Forces

For each problem below show a clear force diagram.

- 1. A particle with mass $m=2\,kg$ accelerates under the action of $F_1=1\,N$ North and $F_2=2\,N$ East
 - (a) draw a clear diagram; try to "guess" the approximate direction and magnitude of \vec{a} from the picture
 - (b) write the 2nd Law in vector form
 - (c) find a_x and a_y
 - (d) find a
 - (e) find the angle which \vec{a} makes with the x-axis
 - (f) which force \vec{F}_3 should be added so that $\vec{v} = const$?

2. A student with mass $m=80\,kg$ brings floor scales into an elevator for an experiment. At the instant the elevator starts moving the scales show the "weight" of the student as $660\,N$. Find the direction and magnitude of the acceleration a of the elevator.

- 3. A locomotive applies a force of $10^4 N$ to an empty train car (mass $m = 2000 \, kg$) which in turn pulls a loaded car with mass $M = 8000 \, kg$.
 - (a) Find the tension force between the two cars.
 - (b) The same, if the order of the cars was switched (i.e. the loaded car would be directly hitched to the locomotive).

4. A block with mass $M=2\,kg$ rests on a horizontal frictionless table. A lighter block with mass $m=1\,kg$ is hanging from a string which is attached to the 1st block. Find the acceleration a of the system and the tension T of the string.

5. In the Atwood machine the heavier body on left has mass $M = 1.1 \, kg$, while the lighter body on right has mass $m = 1 \, kg$. There is no friction and no mass of the pulley. Find acceleration a.

see Lecture Notes

- 6. consider $M=2\,kg$ on a 30° frictionless inclined plane
 - (a) find the downhill component of gravity
 - (b) find a
 - (c) suppose, at some point the speed is 1 m/s downhill. Find the speed 1 m lower

7. Find tensions T_1 and T_2 if $m=2\,kg$ and $\alpha=30^o$.

- (a) write the condition of equilibrium in vector form
- (b) write down the x-component of equilibrium
- (c) write down the y-component of equilibrium