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Abstract. Dimensionality reduction procedures such as principal com-
ponent analysis and the maximum margin criterion discriminant are spe-
cial cases of a weighted maximum variance (WMV) approach. We present
a simple two parameter version of WMV that we call 2P-WMV. We study
the classification error given by the 1-nearest neighbor algorithm on fea-
tures extracted by our and other dimensionality reduction methods on
several real datasets. Our results show that our method yields the lowest
average error across the datasets with statistical significance.
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1 Introduction

The problem of dimensionality reduction arises in many data mining and ma-
chine learning tasks. Among many such algorithms the principal component
analysis [1] (PCA) is a very popular choice. PCA seeks a vector w ∈ Rd that
solves

arg max
w

1

2n

∑
i,j

1

n
(wT (xi − xj))2 (1)

where xi ∈ Rd for i = 0...n− 1. In other words it maximizes the variance of
the projected data without taking class labels into consideration. The maximum
margin criterion (MMC) [2] is a supervised dimensionality reduction method
that overcomes limitations of the Fisher linear discriminant and has also shown
to achieve higher classification accuracy [2]. It is given by w that maximizes
trace(wT (Sb − Sw)w) subject to wTw = I. Using Lagrange multipliers one can
show that w is given by the largest eigenvectors of Sb − Sw.

In this paper we consider a general version of Equation 1 that we call the
maximum weighted variance given by



arg max
w

1

2n

∑
i,j

Cij(w
T (xi − xj))2 (2)

The above equation gives us both PCA and MMC for specific settings of Cij

as we show below. We consider a two parameter approach by setting Cij = α < 0
if xi and xj have the same class label and Cij = β > 0 otherwise. In other words
we simultaneously minimize the distance between projected pairwise points in
the same class and maximize the same distance for points in different classes.
For a given dataset we obtain α and β by 1-nearest neighbor cross-validation.

The straightforward eigendecomposition solution requires at least quadratic
space in the dimensions of xi. With graph Laplacians we can employ a singular
value decomposition (SVD) approach to avoid this problem (as originally given in
[3]) and thus apply it to high dimensional data. Below we describe our approach
in detail followed by experimental results.

2 Methods

Suppose we are given the vectors xi ∈ Rd for i = 0...n − 1 and a real matrix
C ∈ Rn×n. Let X be the matrix containing xi as its columns (ordered x0 through
xn−1). Now consider the optimization problem

arg max
w

1

2n

∑
i,j

Cij(w
T (xi − xj))2 (3)

where w ∈ Rd and Cij is the entry in C corresponding to the ith row and jth

column. This is in fact a more general representation of PCA and MMC.

2.1 Principal component analysis

To obtain PCA we set Cij = 1
n and Equation 3 becomes (without the arg max

part)
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where St = 1
n

∑
i(xi −m)(xi −m)T and is called the total scatter matrix.

Inserting the optimization criterion into the last step yields arg maxw w
TStw

which is exactly the PCA optmization criterion [1].

2.2 Maximum margin discriminant

To obtain the MMC discriminant (a supervised learning method) first recall that
the MMC optimization criterion is defined as arg maxw w

T (Sb−Sw)w where Sb

is the between-class scatter matrix and Sw is the within-class scatter matrix [2].
Since Sb−Sw = St−2Sw where St is the total scatter matrix, this can be written
as arg maxw w

T (St − 2Sw)w [4]. In practice though we would use the weighted
maximum margin discriminant which is given by arg maxw w

T (Sb − αSw)w [5].
We now set the weights Cij to obtain this discriminant.

Suppose class labels yi ∈ {+1,−1} are provided for each xi and nk is the size
of class k. Define Cij to be 1

n if i and j have different class labels and 1
n − 2 1

nk

if i and j have the same class labels. We can then write Equation 3 as

arg max
w

1

2n
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Gij(w
T (xi − xj))2 −

∑
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2Lij(w
T (xi − xj))2) (4)

where Gij = 1
n for all i and j and Lij = 1

nk
if i and j have class labels k and

0 otherwise. By substituting the values of Gij and Lij into Equation 4 and some
symbolic manipulation we obtain the MMC discriminant
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where mk is the mean of points in k and cl(x) returns the class of point x.
The last equation in the above steps is just the MMC discriminant.

Equation 3 can be rewritten as arg maxw
1
nw

TXLXTw where L = D−C and
Dii =

∑
i Cii [6]. The matrix L is called the Laplacian of the weight matrix C.

Using Lagrange multipliers one can show that the largest eigenvector of 1
nXLX

T

(i.e. eigenvector with largest eigenvalue) is the solution to w [6]. Thus, the largest
eigenvector is also the solution to PCA and MMC.

2.3 Laplacian linear discriminant analysis

Following the Laplacian framework we can write the MMC discriminant (Equa-
tion 4) as arg maxw

1
nw

TX(Lg − 2Ll)X
Tw where Lg is the Laplacian of G and

Ll is the Laplacian of L [3, 4]. This form of the the maximum margin discrimi-
nant is also called Laplacian linear discriminant analysis and has been studied
for unsupervlsed learning [4]. As in PCA and MMC the largest eigenvector of
1
nX(Lg − 2Ll)X

T is the solution to the Laplacian discriminant.
Notice that Cij in Equation 3 can take on arbitrary values. With suitable

settings we obtained PCA and MMC. How does one select the best values Cij for
a particular problem? Our solution is to collapse values of C into two parameters
and select their values that minimize error on the training data.



2.4 Two parameter weighted maximum variance discriminant

As shown above the MMC discriminant is obtained by setting Gij = 1
n for all i

and j and Lij = 1
nk

if i and j have class labels k and 0 otherwise in Equation 4.
We consider a different setting for L below which gives us the two parameter
weighted maximum variance discriminant (2P-WMV). We also show that this
yields a class-wise unnormalized within-class scatter matrix and a pairwise inter-
class scatter matrix.

Define the matrix G ∈ Rn×n as Gij = 1
n for all i and j and L ∈ Rn×n as

Lij =

α if yi = yj
β if yi 6= yj
0 if yi or yj is undefined

Substituting these values into Equation 4 we obtain
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Note the similarity of S′w to the standard within-class matrix used in MMC

given by Sw = 1
n

∑k
i

∑
cl(xj)=i(xj −mi)(xj −mi)T . Sw is the class-wise normal-

ized version of S′w. Thus, the discriminant yielded by our approach is given
by the standard total scatter matrix, a modified within-class matrix, and a
pairwise inter-class scatter matrix. We can obtain MMC by setting α = 1

nk

if yi = k, yj = k and β = 0. This discards the inter-class scatter matrix and
makes S′w = Sw.

After defining L and G compute Lg the Laplacian of G, Ll the Laplacian of
L, and the matrix 1

nX(Lg − Ll)X
T (the 2P-WMV discriminant). The solution



to 2P-WMV is w that maximizes 1
nw

TX(Lg −Ll)X
Tw which is in turn is given

by the largest eigenvector of 1
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T [4].

3 Results

To evaluate the classification ability of our extracted features we use the simple
and popular 1-nearest neighbor (1NN) algorithm. In 10-fold and 5-fold cross-
validation experiments we apply the 1-nearest neighbor classification algorithm
to features extracted from our method 2P-WMV, the weighted maximum margin
discriminant (WMMC), PCA, and the features as they are (denoted simply as
1NN). We calculate average error rates across 50 randomly selected datasets
shown in Table 1 from the UCI Machine Learning Repository [7].

3.1 Experimental methodology

We compare four classification algorithms: 2P-WMV+1NN, PCA+1NN,
WMMC+1NN, and 1NN where the first three are 1NN applied to features ex-
tracted from each of the three dimensionality reduction algorithms. We use 10-
fold cross-validation on each real dataset with the same set of splits for each al-
gorithm. However, for datasets with fewer than 300 instances we use 5-fold cross-
validation to obtain a large enough validation set. For dimensionality reduction
we find the best parameters and number of dimensions by cross-validating fur-
ther on the training dataset (also 10-fold).

In 2P-WMV we let β range from {-2,-1.9,-1.8,-1.7,-1.6,-1.5,-1.4,-1.3,-1.2,-1.1,-
1,-.9,-.8,-.7,-.6,-.5,-.4,-.3,-.2,-.1,-.01} and α fixed to 1. For WMMC we let the α
parameter range from {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}. Re-
call that WMMC is given by arg maxw w

T (Sb − αSw)w [5]. For each parameter
we reduce dimensionality to 20 and then pick the top 1 <= k <= 20 features
that give the lowest 1NN error on the training. Thus the cross-validation on the
training set gives us the best values of α and the reduced number of features
(including PCA) which we then apply to the validation set.

We wrote our code in C and R and make it freely available at
http://www.cs.njit.edu/usman/wmv/. Our C programs use CLAPACK libraries
for performing the eigenvector and singular value decompositions.

3.2 Experimental results on fifty datasets

We compute the number of misclassifications
number of instances in validation for each training-validation split

during cross-validation and take the mean to be the average cross-validation
error. In Table 2 we show the average cross-validation error on each dataset.
Across the the 50 datasets 2P-WMV+1NN achieves the lowest average error of
13.324% and has the lowest error in 21 out of the 50 datasets. The next best
is WMMC+1NN that achieves an average error of 15.302% and has the lowest
error in 12 out of the 50 datasets. PCA+1NN are 1NN have higher average errors



Code Dataset Classes Dimension Instances

1 Liver-disorders 2 6 345
2 Diabetes 2 8 768
3 Breast Cancer 2 10 683
4 Page block 5 10 5473
5 Wine-quality-red 11 11 1599
6 Wine quality 11 11 4898
7 Wine 3 13 178
8 Heart 2 13 270
9 Australian Credit Approval 2 14 690
10 EEG Eye State 2 14 14980
11 Pen-Based Recognition 10 16 10992
12 Climate 2 18 540
13 lymphography 4 18 148
14 Statlog image 7 19 2310
15 Two norm 2 20 7400
16 Ring 2 20 7400
17 Cardiotocography 10 21 2126
18 Thyroid 3 21 7200
19 Waveform 3 21 5000
20 Statlog German credit card 2 24 1000
21 Steel faults 7 27 1941
22 Breast cancer 2 30 569
23 Ionosphere 2 34 351
24 Dermatology 6 34 366
25 Statlog 7 36 6435
26 Texture 11 40 5500
27 Waveform 3 40 5000
28 Qsar 2 41 1055
29 SPECTF heart 2 44 267
30 Mlprove 6 51 6118
31 Spambase 2 57 4597
32 Sonar 2 60 208
33 Digits 2 63 762
34 Ozone 2 72 1847
35 Insurance company coil2000 2 85 5822
36 Movement libras 15 90 360
37 Hill valley 2 100 606
38 BCI 2 117 400
39 Gas sensor array drift 6 128 13910
40 Musk 2 166 476
41 Coil 6 241 1500
42 Scene classification 6 294 2230
43 Madelon 2 500 2600
44 Smartphone 6 561 10299
45 Secom 2 591 1567
46 Mfeat 10 649 2000
47 CNAE-9 9 857 1080
48 ACASVA actions 2 960 11288
49 Micromass 2 1300 931
50 Gisette 2 5000 1000

Table 1: Datasets that from the UCI Machine Learning repository that we used
in our study [7]



Code Dataset 2P-WMV+1NN WMMC+1NN PCA+1NN 1NN

1 Liver-disorders 0.364 0.376 0.4 0.404
2 Diabetes 0.31912 0.33382 0.34706 0.31912
3 Breast Cancer 0.03016 0.03492 0.37937 0.37937
4 Page block 0.04586 0.04199 0.04622 0.04622
5 Wine-quality-red 0.37718 0.37785 0.42081 0.42013
6 Wine quality 0.37582 0.38381 0.4043 0.40451
7 Wine 0.075 0.075 0.2125 0.2125
8 Heart 0.21 0.33 0.425 0.42
9 Australian Credit Approval 0.20833 0.21667 0.44167 0.43167
10 EEG Eye State 0.0198 0.02094 0.0202 0.0202
11 Pen-Based Recognition 0.00586 0.00614 0.00577 0.00577
12 Climate 0.066 0.072 0.14 0.132
13 Lymphography 0.2 0.21786 0.21429 0.2
14 Statlog image 0.03609 0.03435 0.03609 0.03565
15 Two norm 0.0289 0.02918 0.03342 0.05315
16 Ring 0.14685 0.14014 0.15425 0.24274
17 Cardiotocography 0.08398 0.08932 0.08495 0.0835
18 Thyroid 0.03915 0.06211 0.07014 0.07014
19 Waveform 0.18143 0.18 0.18612 0.22857
20 Statlog German credit card 0.33444 0.37 0.35667 0.35444
21 Steel faults 0.36126 0.36073 0.61885 0.61885
22 Breast cancer 0.07755 0.11429 0.09388 0.09388
23 Ionosphere 0.06452 0.05806 0.10323 0.10968
24 Dermatology 0.01538 0.03462 0.11538 0.11538
25 Statlog 0.09118 0.11874 0.09496 0.09512
26 Texture 0.00926 0.01315 0.00944 0.00796
27 Waveform 0.18143 0.18755 0.17898 0.23837
28 Qsar 0.18211 0.16211 0.20316 0.19895
29 SPECTF heart 0.27647 0.25882 0.28235 0.26471
30 Mlprove 0.42204 0.44128 0.41941 0.41382
31 Spambase 0.08709 0.08249 0.17221 0.16565
32 Sonar 0.17222 0.2 0.15556 0.15556
33 Digits 0.01111 0.01806 0.01111 0.00972
34 Ozone 0.10904 0.09718 0.10678 0.10565
35 Insurance company coil2000 0.1042 0.10262 0.0965 0.09685
36 Movement libras 0.10333 0.12333 0.10333 0.09667
37 Hill valley 0.02321 0.06429 0.41607 0.42143
38 BCI 0.16333 0.17667 0.44667 0.41333
39 Gas sensor array drift 0.00878 0.01058 0.00878 0.00885
40 Musk 0.11957 0.23696 0.13478 0.1587
41 Coil 0.02286 0.03429 0.02143 0.01429
42 Scene classification 0.29454 0.335 0.29636 0.28909
43 Madelon 0.1256 0.4568 0.1268 0.3444
44 Smartphone 0.04563 0.04194 0.07363 0.02623
45 Secom 0.08027 0.11429 0.1 0.10204
46 Mfeat 0.05526 0.05158 0.05211 0.05263
47 CNAE-9 0.069 0.065 0.176 0.132
48 ACASVA actions 0.11637 0.18479 0.17809 0.1178
49 Micromass 0.07253 0.06264 0.11209 0.05934
50 Gisette 0.04889 0.05111 0.09556 0.08222

Average error 0.13324 0.15302 0.18765 0.18946

Table 2: Average cross-validation error of different algorithms on each of the 50
real datasets from the UCI machine learning repository. Shown in bold is the
method with the lowest unique error.



at 18.765% and 18.946% respectively. PCA+1NN and 1NN have the lowest error
in 2 and 9 out of the 50 datasets respectively.

We measure the statistical significance with the Wilcoxon rank test [9]. This is
a standard test to measure the difference between two methods across a number
of datasets. Roughly speaking it shows statistical significance between two meth-
ods when one outperforms the other each time on a large number of datasets.
In Table 3 the p-values show that 2P-WMV+1NN statistically significantly out-
performs the other three method across all 50 datasets.

WMMC+1NN PCA+1NN 1NN
2P-WMV+1NN .0004 < .0001 .0001
WMMC+1NN .0232 .0536

PCA+1NN .0949

Table 3: Wilcox rank test p-values (two-tailed test) between all pairs of methods.

4 Discussion

Both 2PWMV+1NN and WMMC+1NN reduce dimensionality by determining
optimal parameters specific to the given dataset. This approach is better than
the unsupervised PCA and the non-parametric MMC (results not shown here).
In fact 1NN applied to the raw data can be better than non-parameteric MMC
most of the time.

In this study we fixed α for 2PWMV and varied only β. If we cross-validated
α we could potentially obtain lower error but at the cost of increased running
time. In the current experiments 2PWMV+1NN and WMMC+1NN are the
slowest methods yet still tractable for large datasets.

We chose 1NN as the classification method for this study due to its simplic-
ity and its popularity with dimensionality reduction programs. Other classifiers
such as the support vector machine [1] may perform better when replaced with
1NN. However, in that case the regularization parameter would also need to be
optimized via cross-validation which increases the total runtime.

5 Conclusion

We introduce a two parameter variant of the weighted maximum variance dis-
criminant and optimize it with cross-validation followed by 1-nearest neighbor
for classification. Compared to existing approaches our method obtains the low-
est average error with statistical significance across several real datasets from
the UCI machine learning repository.
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