1. Derive a formula for the linear velocity of a planet $v(r)$, where r is the distance from Sun (assume circular orbits). Apply your formula to Earth ($r \simeq 150 \cdot 10^{6} \mathrm{~km}$). Compare v with the number which follows from the observed period of 1 year.
2. Find the kinetic K, potential U and full energy E for Earth $\left(M_{E} \simeq 6 \cdot 10^{24} \mathrm{~kg}\right)$.
3. Calculate the period of revolution for an asteroid $600 \cdot 10^{6} \mathrm{~km}$ from Sun (assume a circular orbit).
4. Find the length of a simple pendulum designed to have an oscillation period of $2 s$ on Earth. What will be its oscillation period on Moon? On Jupiter?
