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Abstract
This paper proposes a novel Reliability-Aware Neu-
ral Network (RANN) for mining unreliable multi-
dimensional data, which are atypical of online user-
generated content. In the pre-processing stage prior
to the mining step, the reliability of each dimen-
sion of each data sample is first assessed. The pro-
posed RANN subsequently mines the input data
with the awareness of the unreliability among dif-
ferent dimensions of every data sample. To derive
the output of the proposed model when it is applied
onto a data sample, both the value of the input data
and the reliability thereof are sequentially propa-
gated between adjacent layers of the RANN. To
learn a RANN from a set of training data, a modi-
fied backpropagation algorithm is custom designed
by extending the classical backpropagation algo-
rithm. To explore the capability of the proposed
RANN method in mining unreliable data, we ex-
amined the performance of RANN in comparison
with a series of peer methods in predicting values
of target variables using two popular online user
review datasets. Experimental results show that
the new method consistently outperforms state-of-
the-art algorithms in accomplishing the prediction
tasks, which demonstrates its superiority in mining
unreliable multidimensional data.

1 Introduction
User generated content is proliferating at a steady and in-
creasing pace, leading to its abundant availability on the In-
ternet. Such content often carries valuable insights for un-
derstanding consumer behaviors, overviewing population dy-
namics, and discovering emerging market trends. Unfortu-
nately, the quality of such information can vary significantly,
causing a major obstacle for systematically leveraging these
rich and diverse resources for reliable knowledge discovery.
Due to the significance of this problem, uncertain data min-
ing and management has emerged as a topic of heated re-
search interest recently [Aggarwal, 2010]. In particular, for
supervised learning tasks, if unreliable and reliable data are
not processed in a differentiated manner, either as labeled
ground-truth records or as input for testing purpose, a trained
model tends to suffer in both its prediction accuracy and re-
liability [Qin et al., 2009b; 2009a]. To address this problem,

this study proposes a novel Reliability-Aware Neural Network
(RANN) for mining unreliable data, which are atypical of on-
line user-generated content vastly and pervasively available
today. Given a source of web data, the new method first as-
sesses the reliability of each dimension of each input data
sample. The gauged data reliability information is then care-
fully observed during the input data propagation and transfor-
mation process carried out by the RANN to derive the target
outcome.

It is noted that the traditional practice to deal with unre-
liable data usually assumes that each data sample carries an
overall reliability or quality score [Aggarwal and Yu, 2009]
so that a weighting scheme, which is performed on the level
of individual data samples, can discriminate the respective
impact on an algorithm’s decision making by a collection of
data samples, each of which may bear a different level of re-
liability. For example, in probabilistic databases [Dalvi and
Suciu, 2007], each data tuple can be associated with a prob-
ability number that indicates the confidence or reliability of
the tuple. Such conventional practice treats all dimensions of
a data sample as of a uniform quality. Despite the usefulness
of this tuple-level reasoning about uncertainty for solving cer-
tain types of problems where the quality of information varies
from tuples to tuples, the diversity data sources available on
the Internet suggests a related but different problem in that
each dimension of each data sample may possess its own re-
liability, which may be due to the way how the information
is acquired. For example, information about a product can be
aggregated from multiple online sources where each source
carries its own data quality. In those scenarios, the quality of
information varies not only across data points, from tuples to
tuples, but also within each individual multidimensional data
point, from dimensions to dimensions.

Recognizing the above need for uncertainty reasoning re-
garding online multidimensional data of diverse reliabilities,
we proposed RANN in this study as a potential solution to
address the new challenge, which is pervasively useful for
processing information acquired from the Internet, such as
mining user generated online content or information aggre-
gated from multiple online sources where the reliability of
information tends to vary from users to users and from sites to
sites. Empowered by the comprehensive and in-depth aware-
ness of reliability among each dimension of each multidimen-
sional data sample, the proposed RANN is able to train itself
through learning from labeled training data by differentiating
the reliability of input data on the fine granularity of individ-



ual dimensions of individual data samples.
The rest of this paper is organized follows. We first re-

view some most related work to this study in Sec. 2. Then
we introduce the proposed RANN model and its custom de-
signed training algorithm in Sec. 3. In Sec. 4, a series of
experimental results is presented to explore and demonstrate
the performance advantage of RANN in comparison with a
set of peer methods for mining unreliable multidimensional
data where the experimental data are adopted from two pop-
ular online user ratings datasets. Finally, we conclude this
study in Sec. 5.

2 Related Work
A comprehensive survey regarding algorithms and applica-
tions on uncertain data mining can be found in [Aggarwal and
Yu, 2009]. Topics attracting heated recent research interests
in mining unreliable data include clustering [Lee et al., 2007;
Cormode and McGregor, 2008], frequent item mining [Chui
et al., 2007; Chui and Kao, 2008], and classification [Zhang,
2005; Qin et al., 2009b; 2009a; Tsang et al., 2011]. In this
paper, we focus on supervised learning tasks involving unre-
liable data due to the wide applications of these tasks in real-
ity. A main line of research is to extend traditional learning
methods to incorporate the concept of uncertainty or unrelia-
bility in their algorithmic decision making. For example, re-
searchers have extended rule-based classification algorithms
[Qin et al., 2009b], decision trees [Qin et al., 2009a; Tsang et
al., 2011], and support vector machines [Zhang, 2005] to pro-
cess data with uncertainty. Besides augmenting individual al-
gorithms to cope with data uncertainty, associative classifiers
combining extensions of multiple basic classifiers for uncer-
tain data reasoning have also been proposed [Qin et al., 2010;
Minku and Yao, 2012]. Common to all methods overviewed
above is that they assess the data reliability on the level of
individual data samples and ignore the disparity of reliability
among multiple dimensions of a data sample, which presents
a main limitation of these methods. To address this problem,
the proposed RANN is sensitive to the variation of data relia-
bility across individual dimensions of every data sample.

Artificial Neural Network (ANN) [Hagan et al., 1996] and
its extensions [Specht, 1990; Sainath et al., 2013; Yu et al.,
2013; Zhang and Woodland, 2015] are popular choices for
accomplishing supervised learning tasks. However, the ma-
jority of existing neural network-based models is not able to
handle unreliable input data. The RANN proposed in this
paper as a novel type of neural network recognizes a reli-
ability score for each dimension of each input multidimen-
sional data point and also propagates such reliabilities dur-
ing its inference procedure to yield the final output. Com-
pared with traditional neural networks, the effects cast by
the weights of links connecting pairs of neurons are auto-
matically modulated based on reliability scores of informa-
tion flowing through the corresponding links in the network,
which are either directly supplied to the network by the in-
put data or inferred on the fly during the network computing
process.

Various approaches for assessing data reliability have been
proposed recently [Pipino et al., 2002; Cappiello et al., 2004;
Batini et al., 2009]. For example, Pipino et al. [2002] used
simple functional metrics such as Simple Ratio, Min, Max,
and Weighted Average to assess data reliability. However,

those simple metrics are not adaptable or sufficient to deal
with the diverse types of complex data commonly seen today.
In [Batini et al., 2009], a wide range of techniques for as-
sessing the quality of data is summarized. However those
techniques apply classical statistical analysis techniques to
assess data reliability by assuming all data are generated from
a single source, which cannot be readily applied to deal with
online user generated content due to the large number of au-
thors involved as the multiple generation sources of the text.
Cappiello et al. [2004] assessed the reliability of data from
multiple users simultaneously by modeling user experiences
dynamically captured during a person’s software operation
activities. Their method however cannot be applied to mine
unreliable user generated content in a generic setting. To the
best of our knowledge, none of the prior studies has compre-
hensively and systematically explored the issue of assessing
data reliability of online user generated content for a large
number of users simultaneously and subsequently making use
of the assessed reliabilities to reason with uncertain data in-
volving these user generated content. To fill the gap, this
study examines the performance of the proposed RANN by
applying it to mine a large volume of online user reviews for
predicting product sales ranks and box office gross revenues
as two demonstration cases. We choose online user reviews as
unreliable multidimensional data in our experiments because
of the high value of these reviews in revealing consumer opin-
ions and purchase interests [Hu et al., 2008].

3 Proposed Method
3.1 Problem Statement
Let D = {r1, r2, . . . , rm} be a training dataset that com-
prises m independent labeled samples. For each sample
rt = (xt,pt,yt) where t ∈ [1,m], xt = (xt1, x

t
2, . . . , x

t
d)

is a d-dimensional input vector; pt = (pt1, p
t
2, . . . , p

t
d) is

a d-dimensional accompanying vector that represents the
reliability of individual input components in xt; yt =
(yt1, y

t
2, . . . , y

t
v) is a v-dimensional output vector. In pt, each

pti ∈ [0, 1] (1 ≤ i ≤ d) denotes the reliability of the in-
put component xti in xt (the larger pti is, the more reliable xti
is considered). For the convenience of mathematical deduc-
tion, we additionally introduce a d-dimensional vector ht =
(ht1, h

t
2, . . . , h

t
d) that represents the negative logarithmic reli-

ability of the input vector xt where each hti (1 ≤ i ≤ d) is
derived from pti as follows:

hti ,

{
− lg pti if τ ≤ pti ≤ 1

− lg τ if 0 ≤ pti < τ
, (1)

where τ is a small positive number to avoid inputting a zero
number to a log function.

In a multi-layered RANN, we let: L be the number of lay-
ers in the network, Ni,l be the i-th neuron lying on the l-th
layer of the network, wli,j be the weight of the link connect-
ing the neuron Ni,l−1 to the neuron Nj,l where 2 ≤ l ≤ L,
blj and clj respectively be the value bias and the reliability
bias of the neuron Nj,l, χl be the set of neurons lying on the
l-th layer of the network. Given a training sample rt and a
neuron Nj,l, zl,tj , rl,tj , ol,tj , and sl,tj respectively represent the
neuron’s aggregate input value, aggregate input reliability,



Figure 1: An example neuron in the proposed RANN.

output value, and output reliability as induced by the train-
ing sample. Fig. 1 shows a schematic diagram illustrating
an example neuron in the proposed RANN where we model
the relationships between these input and output variables as
follows:

zl,tj ,
∑
i∈χl−1

wli,jϕ(s
l−1,t
i )ol−1,ti + blj ; (2)

rl,tj ,
∑
i∈χl−1

wli,js
l−1,t
i + clj ; (3)

ol,tj ,
1

1 + βe−αz
l,t
j

; (4)

sl,tj ,γrl,tj + θ. (5)

From the above equations we can see that both the input val-
ues and reliabilities fed into an RANN can be transformed to
derive output values and their corresponding reliabilities. The
weight of a link connecting a pair of neurons in an RANN can
be modulated based on the reliability of information flowing
through the link via the function ϕ(·) as indicated in Eq. (2).
ϕ(·) can be implemented in at least the following three ways:

ϕ1(x) ,
1

1 + λx
; (6)

ϕ2(x) , e−λx; (7)

ϕ3(x) ,
2e−λx

1 + e−λx
. (8)

Next we define E as an error function for the entire multi-
layered RANN with respect to a given training dataset D as
follows:

E ,
1

2m

m∑
t=1

∑
k∈χL

(oL,tk − y
t
k)

2. (9)

3.2 An Extended Backpropagation Algorithm for
Training an RANN

The task of training an RANN requires learning the optimal
values of the weights and biases of all neurons involved in

the RANN, i.e. w = {wli,j}, b = {blj}, and c = {clj}, as
well as the model configuration parameters for the RANN,
i.e. α, β, γ, and θ, to minimize the error function E with
respect to a given training dataset. We perform this learning
task through a modified backpropagation algorithm, which
is specially designed for the proposed RANN, by extending
the classic backpropagation algorithm used in training a tra-
ditional neural network. For this training purpose, given a
neural Nj,l in an RANN, we respectively define the neuron’s
value error, δlj , and reliability error, ζlj , as follows:

δlj =
∂E

∂zlj
; ζlj =

∂E

∂rlj
. (10)

Algorithm 1 specifies the aforementioned extended back-
propagation algorithm for training an RANN, in which η is
the gradient descent step size, which controls the learning
speed. In the following, we give out the deduction of a few
key steps in the algorithm. For simplicity, we omit the su-
perscript t from all variable notations when it is clear that the
only sample involved in the current training operation is rt.

Deduction of Eq. (11):

δLk =
∂E

∂zLk
= ∂

1

2m

∑
i∈χL

(oLi − yi)2/∂zLk

= ∂
1

2m
(oLk − yk)2/∂zLk =

1

m
(oLk − yk)

∂oLk
∂zLk

=
α

m
(oLk − yk)oLk (1− oLk ).

Deduction of Eq. (12):

ζL−1j =
∂E

∂rL−1j

=
∑
k∈χL

∂E

∂zLk

∂zLk
∂sL−1j

∂sL−1j

∂rL−1j

= γ
∑
k∈χL

δLkw
L
jko

L−1
j ϕ′(sL−1j )

Deduction of Eq. (13):

δlj =
∂E

∂zlj
=

∑
k∈χl+1

∂E

∂zl+1
k

∂zl+1
k

∂zlj

=
∑

k∈χl+1

δl+1
k

∂zl+1
k

∂olj

∂olj
∂zlj

= α
∑

k∈χl+1

δl+1
k wl+1

jk ϕ(slj)o
l
j(1− olj).

Deduction of Eq. (14):

ζlj =
∂E

∂rlj
=

∑
k∈χl+1

(
∂E

∂zl+1
k

∂zl+1
k

∂rlj
+

∂E

∂rl+1
k

∂rl+1
k

∂rlj
)

=
∑

k∈χl+1

(δl+1
k

∂zl+1
k

∂slj

∂slj
∂rlj

+ ζl+1
k

∂rl+1
k

∂slj

∂slj
∂rlj

)

= γ
∑

k∈χl+1

wl+1
jk

(
δl+1
k oljϕ

′(slj) + ζl+1
k

)



Algorithm 1 . Extended backpropagation algorithm for train-
ing an RANN.

Input: Training dataset D = {r1, . . . , rm}, in which each
rt = (xt,ht,yt).

Output: w,b, c.
Initialize:
for l = L,L− 1, . . . , 2 do

wl
ij ,b

l
j , c

l
j ← (1, . . . , 1).

end for
for t = 1, 2, . . . ,m do

o1,t = xt, s1,t = ht.
Feedforward:
for l = 2, 3, . . . , L do

Compute zl,t, rl,t, ol,t, sl,t using Eqs. (2)-(8).
end for
Compute output error:
for k ∈ χL do

δL,tk = α(oL,tk − y
t
k)o

L,t
k (1− oL,tk ). (11)

ζL−1,tj = γ
∑
k∈χL

δLkw
L
jko

L−1
j ϕ′(sL−1j ). (12)

end for
Backpropagate the error:
for l = L− 1, L− 2, . . . , 2 do

for j ∈ χl do

δl,tj = α
∑

k∈χl+1

δl+1
k wl+1

jk ϕ(slj)o
l
j(1− olj). (13)

ζl,tj = γ
∑

k∈χl+1

wl+1
jk

(
δl+1
k oljϕ

′(slj) + ζl+1
k

)
. (14)

end for
end for

end for
Weight update:
for l = L,L− 1, . . . , 2 do

for j ∈ χl do
for i ∈ χl−1 do

wli,j ← wli,j −
η

m

m∑
t=1

∂E

∂wli,j

= wli,j −
η

m

m∑
t=1

(
δljo

l−1
i ϕ(sl−1i ) + ζljs

l−1
i

)
;

blj ← blj −
η

m

m∑
t=1

∂E

∂blj
= blj −

η

m

m∑
t=1

δl,tj ;

clj ← clj −
η

m

m∑
t=1

∂E

∂clj
= clj −

η

m

m∑
t=1

ζl,tj .

(15)

end for
end for

end for

Deduction of Eq. (15):

∂E

∂wlij
=
∂E

∂zlj

∂zlj
∂wlij

+
∂E

∂rlj

∂rlj
∂wlij

= δljo
l−1
i ϕ(sl−1i ) + ζljs

l−1
i ;

∂E

∂blj
=
∂E

∂zlj

∂zlj
∂blj

+
∂E

∂rlj

∂rlj
∂blj

= δlj ;

∂E

∂clj
=
∂E

∂zlj

∂zlj
∂clj

+
∂E

∂rlj

∂rlj
∂clj

= ζlj .

4 Experimentation

4.1 Datasets

To explore the performance of the proposed RANN, we con-
duct a series of evaluation experiments using the following
two popular datasets, both of which contain unreliable multi-
dimensional data.

• Amazon Web-data [Leskovec and Krevl, 2014] contains
both the product information and the corresponding user
reviews of a product as collected on the Amazon site.
In the experiment performed using the dataset, we use
product features that specify a product’s quantifiable at-
tributes as well as user review ratings to predict the sales
rank of a product among its product category. For exam-
ple, the product features of a laptop as listed on Ama-
zon include its model number and parameters regard-
ing its processor, hard drive, display, and RAM. The
groundtruth data regarding a product’s sales rank is offi-
cially released by Amazon according to how well the
product is sold overall among its product category or
subcategory. Our experiment specifically examines two
subcategories of products, namely Laptops and Cell-
phones, both under the category of Electronics & Com-
puters. The two sub-datasets are denoted as “AMA-
LAP” and “AMA-CEL” respectively. We choose to ex-
amine these two products in this study because of the
detailed information associated with as well as the pop-
ularity and subjectivity of user reviews regarding both
products.

• Internet Movie Database (IMDb) [IMDb, 2016] is a
large collection of movie information, including detailed
characteristics of a movie as well as its user reviews.
Using this dataset, we aim to predict a movie’s box of-
fice gross revenues through its detailed characteristics as
well as the associated user ratings. Since the gross rev-
enue of a movie may keep growing for a period of time,
as well as the accumulation of its user ratings, we pre-
dict a movie’s gross revenue at two timestamps, i.e. after
the first week of its initial public showing and the latest
moment as of the end of Jan. 2016. We use a million
US dollar as the unit when recording a movie’s gross
revenue. This dataset is referred to as “IMDb” in the
discussions in the rest of this session.

Table 1 lists the detailed information about the two datasets
described above.



Table 1: Details of the experimental datasets used in this
study.

AMA-LAP
Number of products 9,325
Number of user ratings 141,782
Number of product features 25
Prediction target variable Sales rank

Product features: operating system version, screen (size,
resolution), processor (brand, model, count, speed),
graphics coprocessor (brand, model), RAM (model, size,
speed), hard drive (type, size), wireless, USB port (USB2.0,
USB 3.0), brand, series, model, weight, dimension, color,
battery, price.

AMA-CEL
Number of products 6,568
Number of user ratings 78930
Number of product features 10
Prediction target variable Sales rank
Product features: networks, display, cameras, memory, processor,
operating system version, battery, dimension, weight, price.

IMDb
Number of movies 7,288
Number of user ratings 345,381
Number of movie features 19
Prediction target variable Gross revenue

Movie features: director, writer, casts, genre, keywords,
motion picture rating, official sites, country, language,
release date, filming location, budget, product Co.,
runtime, sound mix, color, aspect ratio, camera, format.

4.2 Assessing Reliability of a Data Dimension

We regard the detailed information about a product or a movie
as specified in our experimental datasets as reliable features
since such information is typically provided by producers.
Therefore, we set the reliability of each such feature as 1. In
contrast, we regard the average user rating of a product or a
movie as an unreliable feature due to the unreliable nature of
online user ratings. The user ratings in both the Amazon and
IMDb datasets are real numbers, whose value ranges are [0, 5]
and [0, 10] respectively. For each type of user rating data, the
proportion of online users who find the rating data helpful is
additionally provided by the dataset curators, which is also
leveraged to assess the reliability of average user ratings dur-
ing the prediction tasks.

For each product/movie, we letAvgRa be the average user
rating of the product/movie; RelRa be the reliability of the
average user rating; Rai be the user rating provided by the
i-th user; StdRa be the standard deviation of user ratings for
this product/movie; Pui be the number of people who find the
rating Rai useful; Pri be the number of people who view the
user ratingRai. Based on the above information, we estimate
RelRa according to the following equations:

AvgRa′ ,

∑
iRaiPu

2
i /Pri∑

i Pu
2
i /Pri

,

z ,
|AvgRa−AvgRa′|

StdRa
,

RelRa , P (|x| > z), x ∼ N(0, 1).

(16)

When designing the above equations for assessing the relia-
bility of a data dimension in an input sample, we assume that
the larger the difference between the average rating and the
weighted average rating is, the more unreliable that the aver-
age rating would be.

4.3 Peer Methods
The following methods are adopted as peer methods to study
the performance of the proposed RANN.

• Three baseline methods, including:
1) SVM—Support Vector Machine [Cortes and Vapnik,
1995].
2) ANN—Artificial Neural Network [Specht, 1991].
3) PNN— Probabilistic Neural Network [Specht, 1990]

• Two state-of-the-art methods for mining unreliable data,
including:
1) SVMU—Support vector machine with input data
uncertainty. [Zhang, 2005]
2) DTU—Decision tree for uncertain data. [Tsang et
al., 2011]

• Three versions of the proposed RANN model, includ-
ing:
RANN-1—RANN implemented using Eq. (6);
RANN-2—RANN implemented using Eq. (7);
RANN-3—RANN implemented using Eq. (8).

For the methods of SVM and SVMU, our implementation
employs the LIBSVM package [Chang and Lin, 2011] and
uses a Radial Basis Function (RBF) kernel wherein the con-
figuration parameters are set to be {C = 1000, γ = 0.04}.
For the method of DTU, our implementation employs the C50
package in R [Kuhn et al., 2014]. For all neural network-
based methods, namely ANN, PNN, RANN-1, RANN-2 and
RANN-3, our implementation employs the RSNNS package
in R [Bergmeir and Benı́tez Sánchez, 2012]. We adopt the
multi-layer perceptron module and empirically optimize the
gradient descent step size as η = 0.2. For SVMU and DTU,
we modify the basic functions provided by the above pack-
ages according to the improvement procedures proposed in
[Zhang, 2005; Tsang et al., 2011] for better learning perfor-
mance.

4.4 Evaluation Metrics
We employ two standard evaluation metrics to measure the
performance of the proposed RANN as well as the series of
aforementioned peer methods in respectively tackling the two
prediction tasks. The two metrics include the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) [Li et
al., 2014], which can be computed as follows:

MAE =

∑m
t=1 |OL,t − yt|

m
;

RMSE =

√∑m
t=1(O

L,t − yt)2
m

.

(17)

Please note that the dataset D = {r1, r2, . . . , rm} used here
is the testing dataset. In all our experiments, we use ten-fold



(a) AMA-LAP (b) AMA-CEL

(c) IMDb-First week (d) IMDb-Total

Figure 2: Performance comparison among RANN and peer
methods in terms of MAE on different experimental datasets.

(a) AMA-LAP (b) AMA-CEL

(c) IMDb-First week (d) IMDb-Total

Figure 3: Performance comparison among RANN and peer
methods in terms of RMSE.

cross validation to carefully separate the use of data samples
for the training versus testing purpose.

4.5 Results
Figs. 2 and 3 show the results of performance compari-
son among the proposed RANN and the aforementioned peer
methods in tackling the two prediction tasks. From these
results we can see that the third implementation of the pro-
posed method, i.e. RANN-3, consistently outperforms all

(a) MAE (b) RMSE

Figure 4: Performance variation of RANN under different
configuration parameters.

other methods in terms of both MAE and RMSE across all
experiments performed. We also conduct independent t-tests
to examine whether the proposed method significantly out-
performs each of the peer methods. Results show that for
every pair of RANN-3 and a peer method, including either of
the two alternative implementation RANN-1 and RANN-2,
the corresponding p-value is consistently below 0.05 for ex-
periments performed over each dataset, which demonstrates
the performance superiority of the proposed RANN-3 with
respect to the rest of the methods with statistic significance.
Due to space limit, we do not present these results here.

The proposed RANN model carries five configuration pa-
rameters, namely α, β, γ, θ, and λ. To test the effects of these
parameters on the performance of the proposed model, we ad-
ditionally conduct a set of performance tuning experiments.
Due to the space limit, we only report the performance of the
third implementation of RANN, i.e. RANN-3, when it is ap-
plied onto the AMA-LAP dataset. The results are shown in
Fig. 4, in which curves labeled with p1 to p5 respectively
represents α, β, γ, θ, and λ. From these results we can see
that the optimal value assignment for these configuration pa-
rameters are (α, β, γ, θ, λ) = (0.6, 0.8, 0.7, 0.4, 0.7). Per-
formance tuning experiments performed using other datasets
yield similar optimal value assignment over these parameters,
the results of which are not reported due to space limit.

5 Conclusion
In this paper, we propose a novel Reliability-Aware Neural
Network (RANN) by extending the traditional artificial neu-
ral network for mining unreliable multidimensional data. The
RANN is well suited for performing supervised learning tasks
involving a large volume of online user-generated data, such
as online reviews. The new RANN is also equipped with a
pre-processing step that assesses the reliability of each di-
mension of each input data sample that is aggregated from
a volume of unreliable raw data, such as online user reviews.
Experimental results demonstrate the effectiveness of the pro-
posed RANN through two application cases, one regarding
predicting product sales ranks and the other involving pre-
dicting box office gross revenues. The proposed RANN con-
sistently outperforms a series of peer methods and state-of-
the-art algorithms in these prediction tasks, the advantage of
which is clearly demonstrated through all experimental re-
sults.
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