of the proposed unsupervised
action potential classification system. First, the raw waveform
from the electrode and recording electronics is passed to the
action potential detector. We proposed two effective action
potential detectors, based on the Teager energy operator [5]
and on the prudent combination of discrete wavelet transform
coefficient at several scales [8]. Thorough descriptions of the
detection methods can be found in a companion paper [8]
and, thus, the details are omitted in this paper. The detected
waveforms are given to the block that performs the dimen-
sionality reduction, after which the extracted feature vectors
are given as input to the unsupervised classifier.

II. EXPERIMENTS AND TEST DATA GENERATION

A performance test must be done for the data where exact
information such as the number of units in the recording and
the firing times of each unit are known preliminarily. This
is possible only for synthetic test data. In order to generate
test data that faithfully represents the actual characteristics of
experimental recordings, we extracted template waveforms of
distinct units, and autoregressive (AR) models of background
noise from the neural signal recordings of the abdominal
ganglion of Aplysia and the somatosensory cortex of the
Sprague–Dawley rat. The details of the recording experiments
have been described thoroughly in [5] and [14]. Both were
recorded using thin-film semiconductor microelectrodes, the
impedance ranges of which were 2–3 Mat 1 kHz. Bandpass
filtering was employed for both recordings (100 Hz–5 kHz
for the Aplysia recording, 300 Hz–3 kHz for rat recording,
respectively). The sampling rate was 10 ksamples/s and
20 ksamples/s, for theAplysiaand rat recording, respectively.
The extraction of template waveforms was done by a human
supervisor assisted by efficient detectors described in [5] and
[8], and fuzzy c-means (FCM) clustering of waveforms at a
reasonably high SNR. The action potential segments consist
of 25 samples and 40 samples for theAplysiaand for the rat
recording, respectively. The template waveforms of the three

units extracted from the rat recording are shown in Fig. 2,
and those of theAplysia recording can be found in [5]. The
AR model coefficients were identified from background noise
segments of approximately 300 samples by Burg’s algorithm
[15] along with order determination using Akaike information
criteria [15]. Accurate determination of the order was not
critical for effective modeling. From the template waveforms
of several units and the AR model of the background noise, it
becomes possible to generate the waveforms of arbitrary SNR
that have the characteristics of real experimental recordings.
The SNR is defined as shown in the equation at the bottom of
the page.

III. A LGORITHM DESCRIPTION

A. Feature Extraction Stage: Projection Pursuit Based on
Negentropy Maximization

We use a linear transform for feature extraction because it
preserves the underlying shape of distribution in high dimen-
sion and, thus, the overall pdf modeling of the extracted feature
vectors by the Gaussian mixture is feasible. A linear transform
can be expressed as where
is -dimensional observed vector, is

-dimensional random vector , and is an ma-
trix. The actual dimension of is different from case to case, and
determined so that the required classification accuracy is met by
the employed classifier. The projection matrix must be found
so that components of become discriminative features, i.e.,
separability among clusters is maximized. This type of problem
is referred to as projection pursuit [11]. Appropriate objective
function must be defined to find that maximizes the sepa-
rability. The measure of non-Gaussianity is appropriate for this
purpose considering the well-known fact that the multimodality
of given high dimensional data might be represented most lu-
cidly in the direction where non-Gaussianity is maximized [16],
and the multimodality in the resulting distribution is desirable
for clustering [11], [16]. It is also well-known that entropy is
minimized for the most non-Gaussian distribution; entropy has
a small value for the distribution that is concentrated on certain

SNR
peak-to-peak value of action potential with minimum amplitude

root-mean-square value of pure noise segment
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Fig. 2. Overlapped action potential waveforms at SNR� 2:4 along with
template waveforms (thick white lines) for three units of recording from rat
somatosensory cortex. Each unit consists of 40 samples (2 ms).

values, i.e., when the variable is clearly clustered. This relation
of non-Gaussianity and entropy can be used to seek the projec-
tion that maximizes separability.

Negentropy is defined as
where denotes the entropy of [11], so that it directly
signifies the measure of non-Gaussianity, as it is set to zero
for a Gaussian random vector. Here, denotes a Gaussian
random vector with the same mean and variance as. Our
goal can be achieved by maximizing , and as a result, we
refer to our feature extraction technique as PP/NEM. To find
the value of that maximizes , we utilize a batch-type
learning algorithm based on the study of Hyvarinen [16].
His algorithm is mainly intended for independent component
analysis (ICA) for source separation. In fact, independence

among each component is sought indirectly by maximizing
the summation of the negentropies of components since these
two criteria have been shown to be identical [16], [17]. Hence,
the algorithm is naturally fitted for our purpose. An online
(adaptive-filter-type) algorithm based on the gradient ascent
method was not employed because of its slow convergence and
dependence on the appropriateness of the choice of learning
rate sequence [17].

Hyvarinen’s technique is described briefly below. The input
data ( s) are first whitened and centered so that their mean be-
comes zero. Based on a simple expression of the negentropy

, a basis of projection, (a column vector of ) can be
obtained by maximizing . The maximization
can be transformed into an equation-solving problem by means
of the Kuhn–Tucker theorem [18]. Subsequently, a solution, i.e.,
a basis of projection, can be found using Newton–Raphson it-
eration, which does not require a predetermined learning rate
sequence. One step in this procedure can be expressed as follows
[16]:

and

(1)

where denotes the derivative of some nonquadratic func-
tion that approximates [16]. It is suggested that

, , or
are suitable choices.
Iteration by (1) finds justonedirection of projection. There

are several values of where the objective function has a local
maxima, and we wish to find more than one direction, i.e., more
than one discriminative feature. Suppose that we have already
found basis s . In order to prevent
a newly found basis from converging to the already found
local maxima, Gram-Schmidt orthogonalization is performed
for each iteration as [16]

and (2)

This requirement is justified from the fact that the correlation
matrix of the data must be the identity matrix due to the
whitening, and this requires, in turn, the orthonormality of basis
vectors [26]. This procedure is not computationally intensive,
because the actual dimension of the feature vector is limited
to a low value. In this paper we extract two-dimensional (2-D)
features in order to facilitate visualization and MoG model
estimation. For this purpose, we first find threes (thus, )
and subsequently choose two of them according to resulting

.

B. Unsupervised Classification Stage: Mixture of Gaussian
Model

After dimensionality reduction, the projected data points are
given to the unsupervised classifiers. Most algorithms for the
unsupervised classification are based on either a mixture model
of pdf, or a -means-related algorithm [13]. We opted to use the
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(a) (b)

(c) (d)

Fig. 3. Application of the proposed projection and pdf model identification for anAplysiarecording with SNR� 1:25. (a) Projection result using PP/NEM.
(b) Clustering result using the FCM algorithm (different clusters appear in varying shades of gray scales). (c) Two-dimensional and (d) three-dimensional view of
the identified MoG pdf model.

former because the-means-related algorithms determine the
membership of each data point solely by Euclidean distance,
and cluster shape cannot be considered. As shown in Fig. 3(a),
in many cases where the feature extraction is performed by
PP/NEM, the extracted feature vectors form a distribution with
elongated shape because the degree of scatter is different for
each component. Therefore, it is obvious that we must utilize an
unsupervised classification method by which the cluster shape
can be considered. We exploited the modeling of the overall
pdf by MoG. This method has been utilized for many unsuper-
vised pattern classification problems, and was also used for the
neural spike sorting by Lewicki [19]. Here, we concentrate on
the problem of determining the number of Gaussians in the mix-
ture, and the number of units in the recording. We show that this
problem can be settled by using a roughly estimated number of
Gaussians and then subsequently seeking the modes of the ob-
tained pdf model.

The MoG model is defined as follows:

(3)

Here, is the prior probability of the th Gaussian, and
, . denotes

the number of Gaussians used to represent the pdf of the given
data. Each is a Gaussian distribution function, i.e.,

(4)

Here, , is the th Gaussian whose mean vector
and covariance matrix are and , respectively. It is well
known that the parameter vector of the MoG ,

, can be iteratively esti-
mated by the application of expectation-maximization (EM)
algorithm [13].

Fig. 3(c) and (d) shows an example of the pdf modeling of the
data with three ellipsoidal clusters, shown in Fig. 3(a). Note that
it is not possible to obtain a satisfactory clustering result using
the -means-related algorithm (FCM) as shown in Fig. 3(b), pri-
marily because information on the shape of each cluster cannot
be considered. As shown in Fig. 3(c) and (d), we were able to
find a reasonable estimate of the pdf of the data in Fig. 3(a) with
the MoG model estimated by the EM algorithm.

The number of Gaussians for the mixture model,, must
be determined prior to the use of the EM algorithm. A sim-
ilar problem, the determination of the number of clusters, arises
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for the case of the-means-related algorithms. Although many
studies on cluster validity indexes [20], which give best esti-
mate of the number of clusters, have been proposed in order to
use the -means-related algorithms without knowledge of the
exact number of clusters, their performance does not seem to be
satisfactory for many practical problems, and a manual determi-
nation is necessary. At first sight it also appears that a consider-
able amount of variability in the resulting MoG pdf model might
occur when different values are used, and similar problems
might occur in our method. However, although the resultant pa-
rameter vector can vary considerably, the pdf models obtained
are quite similar for different s in the case of neural spike
sorting, when the values are slightly larger that the actual
number of clusters. This can be explained as shown in Fig. 4(a).
Here, is assumed to be three, when the actual number of clus-
ters is 2. In several attempts to estimate the MoG parameter,
we consistently obtained the result shown by the solid line in
Fig. 4(a), where the means of two specific Gaussians are so close
to each order that a single peak is formed by merging them, and
the overall estimated pdf (dashed line) has a bimodal shape.

The problem of determining for the MoG parameter esti-
mation can be considered to be a decision problem where the
maximum-(log)likelihood estimation can be applied. However,
the likelihood is a monotonically increasing function of the
number of parameters; this is universal in other estimation
problems such as the AR modeling of time-series. A number
of criteria, such as Akaike’s information criteria and minimum
description length have been proposed to determine the model
order [15]. These criteria consist of a log-likelihood term and
a penalty term the purpose of which is to compensate for the
monotonic increase of the log-likelihood as a function of the
model order (the number of parameters). A similar approach
can be considered for the determination of. However, it is
not easy to define the penalty term that is generally applicable.
Instead, we use a method based on the behavior of the log-like-
lihood versus curve. As shown in Fig. 4(b), this curve
typically shows rapid initial increment behavior, followed by a
slow increment [21]. The actual number of clusters is located
slightly above the “knee” of this curve. Because a satisfactory
estimation of the MoG parameters is possible when the value
of is set to a slightly larger value than the actual number of
clusters as explained above, and does not need to be accurate,
it is possible to determine the value of to be used as follows.

1) Calculate the log-likelihood, , for several values of the
number of Gaussians,.

2) Find the number of Gaussians to be used in MoG estima-
tion, , as follows:

(5)

The value of determined by (5) is denoted by an arrow in
Fig. 4(b).

An actual procedure for applying the identified MoG model to
unsupervised neural spike sorting is described below. Because
the number of Gaussians can be different from the true number
of units, in order to use the learned MoG model for classifica-
tion, it is necessary to identify the number and position of the

Fig. 4. Robustness of the pdf identification algorithm on the number of
clusters, which should be predetermined. (a) Two-mode pdf estimation as a
mixture of three Gaussians. Solid line: Each Gaussian component. Dashed
line: Overall estimated pdf. (b) Log-likelihood as a function of the number
of Gaussians used for the MoG estimation. (c) Graphical illustration of the
mode-finding algorithm by using quadratic maximization or gradient ascent
method.

“modes” (local maxima of MoG) in the mixture model of pdf,
and to assign each Gaussian in the mixture to a specific mode.
After identifying the local maxima, each mean of Gaussians
is assigned to the closest local maximum so that the pdf of a
single cluster (i.e., a single unit) can be represented by the sum
of the Gaussians as follows:

(6)

where denotes the pdf of theth cluster, and is the total
number of Gaussians the center of which is closest to theth
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mode. Hence, , the class label of a particular data pointis
determined as follows:

(7)

The method of finding the local maxima of a given MoG is
shown below. A more elaborate algorithm on this subject has
recently been reported [22], but following this simple method
was sufficient for our purpose. We use the quadratic maximiza-
tion or gradient ascent method [18] and, thus, the expression of
the Hessian and gradient is necessary. Suppose we are starting
the quadratic search at a data point. By Taylor series expan-
sion, is expressed as

(8)

Here, and . The data
point where the gradient becomes zero is given by

(9)

According to (9), we proceed from to the maximum in a
single step, if the Hessian is negative definite . If the
Hessian is positive definite, indicating that we have not yet
reached a hill cap that is defined as the region around a mode
where , the gradient ascent method is then used as
follows:

(10)

where is the step size. Once the point where is reached,
we can check whether it is at a maximum by verifying that
. The means of all the Gaussians in the MoG model are used

as starting points for the search. This hill-climbing procedure is
graphically illustrated in Fig. 4(c). While doing the quadratic or
gradient ascent search of (9) or (10), we utilize the closed-form
expressions of the gradient and Hessian, instead of numerically
calculated values. They can be derived as follows:

(11)

(12)

The overall procedure of the proposed spike sorting system
is illustrated in a pseudocode form in Fig. 5(a). Fig. 5(b) and
(c) shows the feature extraction procedure by the PP/NEM and
mode-seeking procedure, respectively.

IV. PERFORMANCE OF THEOVERALL SYSTEM

First we show the result of a projection using the PP/NEM
onto 2-D feature space, applied to a three-unit recording from

the somatosensory cortex of rat. Fig. 6 shows the scatter plot
of the projected data points using the PP/NEM [Fig. 6(a)]
along with the scatter plots of the feature vectors extracted
by the PCA [Fig. 6(b)], and other two nonlinear projection
methods [Sammon’s mapping in Fig. 6(c) and generative
topographic mapping (GTM) in Fig. 6(d)]. Details of the
GTM and Sammon’s mapping are given in [23] and [24],
respectively. There are 700 data points from each cluster. For
the linear projections [Fig. 6(a) and (b)], two basis vectors of
the projection are also shown in the inset. For the PCA, the
first two principal components were extracted as in [10]. The
SNR of the recording used to generate Fig. 6 was 2.4. When
the SNR is lowered to this level, overlap among the clusters
in the PCA scatter plot becomes so severe as to prevent even
manual sorting, in which human supervisors determine the
decision boundary. In contrast, the feature vectors extracted
by the PP/NEM form a clearly clustered structure so that the
decision boundary can be easily determined and automated
classification is possible using unsupervised classification al-
gorithms. Although it is not certain solely from Fig. 6 whether
the two nonlinear methods are superior to the PCA or not,
they are evidently inferior to the PP/NEM for this case. We
obtained a similar trend for the three-unit recording from the
abdominal ganglion ofAplysia. For the purpose of quantitative
comparison of the above methods for the clustering, we used a
performance index based on a scatter matrix. This index is used
for the Fisher’s linear discriminant analysis, and is defined as
follows [9]:

(13)

(14)

Because the determinant of the scatter matrix corresponds to the
square of the volume of hyper-ellipsoidal scattering, is
the ratio between the separation of each cluster and the scattering
within a single cluster. Thus, the larger signifies a
better projection in that the underlying cluster structure is
revealed more clearly. Table I shows the separability index

computed for the PCA, GTM, Sammon’s mapping, and
PP/NEM, applied to the data in Fig. 6, and to theAplysiadata
with SNR . The PP/NEM consistently shows superior
performance, thus justifying our choice of the PP/NEM for
the unsupervised spike sorting for low SNR data.

We applied a supervised linear classifier [9], [13] to the data
shown in Fig. 6(a) (PP/NEM), and Fig. 6(b) (PCA) to test their
efficacy for classification. The test result is summarized in con-
tingency table form in Table II.

We demonstrate the performance of the entire system by
showing an estimation of the overall pdf using the MoG model,
for the data where successful clustering was impossible by
FCM as in the case of Fig. 3(b), and then the classification
result. The scatter plot of the extracted features fromAplysia
data SNR is shown in Fig. 7(a). Fig. 7(b) shows the
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Fig. 5. Pseudocode of (a) the overall procedure of the proposed spike sorting system, (b) the PP/NEM procedure, and (c) the mode-seeking procedure.
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(a) (b) (c) (d)

Fig. 6. Scatter plot of the projection obtained from a rat cortex recording with SNR� 2:4.by (a) by PP/NEM, (b) PCA, (c) Sammon’s mapping, and (d) GTM.

TABLE I
QUANTITATIVE COMPARISON OF THESEPARABILITY OF PROJECTIONMETHODS BYJ (W)

TABLE II
LINEAR CLASSIFICATION RESULT (LEFT: PP/NEM, RIGHT: PCA)

estimated pdf using four Gaussians. It is clear that we can
obtain a quite reasonable result having three peaks. Next,
Fig. 7(c)–(e) shows the results of the pdf estimation using 5–7
Gaussians, respectively. All of these also yielded reasonable
results and, thus, the pdf estimation using the MoG model
was not greatly dependent on the number of Gaussians, as we
previously claimed. Hence, the classification result should be
much less affected by a parameter that must be predetermined
than the case of the-means-related algorithms, so that the
fully automated system based on the MoG would be expected
to be much more reliable.

We next present the results of the estimation of the local
maxima (modes) of the MoGs, which correspond to the average
(or template) waveforms of each unit. The modes identified by
the algorithms described in Section III-B are shown as trian-
gles, and the true templates are denoted by squares in Fig. 7.
When seven Gaussians were used, slight mismatches between
the true templates and the estimated modes were found, but it
still gave reasonable estimates of the pdfs and the location of
the local maxima. Fig. 8 illustrates the step-by-step procedure
for applying our algorithm to theAplysiadata when four Gaus-
sians were used for the pdf modeling. “” in the MoG model
plot denotes the mean of each Gaussians. Two of these were as-
signed to one mode, and formed a single peak pdf corresponding
to one cluster.

In Table III, the classification success rates of the overall
system using various numbers of Gaussians are presented.
As expected, the results using four, five, and six Gaussians
were virtually the same, and the result obtained using seven
Gaussians was also quite satisfactory. Note that when we
used PP/NEM-FCM with the proper number of clusters (three
clusters), the best success rate obtained was 66%.

V. DISCUSSION ANDCONCLUSION

Our goal was to realize a fully automated, unsupervised
neural spike sorting system that does not require interactive
input from a human supervisor, and shows high performance
under low SNR conditions. In order for the performance of
this system to be limited only by the performance of the
action potential detector, we introduced an efficient linear
projection method, PP/NEM, for feature extraction. We were
able to achieve separability higher than that of PCA, and it was
superior to nonlinear methods such as GTM and Sammon’s
mapping. Since the PP/NEM is a linear projection, it also has
the advantage that the characteristics of the original data in
a high dimension are maintained. The computational burden
of the PP/NEM in training is somewhat higher than that of
PCA, but, was much lower than the nonlinear methods and in
an acceptable range. 0.12 and 1.876 s (average of ten trials)
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(a) (b)

(c) (d)

(e)

Fig. 7. (a) Another scatter plot of a projection using PP/NEM,Aplysiadata, SNR� 1:6. Identified MoG model, using (b) four Gaussians, (c) five Gaussians,
(d) six Gaussians, and (e) seven Gaussians. The local maxima discovered by the algorithm of Section IV is denoted by “r,” and the true means of each unit are
denoted by “ .”

were required to perform a projection on 2100 action potentials
from three units by PCA and PP/NEM, respectively (MATLAB
implementation on Pentium-III PC with 1000-MHz clock).
Once the projection matrix is found, the amount of computation
required for PP/NEM is exactly same as that for PCA.

In many previous studies on unsupervised spike sorting,
the employed classifiers were the-means-related methods
(FCM or ISODATA) [13], [25]. We attempted to utilize the
FCM, which is generally considered to be superior in that
partial membership to multiple classes can be considered and
cluster validity indexes are available. Nevertheless, it was
impossible to obtain a reasonable classification result using
FCM for the data where a manual determination of the decision

boundary by a human supervisor seemed to be easy when the
features were extracted by the PP/NEM. Thus, we focused
on employing an unsupervised classification method that is
capable of modeling shape of the distribution, and exploited
the MoG-based technique. When a combination of PP/NEM
and MoG was used, it was possible to obtain a high success
rate of approximately 95%, for the data where the success rate
using the PP/NEM-FCM was much lower (66%). Yet another
advantage gained from the use of the MoG is the fact that
classification result is much less sensitive to the parameter that
must be predetermined. In contrast, in the case of FCM, the
clustering result has a large dependence on the choice of the
predetermined number of clusters. Zouridakis and Tam [25]
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Fig. 8. Step-by-step procedure for applying our algorithm when four Gaussians are used for the pdf modeling

TABLE III
SUCCESSRATE OF PP/NEM-MoG, APPLIED TO THEDATA SHOWN IN FIG. 7(a)

recently reported on an unsupervised spike sorting system
that utilizes FCM along with a cluster validity index [20] for
determining the number of clusters. They claimed that it is
possible to obtain fully automated spike sorting. However, it
appears that their result was obtained using very high SNR
data. Actually when we used the FCM for the data obtained
from low SNR recordings, neither successful clustering nor the
estimation of the number of clusters using the validity index
were possible.

In conclusion, a novel unsupervised neural spike sorting
system that shows high performance under low SNR, and is
advantageous for applications that require a fully automated
system is described. Our strategy was to combine a linear
projection with high separability and an unsupervised clas-
sification method that can take into account the anisotropic
distribution of feature vectors and that does not require a
precise parameter that must be predetermined by the user. Ex-
perimental neurophysiological studies that apply the proposed
system to various neural signal recordings will be helpful to
tune and improve performance of the system.
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