Energy conservation

Conservative forces only

$$K + U = E = \text{const}$$
, $U_s = \frac{1}{2}kx^2$, $U_g = mgh$, $W = -\Delta U$

Spring

1. Consider a spring with potential energy shown in the graph below. $_{\mathsf{U}(x),\,\mathsf{J}}$

- (a) Find the spring constant k
- (b) A block with mass $M=1.5\,kg$ approaches the spring with speed $v_0=1\,m/s$. Find the maximum compression

- (c) Assuming that the block get hooked up to the spring and starts oscillations, find the kinetic energy K(x) and speed v(x) when $x=5\,cm$
- (d) Consider now the same spring held vertically and the same block $M=1.5\,kg$ is being dropped on the spring (with zero speed) and compresses the spring the distance x until it stops.
 - i. find x (use energy conservation)
 - ii. find the work done by gravity

Gravity

- 2. An M = 2 kg projectile is launched from the ground level (origin of coordinates) with initial speed $v_0 = 20 m/s$. It reaches a point $\vec{r} = 10\hat{i} + 5\hat{j} + 15\hat{k}$.
 - (a) find the change in potential energy ΔU
 - (b) find the work done by gravity W_g
 - (c) find speed v at point \vec{r}
- 3. In the Atwood machine the heavier body on left has mass M = 1 kg, while the lighter body on right has mass m = 0.9 kg. The system is initially at rest, there is no friction and the mass of the pulley is negligible.

- (a) write down the algebraic expression for the full energy E at the initial instant when the larger mass is at elevation h and the smaller mass is at elevation 0
- (b) write down the algebraic expression for the full energy E at the final instant when the larger mass is at elevation 0 and the smaller mass is at elevation h; use the yet unknown speed v when evaluating the full kinetic energy
- (c) Find the speed after M lowers by h = 50 cm from initial position
- 4. A skier slides down from a hill which is $H = 30 \, m$ high and then, without losing speed, up a hill which is $h = 10 \, m$ high. What is his final speed? Ignore friction.

- 5. An $M = 100 \, kg$ crate is released from the top of a frictionless $L = 4 \, m$ long ramp, which is makes 30^{o} with horizontal. The crate slides back to the floor. Do the following:
 - (a) find U and E at the top of the ramp
 - (b) find K at the bottom of the ramp
 - (c) find the speed at the bottom of ramp

With non-conservative forces

$$(K_f + U_f) - (K_i + U_i) = W_{non-cons.}$$

- 6. Solve the crate problem with $\mu_k = 0.4$. (Note: friction $f = \mu_k mg$, $W_f = -fL$)
- 7. find the max angle when the crate will still slide
- 8. Consider problem 1b but with friction ($\mu_k = 0.5$). Find the distance x to first stop.

- 9. Solve the "policeman's problem" using only work-energy considerations. Use $L=200\,m$ (length of skid marks) and $\mu_k=0.5$; find v_0 . Assume level road
- 10. find the time to stop