2 D motion in vector notations and plots

An arrow is launched horizontally from a $H=20 \mathrm{~m}$ cliff with initial speed $V_{o}=20 \mathrm{~m} / \mathrm{s}$.

1. write down the position vector

$$
\vec{r}(t)=(x(t), y(t)))
$$

specifying explicitly $x(t)$ and $y(t)$ for selected initial conditions
2. Calculate several pairs of numbers $x(t), y(t)$ for $0<t \leq 2$ (you can use $g \approx$ $10 \mathrm{~m} / \mathrm{s}^{2}$ at this stage) and plot the trajectory on the graph below.
3. Identify the location of the arrow at $t=1 \mathrm{~s}$
4. find the vertical component of the velocity and the angle at which the arrow hits the ground; compare to the plot
5. The same if $V_{o}=10 \mathrm{~m} / \mathrm{s}$; plot on the same graph

