1. A 0.2 kg tennis ball moving horizontally at $25 \mathrm{~m} / \mathrm{s}$ hits a wall and rebounds with speed of $15 \mathrm{~m} / \mathrm{s}$ in the opposite direction. (a) find the impulse from the wall. (b) estimate the average force from the wall if the collision time is 0.1 s .
2. Three particles $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, m_{3}=3 \mathrm{~kg}$ are located at $(0,1),(4,-1)$ and $(5,3)$, respectively. (a) Locate the CM. (b) Where would you place the 4th particle with $m_{4}=3 \mathrm{~kg}$ to have the CM at $(0,0)$?
3. A 5 g bullet with speed of $400 \mathrm{~m} / \mathrm{s}$ gets stuck in a 1 kg wooden block (originally not moving). (a) Classify the collision. (b) Find the new speed of block+bullet.
4. Suppose, in the previous problem the bullet does not get stuck but emerges on the other side of the block with speed of $100 \mathrm{~m} / \mathrm{s}$ (in the same x-direction). Find the speed of the block.
5. The same bullet-through-block problem, but the bullet emerges from the block at $100 \mathrm{~m} / \mathrm{s}$ deflected by 60° from the original x-direction. Find the x and y components of the velocity of the block.
6. Now, originally the block is also moving at $4 \mathrm{~m} / \mathrm{s}$ but in the y-direction. The bullet hits the block and gets stuck. Find the direction of the resulting motion.
