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Abstract

These notes are intended as an addition to the lectures given in class. They are NOT designed
to replace the actual lectures. Some of the notes will contain less information then in the actual
lecture, and some will have extra info. Not all formulas which will be needed for exams are
contained in these notes. Also, these notes will NOT contain any up to date organizational or
administrative information (changes in schedule, assignments, etc.) but only physics. If you notice
any typos - let me know at vitaly@njit.edu. For convenience, I will keep all notes in a single file -
each time you can print out only the added part. A few other things:

Graphics: Some of the graphics is deliberately unfinished, so that we have what to do in class.
Advanced topics: these will not be represented on the exams. Read them only if you are really

interested in the material.
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Dr. Vitaly A. Shneidman, Phys 111, Lecture 1

I. INTRODUCTION
A. Physics and other sciences

in class

B. Point mass

The art physics is the art of idealization. One of the central concepts in mechanics is a
"particle” or ”point mass”

i.e. a body the size or structure of which are irrelevant in a given problem. Examples:

electron, planet, etc.

C. Units

1. Standard units

In ST system the basic units are:

m (meter), kg (kilogram) and s (second)

FEverything else in mechanics is derived. Examples of derived units (may or may not have a
special name): m/s, m/s* (no name), kg - m/s* (Newton), kg - m?/s? (Joule), etc.

Major variables, their typical notations and units:

variable units name
speed, v m/s -
acceleration (a or g) m/s? -
force (F, f,N,T) N=kgm/s?* Newton
work (W), energy (K,U,E) J=kgm?/s>  Joule




2. Conwversion of units

Standard path: all units are converted to SI. E.g., length:

lin = 0.0254m, 1ft=0.3048m, 1mi~ 1609m

Examples:

mi 1609 m
d 702~ 70
Spee h 3600s

area: 3cm? =3 (10_2 m)2 =3-10"*m?

~3132
S

volume: 1mm?® = 1(10"%m)* = 107" m?
gram 10~%kg kg

=1 ~ 1000—; t
cm® (001 m)? e (vater)

10~%k
gram _ o 107ke
in (0.0254m)3

gram 10-3kg 3 kg
=— =315———==19.2-10°— 1d
in? (0.0254m)? s (801)

Oil is spilling from a pipe at a rate of 0.2 ft*/min. Express this in SI units.

density: 1

k
218 ~ 13.6 - 10°~2 (mercury)
m

315

3 0.305m)3 3
0.0t _ oo O305m)7 g4 19T
min 60 s S

Non-standard: Convert the previous in L/hour:

3 1000 L L
hour = 9.4-107°2- =9.4.107° 340

1
1m>=1000L, 15 = _ ~
m = 10005, 1s =500 s hour /3600

hour
Earth is 150 - 10° km from Sun; find speed in km/s if 1 year ~ 365 days

150 - 109 km
T
365 - 24 - 3600 s

~ 30km/s



3. Significant figures

A solid disk has a diameter of 1 cm. Find the circumference.

s =md = 3.141592654 . . . cm. Wrong!! Why?

Advanced.

The period of small oscillations of a pendulum is independent of its amplitude (Galileo). Use
this to find the dependence of the period T" on the length of the pendulum L, gravitational

acceleration g and, possibly, mass M. Namely, look for
T ~ LYg° M

and find o, 8 and 7.

L
y=0,a=—8,8=-1/2 = T~ /=
g

Advanced. Less trivial example: gravitational waves. What is the speed? Can depend on

g,[m/s*] on X, [m] and on p, [kg/m?]
v g* N or [m/s] = [m/s°]*[m)’[kg/m?]”
From dimensions,
a=B8=1/2,7=0()

4



v~ Vg

What is neglected? Depth of the ocean, H. Thus,
Umax ~ VgH ~ V10-4-10% ~ 200m/s

(the longest and fastest gravitational wave is tsunami). Note that we know very little about
the precise physics, and especially the precise math of the wave, but from dimensional

analysis could get a reasonable estimation.



II. VECTORS

A wector is characterized by the following three properties:

e has a magnitude

e has direction (Equivalently, has several components in a selected system of coordi-

nates).

e obeys certain addition rules (”Tail-to-Head” or, equivalently "rule of parallelogram”).

This is in contrast to a scalar, which has only magnitude and which is not changed when a
system of coordinates is rotated.

How do we know which physical quantity is a vector, which is a scalar and which is
neither? From experiment (of course). Examples of scalars are mass, time, kinetic energy.

Examples of vectors are the displacement, velocity and force.

Tail-to-Head addition rule.



A. System of coordinates
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B. Operations with vectors

1. Single vector

Y R et e e T T

0.4

0.3f
0.2

0.1

SS

1 L L 1L 1 L L L 1 L L L 1

0.2 0.4 0.6 0.8

Consider a vector @ with components a, and a, (let’s talk 2D for a while). The magnitude

(or length) is given by the Pythagorean theorem

a =|d| = /a2 + a2 (1)

Note that for a different system of coordinates with axes z’, 4’ the components a,» and a,
can be different, but the length in eq. (1) , obviously, will not change, which just means
that length is a scalar.

Primary example: position vector (note two equivalent forms of notation)
7= (z,y) =xi+yj

(sometimes, ¢ and J is used) with |i] = |j| = 1.
Polar coordinates:
r=+/2?2+y?, 0= arctan(y/x)
r=rcosf, y=rsind

Note: arctan might require adding 180° - always check with a picture!



FExample. Find the components of the vector 7" in the figure if its length is r = 2.5 units

and o = 20°.

EX NN

Solution 1 (from picture). The (x,y) components are ”cut off” by the dashed lines. Thus,
x = —rcosa = —2.5c0820° = —... (note the minus!) and y = 2.5sin20° = .. ..
Solution 2 (from formulas). One has x = rcosf, y = rsiné, but 6 is the angle with positive

x-direction (double arc in the figure), or § = 180° — a = 160°. Thus,
x=25c0s160° =--- <0, y=2.5sn160° > 0

(Check that you get the same numbers!)
Another operation allowed on a single vector is multiplication by a scalar. Note that the

physical dimension ("units”) of the resulting vector can be different from the original, as in

—

F =mad.

2. Two vectors: addition

For two vectors, @ and b one can define their sum ¢ = @+ b with components
=0y +by, ¢y=ua,+Db, (2)

The magnitude of ¢ then follows from eq. (1). Note that physical dimensions of @ and b

must be identical.

Note: for most problems (except rotation!) it is allowed to carry a vector parallel to

itself. Thus, we usually assume that every vector starts at the origin, (0, 0).
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FIG. 1: Adding two vectors: C = A+ B. Note the use of rule of parallelogram (equivalently, tail-to-
head addition rule). Alternatively, vectors can be added by components: A = (=2,1), B = (1,2)

and C = (=241, 142) = (—1,3).

FExample Displacement A=-2 + 7 is followed by B=i+ 2. Find magnitude and

direction of the resultant displacement.
C=A+B=—i+3j

¢ = VT F -V,

c, -1
0= = —— — . f=..>90°
COS C \/ﬁ

Ezample (3D). For A= (1,2,3) and B = (—1,1,7) find 34 + 4B

3A+4B=(3-1+4-(~1),3-244-1,3-3+4-7) = (—1,10,37)

10



3. Two wvectors: dot product - need for "work”

ol

a

If @ and b make an angle 6 with each other, their scalar (dot) product is defined as
@-b=abcos (0)
or in components
@ b= ab, + ayb, (3)

A different system of coordinates can be used, with different individual components but
with the same result. For two orthogonal vectors a - b = 0. Preview. The main application
of the scalar product is the concept of work AW = F. A7, with A7 being the displacement.

Force which is perpendicular to displacement does not work!

Example. See Fig. 1. A= —21 + 7, gz%—i—Q}'
A-B=(-2)1+1-2=0

(thus angle is 90°).
Example Find angle between 2 vectors B and C in Fig. 1.

General:

ISI
S

cosf =

S

a
InFig. 1: B=vV12+22=5, C = (_1)2+32:\/ﬁ
(-1)-1+3-2 1

— . =45°
5v/2 V2

cosf =

11



3D coordinates

Add unit vector k in the z-direction.

A=Ad+Aj+Ak= (A, Ay, A), A=A

— A2+ A2 4 A2

A.-B=A,B, +A,B,+ A.,B, = ABcos#
A-B
AB
Ezample. A = (1,2,3), B= (1,—1,0). Find A - B and the angle between them.

cosf =

A B=1%1+2%(=1)+3%0=—1

A=VI24+ 22432 =14, B= 12+ (-1)2+ 02 =2
~1 1

— 0 ~101°
V142 2/7

cosf =

12



4. Two vectors: vector product - need for "torque”

At this point we must proceed to the 3D space. Important here is the correct system of
coordinates, as in Fig. 2. You can rotate the system of coordinates any way you like, but

you cannot reflect it in a mirror (which would switch right and left hands).

K J
o 1 / !
i K

FIG. 2: The correct, "right-hand” systems of coordinates. Checkpoint - curl fingers of the RIGHT

hand from z-direction (i) to y-direction (7), then the thumb should point into the z-direction (k).

13



6=§XB
c=axbxsin(a)

FIG. 3: Example of a cross product ¢ = a x b. Direction: perpendicular to it both @ and b (‘right

hand rule’). Magnitude - as indicated.

If @ and b make an angle a < 180° with each other, their vector (cross) product ¢ = a x b
has a magnitude ¢ = absin(a). The direction is defined as perpendicular to both @ and b
using the following rule: curl the fingers of the right hand from a to b in the shortest direction
(i.e., the angle must be smaller than 180°). Then the thumb points in the ¢ direction. Check
with Fig. 3. Changing the order changes the sign, bxd=—adxb In particular, @ x @ = 0.
More generally, the cross product is zero for any two parallel vectors.

Suppose now a system of coordinates is introduced with unit vectors z, j and k pointing
in the z, y and z directions, respectively. First of all, if 7, j,fc are written ”in a ring”, the

cross product of any two of them equals the third one in clockwise direction, i.e.

~ A ~

ixj=k,jxk=1,kxi=]

, etc.

14



Ring Diagram:

i
ix] =k

x|
L.

Example. Fig. 1:
A=-2+j, B=i+2]

A

AXB=(=21+))x (1+2))=(=2)-2ixj+]xi=

~

_ 4h— )= —5h

(Note: in Fig. 1 k goes out of the page; the cross product Ax B goes into the page, as
indicated by ”-".)

More generally, the cross product is now expressed as a 3-by-3 determinant

L ~lay a; - ag a, ~laz ay
axb= (g Ay Q| =1 — + k (4)
b, b by b, by b,

by b, b

Y

The two-by-two determinants can be easily expanded. In practice, there will be many zeros,
so calculations are not too hard.
Preview. Vector product is most relevant to rotation.

Example. See Fig. 1.
AxB=k((-2)2—1-1)= -5k

15



C. Preview. Forces as vectors.

Besides displacement 7, and velocity U, forces represent another example of a vector. Note
that they are measured in different units, N (newtons), i.e. each component of the force
F,, F,, F, is measured in N. How do we know that force is a vector? From experiments
on static equilibrium which demonstrate that forces indeed add up following the standard
vector addition rule of parallelogram (or, that they add up by components, which is the

same thing).

Consider your Lab experiment

Fy, N
105 P 75
120 60
135 45
150 30
—
165 IR F 3 15
Fx, N
—

195 F 345
210 330
225 315
240 300
25 Ll 285

The force table (left) and its schematic representation (right)

In equilibrium: ﬁl + ﬁg + ﬁg =0, = ﬁg = — (ﬁl + ﬁg)

In the example: F; =0.9N,0; =180°; F, =0.75 N, 0y = 315° = —45° =
Fr, = 0.9¢0s(180°) = —0.9, Fy, = 0.9sin(180°) = 0

Fyp = 0.75 cos(—45°) = 0.53, Fy, = 0.75sin(—45°) = —0.53

F3$:_(F1$+F2$)20377 F3y:_(F1y+F2y):0'53
0.53

F .
fs = tan ! =% = tan"! —— ~ 55°
L T

(check with picture that this is about correct; the angle 55° 4+ 180° = 235° has the same

tan). Similarly, the magnitude

Fy =/ 372 + 537 = 0.646 (N)

16



Dr. Vitaly A. Shneidman, Phys 111, Lecture

III. 1-DIMENSIONAL MOTION

Position x(t)

Displacement:
Ax =z (ty) — x (1)
Distance:
D> |Az| >0
Velocity:
v:%, At =ty — 14

with a small At (later, we distinguish between average velocity with a finite At and instan-

taneous with At — 0).

Speed:
D=0
s=— v
At —
A. v =const
See fig. 4
2.5V 5
2 4 //
1.5 3 //
T 2 /
0.5 . //
t L
0.5 1 1.5 t
-0.5 5 1 1.5
-1.5 2

FIG. 4: Velocity (left) and position (right) plots for motion with constant velocity: Positive (red)
or negative (blue). Note that area under the velocity line (positive or negative) corresponds to the

change in position: E.g. (red) 2 x 2 =4.5 — 0.5, or (blue) 2 x (—=1) = -2 —0.

Displacement
Axr =v At (5)

17



Distance
D = |Az|, for v=const only (6)
Speed

s = D/At = |v|, for v=const only (7)

Ezample. A motorcycle with V; = 60m/s is catching up with a car with Vo = 40m/s,
originally D = 200 m ahead. When and where will they meet? Give the graphic solution
(in class).

xy = Vut, o = Vet + D | and xp; = x¢ - they meet

D 200

Vi —Ve 60 —40

Above is the meeting time (note "relativity” - in a reference frame moving with V; the

Vut =Vet + D, thus, t = 10s

motorcycle is stationary, while the car approaches it with speed of Vj; — Vo). The meeting

point - the distance from the original position of the motorcycle - is

Vi
=Vyt=D— =600
xr M VM—VC m

Graphically, the solution is intersection in ¢,z plane.

18



B. Variable velocity

Example (trap!): A hiker goes from A to B with S; = 2km/h and returns with Sy =

4km/h. Find S,, .
S1=2km/h;, So=4km/h. Su —7

D =2AB, t = AB/S,, t» = AB/S,

D 2AB 25159

Sw = — — 3 km/h
i AB/S T AB/S, Sit5 7 okm

19



1. Awverage and instantaneous velocities. Geometric and analytical meaning.

FIG. 5: A sample position vs. time plot (blue curve), and determination of the average velocities
- slopes (positive or negative) of straight solid lines. Slope of dashed line (which is tangent to z(t)

curve) is the instantaneouus velocity at ¢t = 2.

x(t), v(t)

x(t)
v(t)

FIG. 6: Example. Instantaneous velocity as the slope of x(¢). Points indicate instances with

v(t) = 0.

20



x dx
Average velocity: v,, = — Instantaneous: v = lim v, = — (8
& Y Yaw At At—0 T dt (®)
. D
Distance: D > |Ax|, Average speed:  $4, = Y > |Vao| (9)
dD
Instantaneous speed: s = - = v (10)
2. Displacement from velocity
\% \
1.0 - 10r
0.8} 0.8t
0.6f 0.6f
0.4} 0.4t
0.2f 0.2
02 04 06 08 10 02 04 06 08 10

FIG. 7: Determination of displacement for a variable v(¢). During the ith small interval of duration

At the velocity is replaced by a constant v; shown by a horizontal red segment. Corresponding

displacement is Az; &~ v; - At (the red rectangular box). The total displacement Az = ) Ax; is

then approximated by the area under the v(t) curve.

'
Displacement: Ax(t) = "area” under the v(t) curve = / v (t) dt’ (11)
/

1

21



3. Acceleration

Av
. w = — 12
average: a Y (12)

dv  d’z
instantaneous: a = lim a,, = — = (13)

At—0 a % a ﬁ
Geometric meaning: a - slope of v(t). If a(t) is known, Av is the "area” under the a(t)
curve.
Example: Given (¢ in seconds, = in meters)
U

x(t):—z+§+t2—t+1

Find: a) vy, between t; = 1s and to = 3s; b) v(t), a(t)

_afty) —a(t) _ —17/4-13/12 8

to — 11 3—-1 3

Uav -

b) from

d
Et”:nt”’1 o) = P+ 20— 1, a(t) = —3t2 + 2t +2

Example. A particle is moving according to x = 20t* (with z in meters, ¢ in seconds.

When ¢t =25 (a) find a and (b) find v

_dx_ dv m

v(t)—a—

m m
t=2)=80— =40 —
wi=2)=80" a=10"

22



4. a = const

v(t)

X(t)

YO0
2!

Y

FIG. 8: Velocity (left) and position (right) plots for motion with constant acceleration: Positive

(red) or negative (blue). Again, area under the velocity line (positive or negative) corresponds to

the change in position. E.g. (red) (2.5+4 0.5) x 2/2 =4 — 1 or (blue) (—2) x 2/2 = -2 — 0.

Notations: Start from ¢ = 0, thus At = ¢; v(0) = vp.
Av=at, v=1vy+at

Displacement - area of the trapezoid in fig. 8 (can be negative!):

v + v

A
v 2

t = Uot+at2/2

A useful alternative: use t = (v — vy) /a:

2 2
vo+vv—1vy V=0
2 a 2a

(A more elegant derivation follows from conservation of energy,... later)

23
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SUMMARY: if

a = const (17)
v =1y +at (18)
1
T = T + vt + §at2 (19)
vy + v v? — v}

Example. A motorcycle accelerates from rest for ¢ = 2.0 s traveling x = 20 m during that
time. Find acceleration a. Solution:. Select an equation which has no v(t) (and vy = 0 since

"from rest’ and xq = 0 for convenience)

1, 2r 220 ,
xzﬁat = 4= =50 =10m/s

Example. A car accelerates from vy = 5m/s to v = 35m/s with a = 3m/s?. (a) How
far will it go? (b) How long will it take? Solution: (a) time is not given, thus select the
only formula which has no t:

v2—v3_352—52_
20  2x3

r =

(b) select a formula with no x

t=w=—1y) /a=...

Example. After the driver hits the brakes, the car skids for 10 s a distance 100 m before
it stops. (a) Find the initial speed vg; (b) find the deceleration. Solution:. (a) acceleration

not given or asked for, thus use

_ Nt itho =0 =

2 2 x 100 —
110:737: 10 :20m/3,andazvtvoz—%:... (b)

24



Example: meeting problems (car Vo = 40m/s, ac = 0 and motorcycle Vi = 0, ap =
2m/s?)

X, m
2500 F
2000
1500 |
1000

500 F

n 1 n n n n 1 n n n n 1 n n n n 1 n n n n 1 t‘ S
10 20 30 40 50

1
XC = Vct, XM = iaMtZ

1 1
VCt = 5aMt27 t= 2VC/&M = 4037 Xmeet =t- VC = 1600m = iaMtZ
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C. Free fall

@ 2012 Pearson Education, Inc.

Reminder:
if a = const then
v =1+ at
L
:c::co—l—vot—l—§at
2 2
v +v VT — vy
Tr— Ty = t =
0 9 2a
Free fall:

a — —g,r =y, x0 — Yo (or, H)
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a=—g=—98m/s
v =1y — gt

1 2
yzyo+vot—§gt

Y=—Y% = —F5—

Example: max height:

v =0, Ymax — Yo :vg/Qg

Example: the Tower of Piza (vg =0, yo = H ~ 55m). Find ¢, v upon impact.

2H
0=H+0t—gt?)2, t =4/ —
g

0—-H=—v*/2g9, v=+/29H

What if vy = 10m/s ? (use g ~ 10m/s?)

1
O:H+v0t—§gt2,0=55+10t—5t2

P —2t—11=0,t=1+V124+11=1+V12=...

(only positive root!)

O_H:vg—UQ

p ,v2:v3+29H
v=1 13 +29H ~ V102 4+2%10%55 = ...

0 =55— 10t — 52

If vo=—-10m/s

P42t —11=0,t=—-1+V124+11=—-1+V12=...

v = /v 4+ 2¢gH (same: sign of vy does not matter!)

27
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Other examples - ignore air friction

A shell is fired vertically up with vg = 200m/s. Find hpyax.

v2 — v?
Y—Yo = 0 s Y — Yo = hmax, v =0 Q@ max =
2g
2 2002
hmax:U_O: %2103771
2g 2x938

A package is dropped from a helicopter moving upward at vg = 20m/s. If it takes t = 15 s
before the package strikes the ground, (A) how high above the ground was the package when

it was released if air resistance is negligible? (B) How long is the path?

1 1 1
(A)0:y0+vot—§gt2, yoz§gt2—u0t=5*9.8*152—20*15:...

2
(B)D:y0+2><hmaxzy0+2;—;:...

Link to ”hammer-vs-feather” :

https://www.youtube.com/watch?v=KDpltiUsZw8
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Dr. Vitaly A. Shneidman, Phys 111, Lecture

IV. PROJECTILE MOTION

A. Introduction: Object dropped from a plane

Given: yo = H = 100m and %, = V4, with V' = 200m/s (horizontal). Find: (a) horizontal
distance L to hit the ground, (b) the speed v upon impact and the angle and (c¢) position
of the object relative to the plain. Solution:

Vertical motion (horizontal velocity does not matter!):

y(0) = H, 0(0) =0 = y(t)= H — 27

Time to fall, y(t) =0
t=+/2H/g

(a) From z-direction
L=Vt=V\/2H/g = 200,/2-100/9.8 = ...

(b) Speed upon impact. From y-direction

2 _ .2
y—yo=—L—2 = v:=29H
29
could use v, = —gt with calculated ¢). From z-direction
)

vy =const =V = v2:v§+v§:V2+2gH:2002+2*9.8*100:...

(the last formula is also valid for non-horizontal launch with V' replaced by vy, the full initial

speed).

29



Angle of impact with horizontal:

tanf = v, /v, = —\/29H/V

(c) since v, = const =V the object is right under the plane (!)

Another example: vertical toy cannon on a moving cart.

-

FIG. 9: The ball lands back into the cannon for any constant velocity of the cart (Galileo’s
relativity!). The maximum hight and the time of flight depend only on vertical velocity but not

on the horizontal motion.
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B. General

x-axis horizontal, y-axis vertical (up):

CLx:O, ay:_g

Uy = Vg, = const, v, = vy, — gt|with |vg, = vocosb, vy, = vosind

1 2
= Yo + Uo’yt — —gt

Displacement: | = T + Vg zt|, |Y 5
I
Also, |y —yo = B M
29
Y
31 —
i |74
}gmax Vv N
; g 5
1t —_
: g | | g y
i 2 4 6 8 10
b Xmax
U(2) Y V0,2V0,y
Max elevation: |Ymax — Yo — — |, Tmax — ————
29 g
Range:
Vg cos B vy sin
R = 2y = 2— 0
g
2
Uy .
R = 2sin (26)
g

Note maximum for § = 45°.
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Trajectory: (use zg = yo = 0). Exclude time, ¢ = 2/vp,. Then

2
. Vo,y I x _ 9 2
y—x———gT—xtanﬁ—Wx (35)

Voo 2 Vg

This is a parabola - see Fig. 10.

FIG. 10: Projectile motion for different values of the initial angle 6 with a fixed value of initial

speed vy (close to 10m/s). Maximum range is achieved for § = 45°.

C. Examples

Problem. A daredevil on a motorcycle wants to jump across an L=15m - wide river

starting from a horizontal cliff which is H=10m high. What should be his initial speed V'?

1 [2H
y=H+0t——gt* = t=/— =...
2 g

L
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Problem. A coastguard cannon is placed on a cliff yo = 60 m above the sea level. Three
shells are fired at angles # = 0 and 6§ = +30° with horizontal, each with an initial speed

vo = 80m/s. Find the following:
1. the horizontal distance x from the cliff to the point where each projectile hits the water

2. the speed upon impact

-
” \\ B
A ”’ ~
7 ~

E D “C

0

Solution:_# = 0 exactly as for the plane, V' = vg: First find ¢, time to hit the water (from

vertical motion only!):

1 /2
y:yo—l—Ot—éth,y:O = t= o , horizontal motion: x = vot = ...
9
(b) - horizontal component of the velocity v, = V', vertical component v, = —gt = ...

U:,/v%+1)§:...%87.2@
s
m

0 =+30° v, =vgcosh =~ 69.3@ , Voy = Vpsinf = 40 —
— s s

Note y = 0 at the end. Find time from vertical motion only (use here g &~ 10 m/s?)
1
0= yo+v0yt—§gt2 = 0 = 60440t—5t* or t* —8t—12 = 0 with ¢ ~ 9.3 5 (the positive root)

Horizontal distance: z = vt = ...

m
Speed upon impact: v = \/vg + (voy — gi&)2 ~ 87.2—
s

Angle 6 does not affect the final speed.
0 = —30° - same, but vy, = —402 and 0 = 60 — 40t — 5¢* with t ~ 1.3 5.
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V. 2D MOTION

A. Introduction: Derivatives of a vector

Reminder from 1D motion:

For 2D:

3(t) = if_ dx dy B dxﬁ dyq
Tdt - \at’ N
i) = Lo (L2 _Z

Tdrr T a2’ dt2 e’ dt2‘7

and similarly for integrals.

34
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B. General

Position: 7= 7(t)
o A7
Average velocity: v, = AL

(see Fig. 11).

. . dr
Instantaneous velocity: v = lim v,, = —
At—0 dt
L AY
Average acceleration: @y, = —
At
. 5 . dv  d*7
Instantaneous acceleration: ¢ = lim Gy = — = —
At—0 dt dt?

100

90+

80+

70t

60+

50+

40}

30t

FIG. 11: Position of a particle 7(t) (blue line), finite displacement A7 (black dashed line) and the
average velocity ¥ = A7/At (red dashed in the same direction). The instantaneous velocity at a

given point is tangent to the trajectory.
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C. d= const

AU =a- At
or with t5 =0
T=0To+a-t (36)
Displacement:
= o+vo-t+§a-t (37)

(The above can be proven either by integration or by writing eq. (36) in components and
using known 1D results).

Example. A particle moves according to

F(t) = 2t%1 + (3t +4))
Find ¥(t) and d(t) at t =2

Solution. Consider z(t) = 2t* and y(t) = 3t + 4 separately

dx du,,
T = 5, 4t7$_—_4
Ve =t b= "t
dy dv,
== =—==00
W T T

at t=2 v, =8,a, =4, v,=3,a,=0
or (t=2)=8+3j,d=4
Ezample. Describe the x and y motion for @ = —i 4+ 2j (in m/s?) and %, = 10i (in m/s).

At t = 0 the particle is at the origin. Solution

1 1
t) =10t — =t*, y(t) = =2¢>
(1) 5yt =5
Can eliminate ¢ via (the simpler) y(t) from which we get t = ,/y and

r =10y —y/2
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D.

QL

— §=0i — 9.8] (projectile motion)

see previous section

HW examples

A car comes to a bridge during a storm and finds the bridge washed out. The driver
must get to the other side, so he decides to try leaping it with his car. The side the car is on
is H=21.1 m above the river, whereas the opposite side is a mere h=2.4 m above the river.

The river itself is a raging torrent L=61.0 m wide.

2(H — h)
g

vy=0—gt,v=\/v+v2
0—v?
L ov,=—/29(H—h),v=...

29

t= y U =L/t=...

orh—H =

37



E. Uniform circular motion

1.  Preliminaries

Radian measure of an angle:

FIG. 12: Angle of 1rad ~ 57.3°. For this angle the length of the circular arc exactly equals the

radius. The full angle, 360°, is 27 radians.

Consider motion around a circle with a constant speed v. The velocity o, however,

changes directions so that there is acceleration.

Period of revolution:
T = 2mr/v (38)

with 1/T - ”frequency of revolution”. Angular velocity (in rad/s):

(39)
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2. Acceleration

V(t+At

Consider counterclockwise rotation with representative position vectors 7(t) and 7(t+ At)
(black) which are symmetric with respect to the vertical. Note that ¢ (blue) is always
perpendicular to 7. Thus, from geometry vectors ¥/ (t + At), ¥(t) and At (dashed blue) form
a triangle which is similar to the one formed by 7 (¢t + At), 7(t) and A7 (dashed black). Or,

AT AT
v N r
LAY v AT
“= Alir—{lo At ;Ali—w At
Or
2
v
e = — = Wr (40)
r
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3. An alternative derivation

We can use derivatives with the major relation

d
ym sin(wt) = w cos(wt) , ym cos(wt) = —wsin(wt) , (41)

One has
r(t) = (z, y) = (rcoswt, rsinwt)
d—»
u(t) = d—: = (—rwsinwt, rw coswt)

Note: 7(t) - #(t) = —r*w cos(wt) sin(wt) + r’w sin(wt) cos(wt) = 0

B
a_dt_ rw

?coswt, —rw’sinwt) = —w?F (42)

which gives not only magnitude but also the direction of acceleration opposite to 7, i.e.

towards the center.

FIG. 13: Position (black), velocities (blue) and acceleration (red) vectors for a uniform circular

motion in counter-clockwise direction.
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Dr. Vitaly A. Shneidman, Phys 111, Jth Lecture

VI. NEWTON’S LAWS
A. Force

1. Unaits

”Newton of force”

N = kg— (43)

2. Vector nature

From experiment, action of two independent forces F 1 and ﬁg is equivalent

to action of the resultant

ﬁ:F1+F2 (44)

105 75
120 60

240 300
285

270

The force table (left) and its schematic representation (right)
In equilibrium: ﬁl + ﬁg + ﬁg =0, = ﬁg = — (ﬁl + ﬁg)
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Example. In the picture below the magnitude of force F' = ‘]3 ‘ =25N

and a = 60°. Write F in unit vector notations.
y

N

N\

D

F, =—Fcosa = Fcos(180°—a) = —1.25, F, = Fsina = F'sin(180°—a) = 2.165 =

F = —1.25i + 2.165]

Example. Two forces Fi = —i + 2j and Fy = 3i + j (in Newtons) are
applied to the plastic ring in the middle of the force table. Find the 3rd force

which would keep the ring in equilibrium.
y

ﬁ1+ﬁ2+ﬁ320 = ﬁgz— (ﬁ1+ﬁ2> = — (2%—{—35) :—2%—33
Find the angle a between F, and the z-axis:

cosa = Fy,/Fy=3/v/32+12=3/V10, a = ...

Find the angle § between ﬁl and F}:

cos = Fy-Fy/(FixFy) = (—=1%342%1)/(V/12 + 22x/32 + 12) = ... B = ...
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3. Examples of forces: gravity, normal and tension. Static equilibrium.

—

Force of gravity: | F, = mg (45)

(sometimes called ” weight” which is not always correct). Force mg is applied
to the center of the body (center-of-mass, as we learn later.)

Tension f, with magnitude T' constant along a string (even if there is a
massless pulley which changes the direction of f)

Normal force N is perpendicular to the surface and acts on the body.
Common to represent N as applied to the center of a body, (though in reality

it is applied to the surface of contact).

In equilibrium: Fo= Z F.=0 (46)

(all forces are applied to the same body! Note only ”+" in the sum, regardless

of the actual direction of vectors).
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mg mg
Y

Equilibrium of a body under the action of gravity and tension (left, mg +T =
0) or gravity and normal force (right, mg + N = 0). In projections on a

vertical axis with the positive direction - up)
left: T—mg =0 = T =mg (Note: as a rule, all symbols are positive)

right: N —mg=0 = N =mg (for @ =0 only!)
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Example: ”bird in the middle of a cord”

—_

mg

Y

From symmetry: |T}| = |To| = T, x - automatic
fromy: Tsina+ Tsina—mg=0, = T =mg/(2sina)
limits: a =90%, T'= mg/2
a—0, T — o0

Example: ”"weight between two cords”

f1+f2+M§:O
r: —T1+Tycosa+0=0
y: 0+T5sinaa—mg=20

Ty =mg/sina, Ty = Ty cosa = mg cot «
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B. The 3 Laws of motion (Newton)

1. If F =0 (no net force) then & = const

2.

BTl
I
S
S

(47)

Fiy = —Fy; (48)

Notes: the 1st Law is not a trivial consequence of the 2nd one for F= 0,
but rather it identifies inertial reference frames where a free body moves with
a constant velocity.

In the 3rd Law forces F} 12 and ﬁgl are applied to different bodies; both forces,
however, are of the same physical nature (e.g. gravitational attraction).

Example (1D): Velocity, in m/s, of an m = 2 kg particle is a polynomial

function of time ¢ (in seconds):
v(t) =t' -t —#* +t + 4. Find F(0)

d do(t
From —t" = nt"! find a(t) = do(t) =4 — 37 — 2t + 1

dt dt
F(t) = ma(t) = F(0)=ma(0) =2kg x 1= =2 N
S
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C. Dynamics: Examples

The following examples will be discusses in class:

e finding force between two accelerating blocks, finding force between cars

in accelerating train
e hanging block pulling a block on a frictionless surface
e apparent weight in an elevator
e (*) Atwood machine

e block on inclined plane (no friction)

Example. Two blocks: a horizontal force Fis applied to a block with mass
M (red) which in turn pushes a block with mass m (blue); ignore friction.

Find N and @. (note that the 3rd Law is already used in the diagram).

=

"N N

Solution: first treat the 2 blocks as a single solid body (at this stage ignore
N which is an internal force). From 2nd Law for this "body” (x axis is

horizontal, in direction of acceleration)
a=F/(M+m)

Now note that the blue block m is accelerated only due to force N. Thus,

from 2nd Law for mass m alone:



Example. A train has 2 cars: loaded with M=18,000 kg (first) and empty
with m=2,000 kg (last). Find the tension 7" in the coupler connecting the
cars if the applied force is F'=40,000 N.

Solution. First, find a treating the train as a single body:
a=F/(M+m)=4-10"/(2-10° + 18- 10°) = 2m/s”
The last car alone is accelerated only by tension 7T'. Thus,

T=ma=2-10>x2=4-10>N
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Example: hanging block m pulling a block M on a frictionless surface.

Find a and T'. Discuss limits.

M T

mg

Y
mass M, axis horizontal: T = Ma
mass m, axis down: mg — 1T = ma

Note: two equations for two unknowns (a and 7).

Ma + = m
mg = Ma + ma a =
g gM+m
mM
T = Ma —
“ gM+m

Limits:
M — oo (does not move). a — 0, T' ~ mg, as expected.
M — 0 (no resistance to free fall). a — g, T'— 0.
Quick solution. Use only external force mg and consider acceleration of
combined mass M + m. (This is non-rigorous, but can be useful for verifica-

tion). This immediately gives

mg=(M+m)a = a=g as before

m
M +m
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Weight in an elevator: Find the ”"apparent weight” -reading of floor scale-

of a person of mass m if the elevator accelerates up with acceleration a.

mg
Solution. Forces on the person: mg (down, applied to center-of-mass) and

—

N - up (reaction of the floor, applied to feet, but show as applied to center

—

for simplicity). [A force —N -not shown- acts on the floor and determines

”apparent weight”]. The 2nd Law for the person
—mg+ N =ma = N =m(g+a)

Note: N > mg for @ up and N < mg for @ down; N = 0 for a = g.

20



Advanced. Atwood machine:

Mg mg

Atwood machine. Mass M (left) is almost balanced by a slightly smaller
mass m. Pulley has negligible rotational inertia, so that both strings have

the same tension |7}

= ‘@‘ =T
Quick solution. Use external forces only and combined mass M + m.

M —m

Mg—mg=(M+m)a = =9

If need tension, write individual 2nd Laws:

M—-m 2mM g
Mg—Ti=Ma = Ty =M(g—a)=Mg|1— =
g ! ¢ ! lg—a) g( M+m> M+ m

Ty —mg=ma, To=m(g+a) =... (same)

Limits:

M=m,a=0,T=1Ty,= Mg
M —0
M+0

Academic solutions. Start with 2nd Law(s) for each body separately; use

m=0,a=g =g, T =T,=0

Ty=T,=T:
Mg—T=Ma, T —mg=ma

Add together: T gets canceled and (M —m)g = (M + m)a - same as before.
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Frictionless incline - Fig. 14.

FIG. 14: A block on a frictionless inclined plane which makes an angle 6 with horizontal.

e identify forces, mg and N in our case and the assumed acceleration @

(magnitude still to be found).
e write the 2nd Law (vector form!) N +mg=ma
e select a "clever” system of coordinates x, y.

e write down projections of the vector equation on the x,y axes, respec-

tively (note, components of the force of gravity in such coordinates are

always |mg sin 8| downhill parallel to the incline and —mg cos# in per-

pendicular direction):
x: mgsinf = ma

y: N —mgcosf =0
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the x-equation will give acceleration

a = gsin6

(which is already the solution); the y equation determines V.

e before plugging in numbers, a good idea is to check the limits. Indeed,
for # = 0 (horizontal plane) a = 0 no acceleration, while for § = 7/2

one has a = g, as should be for a free fall.

A few practical remarks to succeed in such problems.

e The original diagram should be BIG and clear. If so, you will use it as
a FBD, otherwise you will have to re-draw it separately with an extra

possibility of mistake.

e In the picture be realistic when dealing with "magic” angles of 30, 45, 60
and 90 degrees. Otherwise, a clear picture is more important than a

true-to-life angle.

e Vectors of forces should be more distinct than anything else in the pic-
ture; do not draw arrows for projection of forces - they can be confused

with real forces if there are many of them.

e the force of gravity in the picture should be immediately identified as
mg (using an extra tautological definiton, such as ﬁg = mg adds an

equation and confuses the picture).

e If only one body is of interest, do not draw any forces which act on other
bodies (in our case that would be, e.g. a force —N which acts on the

inclined plane).
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e select axes only after the diagram is completed and the 2’d Law is writ-
ten in vector form. As a rule, in dynamic problems one axes is selected

in the direction of acceleration (if this direction can be guessed).

FExample. A block of mass M slides down an incline which is L = 4 m long
and makes 6 = 30° with horizontal. No friction. Find the speed v at the

bottom of the incline.

from dynamics: a = gsinf (and M does not matter)
v? — 3
2a

v* = 2aL = 2gLsinf = 2gh with h = Lsin6, vertical displacement

from kinematics: L = ,v9=0 =

v=1/2gh =v2-9.8-4-sin30°= ...

(the same will be later re-derived from conservation of energy)
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Dr. Vitaly A. Shneidman, Phys 111, 5th Lecture

VII. NEWTON’S LAWS: APPLICATIONS TO FRICTION AND TO CIRCULAR
MOTION

A. Force of friction

=2l

‘w

. F
kinetic
g

M

usN
Y i F

Left: F - external force, f - friction force, kinetic if the block is moving (F > f), static if

not moving (f = F).
Right: The f vs. F dependence. Note: the mazimum static friction is usually slightly bigger

than kinetic.

Force of friction on a moving body:

f=nuN (49)

Direction - against velocity; p (or ug) - kinetic friction coefficient.

Static friction:
fs < usN (50)

with s - static friction coefficient.
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1. Example: block on inclined plane

FIG. 15: A block sliding down an inclined plane with friction. The force of friction f is opposite

to the direction of motion and equals uy N.
e identify forces, f, mg and N and the acceleration @ (magnitude still to be found).

e write the 2nd Law (vector form!): f+ N +mg = ma

e select a "clever” system of coordinates and write down projections of the vector equa-
tion on the z,y axes:

x: —f4+mgsind =ma

y: N —mgcosd =0 = N =mgcosl

e relate friction to normal force: f = ur N = ppmgcosf. This goes into

the above equation for the z-axis: —pupmgcosf +mgsinf = ma =

a=g(sinf — pcosd) > 0

e keeps moving: |y, < tanf|, starts moving: |pus < tan6
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Zl

=l
/
—

rl
4

Mg mg

Quick solution: First, recall without friction. External force mg, thus

m
mg = (M +m)a “=9
M
for mass M on the table: T'= Ma = T =g m
m+ M

With friction: Assume motion. Use |f = urmg cos@| for a general incline

and | f = upmg| for a horizontal surface, 6 = 0.

external forces mg and f, net mg — f =mg — upMg =

mg—ukMg: m — pupM
M+m T M+m

mg — Mg = (M+m)a = a= >0

(if upM > m motion is impossible - friction too strong, see below).
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2l

F roT
P
Mg mg

If not moving:
Hanging mass: mg —17 =0 = T =mg

Mass on the table: T'— f =0 = f =T =mg

Restriction: f < usMg = pusM >m
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Advanced: Friction not determined by gravity

Recall that friction force f is related to normal force N by f = upN (kinetic) or f < pusN
(static). Usually, N is determined by Mg (horizontal surface) or by Mgcosf (inclined).

But not always...

Example. Block pressed to a rough vertical wall. Find the minimal force F' for it not to

fall.
|f

I

from horizontal: N = F', from vertical: f = mg

f<usN = mg < usF, or F>mg/us

Example. Force at an angle - reduced friction.

x: —f+Fcos=0, y: N—mg+ Fsin0=0, f=uN

jrmg

N =mg—Fsind = —u(mg— Fsinf) + Feos§ =0, F = 7=

F = min if cosf + psinf = max
d
O:@(cose—i—,usin@):—sine—i—,ucosﬁ = f=tan 'pu
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Example. Coin on accelerating rough horizontal surface. Find maximum a for the coin

not to slip.

SN
mg e >

from horizontal: f; =ma, from vertical: N = mg

f <usN = ma < pugmg, ora < g

Example. The same as above for a vertical wall. Find the minimal a for the coin not to

)]

L,

=
ko)

AOOIONNNNOINNNNNNANANNN

mg

from horizontal: N = ma, from vertical: f = mg

fSMsN = mgﬁﬂsma, OYGZQ/MS

Note: if ug is small, a needs to be VERY large.
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B. Centripetal force

Newton’s laws are applicable to any motion, centripetal including. Thus, for centripetal

force of any physical origin

02
F, = ma. = m— = mw*r (51)
r

Centripetal force is always directed towards center, perpendicular to the velocity - see Fig.

16. Examples: tension of a string, gravitational force, friction.

FIG. 16: Position (black), velocities (blue) and centripetal force (red) vectors for a uniform circular
motion in counter-clockwise direction. The direction of force coincides with centripetal acceleration
(towards the center). The value of centripetal force at each point is determined by the vector sum
of actual physical forces, e.g. normal force and gravity in case of a Ferris Wheel, or tension plus

gravity in case of a conic pendulum.

Simple example: The centripetal force is due to tension.
A particle with mass m = 4.0 kg is attached to a string with length [ = 1.0 m and is moving
at a constant speed around a horizontal circle. It takes ¢ = 3.0 s to complete one revolution.
Find the magnitude of the tension force F in the string. (Ignore gravity)

Solution: Since F' = ma, , need acceleration. Use

2
a. = wr Withr:lzl.Omandw:27T/t:—7T:...

3.0

F =ma, = mw’r = ...
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Ezxample of Satellite. ”Centripetal force” is force of gravity

1.
ﬁg:mdcandﬁg:mﬁé e =g
2 2
aC:U— = U—:g = |v=/gr
r r
, m 3 3 \ /2 am km
for Farth, low orbit r = 6400 km: v = (9.8% x 6.4 10° x 10%m) =8 x 10° — 8=
S S S

2 40,000 k
Period of revolution: —— ~s — T 5000 (for Earth)
v 8km/s
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2. Turning car/friction/incline

A

Zl

mg

Y mg
Left: car making a left turn of radius R (view from back); find the max speed for a given

friction coefficient ps. Right: car making a turn on an inclined road (no friction force); find

the speed v.
horizontal road with friction, 2nd Law : N + f +mg=ma
r-axis - towards the center (dashed): f = ma = mv*/R
y-axis, up: N —mg =20
and

[ < psN =psmg =

’UZ/R < HsG 5 Umax = V/ ,Ung

incline : N +mg =ma
x: Nsind=mv?/R
y: Ncosf —mg=20
mgtan = mv?/R

2

v
tanf = —
an gR
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FIG. 17: A conic pendulum rotating around a vertical axis (dashed line). Two forces gravity (blue)
and tension (black) create a centripetal acceleration (red) directed towards the center of rotation.

The angle with vertical is 6, length of the s tring is L and radius of revolution is r = Lsin6.
3. Advanced: Conic pendulum

See Fig. 17, forces will be labeled in class.
One has the 2nd Law:
T + mg = md

In projections:

z: Tsinf = ma. = mw’r

y: Tcosd—mg=0

V=V

(the approximation is valid for § < 1). The period of revolution

Thus,

2 L
7T:J27r —
g

w

Note that mass and angle (if small) do not matter.
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4. 7Barrel-of-fun”

In the "barrel-of-fun” attraction a person stays in a spinning room with his back against
the wall. Suddenly, the floor falls out but the person does not (!) Find the minimal w if
R =5m and u, = 0.3.

~— .

mg
mg + N + f = md,.
@ in the diagram - to the right (towards center). Thus select x-axis -right, y-axis - up

xr: N=ma., y: f—mg=0

and f < pg*x N. Thus,

mg < psmac, g < psae = psw’R

/9.8 md
) wmm
03*5
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5. ”Loop-of-death”

Find N ("”weight”) of the toy car (m = 0.3 kg) at the top and the bottom parts of the
circle (R =5m) if v = 12m/s. Find vy, for the car not to fall.
B

]\7—|—m§:mﬁc

BOT.: N = Ny, up; a. - up
TOP: N = N,, down; a. - down

In each case z-axis - along a,.:
BOT.: N; — mg = ma,, Ny = mg + ma, = mg +mv?/R = ...

TOP: Ny +mg = ma., Ny = ma. — mg = mv?*/R—mg=... >0

Smallest speed: Ny =0

mvrznin/R_mg:()?U?nin/R:guUmin: \/R = \/5*9827%

66



Dr. Vitaly A. Shneidman, Phys 111, 6th Lecture

VIII. WORK
A. Scalar (dot) product in 3D

see introduction on vectors

@-b=abcos = ab, + ayb, + a.b.

a=/az+al+aZ, b=,/b2+ b2+ b2
b
ab

Example: @ =1+ 2] + 3k = (1,2,3), b=2i— 47+ k = (2,—4,1). Find @ - b and find 6.

ISI

cosf =

Gb=1x242x(—4)4+3x1==3, a=VI2+22+32 =14, b=V2 +42+12=121

b -3
f="— = 0 ~ 100°
T (V14) x (V21)

Note: if cosf < 0, then € > 90°.
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B. Units

Joule (J):
m2
1J=1N-m=kg— (52)
S
C. Definitions
Constant force:
W =F-AF= FArcos = F,Az + F,Ay + F.Az (53)

Ny 14

Ar

Example: work by force of gravity ; x-"east”, y-"North”, z-up

F,=0,F,=0, F,=—-mg

W, = —mgAz (54)

(and Az, Ay do not matter!)
Let m = 3 kg, and the particle is moved from 7 = 2i — 4] + k to i + 2] + 3k (in meters).
Find W,
W, = —3kg-9.8g 3—1)m=~—60J
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Example:
AF=3i—8), W=3-1+(-8)-2=—13(J)
Example:
F=2] 7 =3+4j+5k, ia=6i—4j+ k
W=(-4-4)-2=-16(J)
(x and z components of displacement do not matter!)
Example: An M = 80 kg skydiver falls 200 m with a constant speed of 100m/s. Find

the work done by viscous air friction.

Since v = const

Fy—Mg=0, thus I, = Mg
(otherwise speed does not matter!)
Ay =-200m, W =MgAy=80-9.8-(—200) = —...

[Alternatively: the work done by gravity W, = —MgAy = 80-9.8-200 > 0 (since goes
down), and W = —W, < 0]

Example: An 10 kg projectile is displaced 200 m horizontally and 50 m vertically with
respect to its initial position. Find W, .

Horizontal motion does not matter!

Wy=-Mgy =—-10-9.8-50 ~ =5 kJ

69



Variable force:

Let us break the path from 7 to 7% in small segments A7 (blue), each with a force F; ~ const
(red). Then
Wi~ F, - AT,

and total work

W:ZVVi—)/ F-dr (55)

Note: forces which are perpendicular to displacement do not work, e.g. the centripetal

force, normal force.
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D. 1D motion and examples

For motion in z-direction only

W= / F,da (56)

If F, is given by a graph, work is the area under the curve (can be negative!).

Example: find work from graphs for 0 <z <6

F(x
(1)
F(x)
5 3
4l 2
3 1
> 2 3.4 5 6~
-1
1
-2
0 1 2 3 4 5 6~ -3
left : W =16J,

right - W= 2334 [(6-8) + (6~ 4)(~1) =2

(note: part of area can be negative)
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Spring:

Fx)
x=0, F=0

---¢--x=—mg/k, F=mg ‘ ‘ ‘ ‘ ‘ Loy

x=-2mg/k, F=2mg iy

Left: the "experiment”. FElongation of the spring is proportional to the stretching force.
Right: the Hook’s law. The shaded area is the (negative) work done by the spring when

stretching from x; to xo > x;.

F=—kx (57)
k - 7spring constant” (also known as "Hook’s law”). Work done by the spring
1 1 k
Wsp = §(F2 + Fl)(xg - ZEl) == 5(-]6[[‘2 - ]{31'1)([['2 - Il) = —E(ZEQ + Il)(ZEQ — Il) =

1 1
= —ikxg + ikx%

1 1

(If the spring is stretched from rest, the term with z? will be absent and the work done by
the spring will be negative for any x5 # 0.)

FExample. When a 3.6 kg mass hangs from a spring it is extended by x;1 = 12c¢m. An

extra force is applied to extend the spring by additional Az = 8 cm. What is the work done

by the spring between x; and x5?

6-9. N
first, find & kay =mg = k=9 23098 g0 N
T 0.12 m
k 300
Ty =1+ Az =20cm = W= E(xf—xg) = 7(0.122—0.22) =-38J

72



IX. KINETIC ENERGY

A. Definition and units

1
K = —mv? (59)
2
or if many particles, the sum of individual energies.
Units: J (same as work).
Note: v? =02 4+ v2 4+ v2, thus K = $m (v2 +v2 +...).
B. Relation to work
1. Constant force
W = F,Azx + F,Ay = m[a, Az + a,Ay]
According to kinematics
2 _ 2
Ar — UJQ:_’U(%J: ’ Ay: Uy — Yoy
2a,, 2a,
and , ,
2 _ 2
v; — v Vo — U
xA _ =z Ox Ay = Y Y
GAT = ———, gAYy =——"F—
Thus,
W= AK (60)
which is the ”"work-energy” theorem.
Examples: gravity and friction (in class).
(gravity). Max hight for vertical initial v:
1 v?
—mgh =0— —mv*, h = —
2 2g
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(friction). The ”policeman problem”. Given: L, pu, find v,

Friction: f = umg.

W=—fL=—umgL <0(!) (61)
1

AK =0 — §mv§ (62)

—mui /2 = —pumgL (63)

v =1/2ugL (64)

(friction+another force). A heavy crate is pushed from A to B (with AB = 3m) by a
force P = 200 NV at 60° to horizontal. Find the work W, done by friction if K4 = 300 J and

Kp =100J.

Kg—Ki=W;+Wp, Wp=P-AB - cos 60° (65)
1
Wy = Kp — Ka—Wp=100—-300 —3-200- 5 = —500.]

(Note: negative!)
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Ramp (no friction)

Up the ramp:
F

h
Fzmgsin@zmgz <mg(!)

work W = F L = mgh — same

Down the ramp: find the final speed v

Kinetic energy: K —0 =W, = mgh = K = mgh

1
speed: from K = imzﬂ, v=+/2gh

Note: shape of the slope does not matter; kinetic energy is proportional to mass, final v is

mass-independent

75



2. Variable force

Again, break the displacement path into a large number N of small segments Ar; . For

each

Wi=AK; =K, — K,

Thus,

N

W= W= (K—Ko)+(Ky—Ki)+. . +(Kio1—Ki o) +(Ki— K1)+, . +(Ky—Ko) = AK

i

or

W = AK (66)

which is the ”work-energy” theorem in a general form (also, can be applied to a system of
particles).

Example: spring. A mass M = 3 kg is attached to a spring with & = 10 N/m. The spring
is at equilibrium (neither stretched nor compressed). The mass is given an initial speed of

vg = 2m/s. Find the maximum absolute deviations from equilibrium.

1 1
AK = §M (112 — vg) = —§Mvg since v = 0 at max deviation
k k
Wy = —= (xiax — x%) = ——a2  since 29 = 0
2 2
1 2 k o
AK = Wsp = —§M’UO = _§xmax =
x> —v2% T j:v\/% +2\/ — ~+1.1m
max_0k7 max — 0 k— 10—
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C. Power

aw 5
P=—=F-9
t
Units: Watts. 1W =1J/s
Re-derivation of work-energy theorem:
a _iﬂiﬂ_@i(* *)_md_ﬁ
- dt2 2dt S dt

aw
dt

—

o=F.7=

Example: An M = 500 kg horse is running up an o = 30° slope with v =4m/s. Find P:

1
P=mgsina-v ~ 500-9.85

1hp ~ 746 W.

Example. For a fast bike the air resistance is ~ v?

double v?

P(v)

7

4~10*W

. How much more power is needed to

F(v) = a x v? (unknown «)

Fv)xv=axv® = P(2v) =8 x P(v)



FIG. 18: Generally, the work of a force between points A and B depends on the actual path.
However, for some "magic” (conservative) forces the work is path-independent. For such forces one

can introduce potential energy U and determine work along any path as W =U, — U = —AU.

Dr. Vitaly A. Shneidman, Phys 111, 7th Lecture

X. POTENTIAL ENERGY
A. Some remarkable forces with path-independent work

See Fig. 18 and caption.

Examples:

e Constant force

— —

W=) F-Af=F-) Afj=F-Ar=F-fg—F-7y (67)
with potential energy
U(f)=—F -7 (68)

Example force of gravity with F, =0, F, = —mg and

U, = mgh (69)

e Elastic (spring) force

i T k k
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with potential energy

Usp(z) = gha? (71)

e Other: full force of gravity F' = —mg with r-dependent g, and any force which does

not depend on velocity but depends only on distance from a center.

e Non-conservative: kinetic friction (depends on velocity, since points against ¢/)

B. Relation to force

XI. CONSERVATION OF ENERGY

Start with
AK =W
If only conservative forces
W= —AU (74)
thus
K + U = const = E| (75)
Examples:

79



e Maximum hight.
1
E =mgh + émv2

1
0+ émvg = mghmax + 0

e Galileo’s tower. Find speed upon impact

1
mgh+0=0+§mv2

v? = 2gh

e Coastguard cannon (from recitation on projectiles). Find speed upon impact

1 1
mgH + imvg =0+ imv2

v? = vg+2gH

(note that the angle does not matter!).

e Down the ramp revisited: find the final speed v

1
initial mech. energy: 0 + mgh, final mech.energy: §mv2 +0

1
= imzﬂ =mgh,v=+/2gh

Note: shape of the slope or angle or mass do not matter
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e A skier with no initial velocity slides down from a hill which is H = 18 m high and
then, without losing speed, up a smaller hill which is A~ = 10m high. What is his

speed in m/s at the top of the smaller hill? Ignore friction.

1
(full initial energy) MgH + 0 = Mgh + §M112 (full final)

v =29(H—-h)>0,v=...
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e In the Atwood machine the heavier body on left has mass M = 1.01 kg, while the
lighter body on right has mass m = 1kg. The system is initially at rest, there is no
friction and the mass of the pulley is negligible.

Find the speed after M lowers by h = 50 cm; use only energy considerations.

1
(Montop): E=Mgh+0+0 = mgh+§(]\/[—i—m)v2 (m on top)

M—-m
2
= 2gh LU= ...

! g M+m !

What if we need a? For smaller mass, for example
vi—od 0P v? M—m

h = = —, = 0= — =

2a 2a 2h M+m

e A spring with given k, m is stretched by X meters and released. Find vy,x.

1 1
E = Eka + imzﬂ

1 1
§kX2 +0=0+ émvfnax, Umax = X/ k/m

e A block approaches the spring with speed vy . Find the maximum compression

1 1
(full final energy) : §kx12nax +0 =0+ imvg (full initial energy)
|Tmax| = vor/m/k

e find speed v at some given location x

first find kinetic energy at x
1
K@)+ U(x)=E=0+ imvg
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1 1
K(z) = zmvy — Ul(x) = émvg - éka > 0
v(e) = V2K (x)/m; |2 < [Tmal

Example. A block of m = 10 kg is placed on a vertical spring with k£ = 40 N/m, originally

unstretched . Find the max compression distance and vyyay.

—— h=0, K:O, U=0
-— -h:—mg/k, K=max

-h=-2mglk, K=0, U