Work and energy

- 1. A particle moves from a point $\vec{r_1} = 2\hat{i} + 2\hat{j}$ (in meters) to a point $\vec{r_2} = 6\hat{i} 4\hat{j}$. Find the work W done by a constant force $\vec{F} = 4\hat{i} + 2\hat{j}$ (in newtons).
- 2. Find the angle between the force and the displacement
- 3. If the mass of the particle in the previous problem is m = 2 kg and the initial speed at $\vec{r_1}$ is 5 m/s, find its speed at $\vec{r_2}$ (assume no work by other forces).
- 4. A 3 kg block is moved along a flat horizontal surface by a constant force F = 30 N which makes 30^o with horizontal. The speed changes from 10 cm/s to 50 cm/s after a 2 m displacement. Find the work done by friction.
- 5. A skier slides down from a hill which is $30 \, m$ high and then, without losing speed, up a hill which is $10 \, m$ high. What is his final speed? (a) Ignore friction. (b) Assume a small average friction force of $40 \, N$ and the combined length of the slopes $L = 200 \, m$. The mass of the skier is $m = 80 \, kg$.

- 6. A mass $m=1\,kg$ is attached to a string $L=5\,m$ and freely revolves under the force of gravity. The speed at the top is $v=10\,m/s$
 - (a) draw clear force diagrams for the two vertical and the horizontal orientations of the string
 - (b) find the speed V at the lowest point

(c) find the tension T ("apparent weight") at the lowest point

7. Consider a spring with k = 100 N/m

- (a) find the extension length if an m = 1.5 kg mass is attached to the spring
- (b) what is the work done by the spring if it is stretched by extra 10 cm starting from $x_0 = 5 cm$.
- (c) find the elastic potential energy stored in the spring at the maximum extension
- (d) the spring with mass m attached is now released and starts oscillating (ignore gravity). Find the maximum speed V.
- (e) (*) find the speed v when $x = 10 \, cm$.