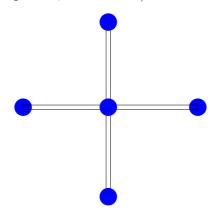

Centripetal motion and rotation

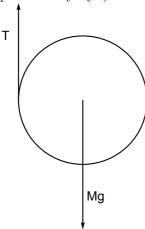
Constant ω .

1. During an air show a plane flying at speed $v=250\,m/s$ performs a loop-of-death a vertical circle with a radius $R=1800\,m$ (see figure - not to scale). The pilot has a mass $M=80\,kg$. Find the magnitude of the normal force N_1 (apparent weight) acting on the pilot (a) at the lowest and (b) at the highest points of the loop.

- 2. A small ball with mass $M=2\,kg$ is fixed to a massless rod and is revolving in a circle of radius $r=0.5\,m$ with linear speed of $v=3\,m/s$.
 - (a) find the period of revolution T
 - (b) the angular velocity ω
 - (c) centripetal acceleration a_c
 - (d) centripetal force F_c
 - (e) moment of inertia I about the axis of rotation
 - (f) kinetic energy K


- 3. A Ferris Wheel has a radius $R=25\,m$ and completes one full revolution in $1\,min$.
 - (a) Draw clear force diagrams at the highest and the lowest points
 - (b) find the apparent weight of an $M=40\,kg$ child at those points.
 - (c) for which rotational speed (in rev/s) the child would feel weightless at the top. What would be his acceleration?
 - (d) for the above acceleration, what is the apparent weight (in units of Mg) at the lowest point?
- 4. A car goes around a flat curve with $R_1 = 100 \, m$ at a speed $v_1 = 30 \, m/s$, and then around another curve with $R_2 = 200 \, m$ and $v_2 = 60 \, m/s$.
 - (a) Find the ratio the ratio of centripetal forces F_1/F_2
 - (b) find the minimal value of the friction coefficient, which would ensure that the car safely makes each of the curves.

 $\omega \neq \text{const.}$


5. A wheel makes 1000 revolutions in 10 s and stops. (a) Find ω_0 ; (b) find α .

I and K

- 6. Calculate rotational inertia and energies of rotation (note the difference between rad/s and rpm). All spheres are solid with mass $M=5\,kg$ each and of negligible radius. Each of the two rods is $L=2\,m$ long with negligible mass.
 - (a) the axis of rotation is perpendicular to the figure and passes through the middle sphere; rotation at $1000 \, rpm$.
 - (b) The axis of rotation is vertical in the plane of the page and passes through 3 spheres; $\omega = 10 \, rad/s$.

- 7. A solid disk with $M=2\,kg$ and $R=10\,cm$ is rolling with $v=3\,m/s$. Find full K.
- 8. A solid disk with r = 1 m and M = 1 kg falls from unwinding string (as in a primitive yo-yo).

- (a) use conservation of energy to find linear speed v once the disk lowers by $h=50\,cm$.
- (b) from $h = v^2/2a$ find the linear acceleration a
- (c) find α , the angular acceleration
- 9. A disk, a hoop and a solid sphere $(I = \frac{2}{5}MR^2)$ roll down a 6 m long incline which makes 30^o with horizontal. Find the speed of each at the bottom of the incline. Make your own assumptions about masses and radii.
 - (a) disk
 - (b) hoop
 - (c) sphere
 - (d) which one wins?