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Abstract

These notes will contain only some cumbersome equations and graphics. All other material will

be presented on the board in class
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Dr. Vitaly A. Shneidman, MtSE 719, 1st Lecture

I. MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES

A. The Maxwell equations

∮ ~E · ~A = qenc/ε0 (1)

∮ ~B · d ~A = 0 (2)

∮ ~E · d~s = −dΦB

dt
(3)

∮ ~B · d~s = µ0ienc +
1

c2
dΦE

dt
(4)

with c = 1/
√
µ0ε0 ' 3 · 108 m/s, the speed

of light.
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FIG. 1: Structure of an electromagnetic wave. The electric field (red) is in the ±z-direction, the

magnetic field (blue) is in the ±x-direction and the wave propagates in the y-direction. (This is

known as a plane, polarized wave). The distance in the y-direction in which the oscillations start

to repeat themselves is the wavelength.

B. Light!

Maxwell’s equations in empty space

∮

~E · d ~A = 0

∮

~B · d ~A = 0

∮

~E · d~s = −dΦB

dt
∮

~B · d~s = 1

c2
dΦE

dt

For example, the wave in Fig. 2 is described by

~E = ~E0 sin
{

2π
(

y

λ
− ft

)}

~B = ~B0 sin
{

2π
(

y

λ
− ft

)}
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with
∣

∣

∣

~E0

∣

∣

∣ = c
∣

∣

∣

~B0

∣

∣

∣

f is known as frequency and λ as wavelength. One has

f =
c

λ

for any wavelength in empty space.

ω = 2πf - angular frequency

k = 2π/λ - wavevector (or wavenumber, but often in optics the ”wavenumber” is without

2π) Now

~E = ~E0 sin {ky − ωt}

Circular polarization:

~E = E0
~i sin (ky − ωt) + E0

~j cos (ky − ωt)

Now
∣

∣

∣

~E
∣

∣

∣ = const
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C. Diffractional grating

Consider narrow slits b¿ a. Then intensity

I = I0

(

sin β

β

)2 (
sin(Nα)

sinα

)2

with

α =
ka

2
sinΘ = πm

β =
kb

2
sinΘ = πmb/a
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Dr. Vitaly A. Shneidman, Phys 719, 2d Lecture

II. QUANTUM PROPERTIES OF LIGHT

A. Photon

Energy

E = hν = h̄ω

h̄ ' 1.055 · 10−34 J · s, h = 2πh̄

Momentum:

~p = h̄~k

or

p = h/λ

Note:

E = cp

as classical.

B. Compton Effect

λ′ = λ+
h

mec
(1− cosφ)

h/mec - Compton wavelength (Calculate!)

Problem. A beam of X-rays with ν = 2 · 1018 Hz hits a block of carbon. Plot λ (φ). The

Mathematica program can be helpful - see file 719−2.pdf

C. Planck distribution

Intersting - in combination with (a) T and (b) interactions

Planck = Boltzmann + discrete energies
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Pn ∝ e−En/kBT , En = nh̄ω

Proportionality from
∞
∑

n=0

Pn = 1

thus

Pn = e−nh̄ω/kBT
(

1− e−h̄ω/kBT
)

(HW: check this)

Average number of quanta in a single state:

n̄ =
∑

n

nPn =
1

eh̄ω/kBT − 1

(HW: check this)

The above formula is THE ONLY quantum part of the Plank’s law (below). The rest is

classical. We need to calculate the total number of classical states with frequencies between

ω and ω + dω. When multiplied by n̄h̄ω this will give the energy inside the corresponding

frequency interval.

Let’s do the classical part. Imagine a cubic box L× L× L. A standing wave

L = m
λm
2
, m = 1, 2, . . .

or
∣

∣

∣

~k
∣

∣

∣ = m
π

L

The above is valid for kx, ky and kz. Thus, possible ~k form a cubic lattice with lattice

constant π/L. We need only the positive part, thus 1/8, but 2 polarizations. Now consider

two spheres with radii k and k + dk. The number of states

ρkdk =
1

8
× 2× 4πk2dk

(

π

L

)−3

=
V

π2
k2dk

We now go to the ω-space with ω = ck:

ρωdω = ρkdk

thus
1

V
ρω =

1

V
ρk
dk

dω
=

ω2

π2c3
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Now multiply by quantum:

1

V
dωn̄h̄ωρω =

h̄ω3

π2c3
dω

eh̄ω/kBT − 1

This is the spectral density WT (ω)dω- the Planck distribution.

HW. Plot in good dimensionless variables.

One has max of WT at

h̄ωmax ≈ 2.8kBT

- Wien’s displacement law. HW. Show this

For the total spectral density

WT (ω)dω =
k4BT

4

π2c3h̄3

∫ ∞

0

x3dx

ex − 1
=
π2k4BT

4

15c3h̄3

HW. Check this and calculate the Stephen-Boltzmann constant.

A chart with electromagnetic spectrum will be given in class
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FIG. 3: Motion of a charged particle in magnetic field, ~B which points i the vertical, z-direction

with or without electric field, ~E (which points in the y-direction, behind the page, when non-zero).

First picture (E = 0), the particle has no z-component of velocity and moves in a circle in the

x,y plane. 2d picture (E = 0) - particle has a non-zero z-component of velocity and moves in a

helix. 3d picture (E 6= 0, vz = 0) - the particle drifts in the x-direction. [The latter is important

in understanding the Hall effect].

III. MOTION OF CHARGED PARTICLES

~F = q
(

~E + ~v × ~B
)

Solution is hard, and can be obtained analytically only when both fields are uniform and

perpendicular to each other - see Fig. 3.

1. Conventions for pictures and motion in magnetic field only

Problems with magnetism are always 3D. To simplify graphics, will use a 2D convention,

as in Fig. 4.
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FIG. 4: Convention for 2D pictures of magnetic field. Left - field goes into the page; right - field

goes out of the page.

~F = q~v × ~B (5)

See Fig. 5.

Example: separation of particles by charges and masses - see Fig. 6.

A. Circular motion of a particle

See Fig. 7.

m
v2

r
= qvB

Thus,

r =
mv

qB

This is the experimental way to find q/m for elementary particles, and eventually to find

their masses (which otherwise are very small).

Period of revolution:

T =
2πr

v
= 2π

m

qB

Doest not depend on the velocity (energy) of a particle (!)
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FIG. 5: Magnetic force on a positive particle, ~F = q~v × ~B. Note that ~F (blue) is perpendicular

to both ~v (red) and ~B (green) , and reaches maximum when ~v and ~B are perpendicular to each

other. For parallel (or antiparallel) ~v and ~B the force would be zero.

B. Relativistic particles

v ∼ c

For cyclotron frequency - correct, but

m→ m
√

1− v2/c2

Conservation of energy should include mc2:

E =
√

c2p2 +m2c4

Limits:

classical v ¿ c, thus p¿ mc and

E ≈ mc2 +
p2

2m
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FIG. 6: Separation of particles of different signs in the magnetic field, as first observed in connection

with radioactive decay. The positive (red) particles deviate to the right (they were called ”alpha-

particles” and later turned to be nuclei of Helium). The negative (blue) particles deviate left.

(they were called ”beta-particles” and turned out to be electrons). Neutral particles (green) do

not deviate. (they were called ”gamma-particles”, and turned out to be quanta of electromagnetic

radiation). Note that the path of negative particles is more curved, due to smaller mass.

ultrarelativistic, v ≈ c

E ≈ cp

photon!

HW. use p = mv/
√

1− v2/c2 and plot E(v)

Only voltage changes E (!)

Why relativistic important?

a) v/c - small, but accuracy very high. b) high accelerating voltage HW. express mec
2 in

MeV .
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FIG. 7: Circular motion of a positive particle in magnetic field. The velocity of a particle is shown

in red, and the magnetic force (blue) provides a centripetal force for circular motion. The period of

revolution is independent of the velocity (!) - a faster particle will make a larger circle, completing

the revolution in the same time.

Dr. Vitaly A. Shneidman, Phys 719, 3d Lecture

IV. ELEMENTS OF QUANTUM MECHANICS (QM): DE BROGLIE WAVE

λ =
h

p
or ~k = ~p/h̄

HW1: find λ for an (a) 1eV electron, (b) a 1eV neutron, (c) a 0.1 mg dust particle with

a speed 100 m/s.
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Note: ANY p, including relativistic (!). Relation to energy: from

Erel =
√

c2p2 +m2c4

non-relativistic p =
√
2mE where E = Erel −mc2, the kinetic energy, and

λ =
h√
2mE

HW2. Express this as const/
√
E with E energy of an electron expressed in eV .

Relativistic: m→ 0, p→ E/c and

λ =
hc

E

This is exactly as for a photon: E = hν, and λ = c/ν

Myth: for a good understanding of QM you always need the Shrödinger equation. No!

In very many cases the de Broglie picture is sufficient, and allows for a deep analogy with

optics (see below).

A. Experiments

Thompson (1927) analogy of X-ray diffraction and electron diffraction pictures of a thin

foil.

Davisson-Germer (1927). Studies of single crystal. λ = d sin θ.

HW3: Consider the DG experiment for Ni with d = 0.215 nm, E = 54 eV , θ = 50o.

Find λ and compare with theory.

B. Analogy with optics

1. Double slit diffraction

2. Barrier penetration (Tunneling).

p2

2m
+ U(x) = E

p =
√

2m (E − U)

15
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FIG. 8: Double slit diffraction of electrons for different energies. Intensity (arb. units) is plotted

vs. distance on the screen in cm. Distance between slits is 2 nm and the distance to the screen is

1 cm. Note that for higher energies the oscillations become so fast that it is impossible to resolve

them, and experimentally a bell-shaped curve will be observed.
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classical: E < U - forbidden. QM:

Ψ ∼ exp (ikx)

with k = p/h̄. If E > U - oscillates, if E < U exponential decay. For a rectangular barrier

(”mirror” in optics).

Ψ ∼ exp

{

−|p|
h̄
x

}

Transmission probability

D ∼ |Ψ|2 = exp

{

−2 |p|d
h̄

}

d-barrier thickness. More general (non-rectangular barrier)

D ∼ exp
{

−2
∫

√

2m(U − E)dx/h̄
}

with integration over classically forbidden region E < U .

3. Reflection above the barrier

R = 1−D

4. Uncertainty principle

δxδp ≥ h̄/2

or

δx ≥ πλ

5. Standing waves

Major application - Atom:

a) lowest energy state, thus STABILITY of matter

b) discrete energy levels

Atom - separate topic.
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Questions:

meaning of Ψ

the ”wave equation”
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Dr. Vitaly A. Shneidman, Phys 719, 4th Lecture

V. INTERMISSION: NEUTRON SCATTERING

Neutrons provide an excellent illustration of a de Broglie wave. Detail and specific meth-

ods will be discussed in class.

Energies of neutrons vs. X-Rays (p about the same):

Eph = cp , En =
p2

2m
=

1

2
vp¿ Eph

Methods:

• ineleastic neutron scattering: mostly from hydrogen

• high-resolution neutron powder diffractometry

• small-angle neutron scattering

• residual stress measurement

• neutron reflectometry

VI. THE SHRÖDINGER EQUATION (SE)

A. What is Ψ?

M. Born:

|Ψ|2
proportional to probability density. Two situations:

• infinite motion. In classics - E > U(x) for all accessible x. Experimental - scattering

problem.
∫

|Ψ(x)|2 dx =∞

19



• finite motion. In classics - E ≥ U(x) only for a finite interval of x. Experimental -

discrete energy levels.
∫

|Ψ(x)|2 dx = 1

B. How to construct a SE?

The Hamilton operator

H =
p2

2m
+ U(x)→ Ĥ = − h̄2

2m

∂2

∂x2
+ U(x)

ĤΨ = ih̄
∂Ψ

∂t

Steady-state: fixed E

Ψ(x, t) = ψ(x)e−iEt/h̄

h̄2

2m

∂2ψ

∂x2 + [E − U(x)]ψ = 0

Free particle: U = 0.
h̄2

2m

∂2ψ

∂x2
+ Eψ = 0

ψ(x) ∝ e±ikx

with k =
√
2mE. And

Ψ(x, t) ∝ e±ikx−iωt

with ω = E/h̄. Note: k, ω - very large(!)

More general, if U = const 6= 0 similar, but k = p/h̄ =
√

2m(E − U)/h̄ and can be imag-

inary if E < U (classically forbidden region). Boundary conditions: ψ and ψ ′ continuous.

Example-HW-small project. Calculate the reflection coefficient from a potential wall:

U(x) = 0 for x < 0 and U(x) = U0 for x > 0. Hint:

ψ(x) = eik1x +Be−ik1x , k1 =
√
2mE/h̄ , x < 0

20



(incident + reflected wave) and

ψ(x) = eik2x , k2 =
√

2m (E − U0)/h̄ , x > 0

and

R = |B|2

Example-HW. Discrete spectrum: U(x) = 0 for 0 < x < a and U(x) = +∞ otherwise.

C. Harmonic oscillator

U(x) =
1

2
mω2x2

SE:
d2ψ

dx2
+

2m

h̄2

(

E − 1

2
mω2x2

)

ψ = 0

or with ζ = x
√

mω/h̄,

ψ′′ +
(

2E

h̄ω
− ζ2

)

ψ = 0

here E must be discrete to satisfy
∫ ∞

−∞
ψ2(x)dx <∞

. One has

En =











n +
1

2











h̄ω (6)

Wave functions:

ψn ∝ e−ζ
2/2Hn(ζ)

with

ψ0 ∝ e−ζ
2/2

corresponding to the lowest energy state. Otherwise,

Hn(ζ) = (−1)neζ2 d
ne−ζ

2

dζn

HW: plot several ψn.
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Dr. Vitaly A. Shneidman, Phys 719, 5th Lecture

VII. SHRÖDINGER EQUATION (CONT.)

so far mostly stationary SE; now more dynamic properties. To be specific, we consider

discrete spectrum. Mathematically, this is the most demanding lecture of our course, but

we will survive... A Mathematica file coherent.nb can be of extra help (and contains some

graphics), although you will need further instructions if you never used Mathematica before.

Much of the discussion, especially the part related to physics, will be added in class.

A. The superposition principle

Ψ(x, t) =
∑

k

akΨk(x, t) =
∑

k

akψk(x)e
−iEkt/h̄ (7)

Here |ak|2 give the probability to be in the k-th state; in particular

∑

k

|ak|2 = 1

There exists an orthogonality condition

∫ ∞

−∞
dxψk(x)ψm(x) = 0 , m 6= k

(for a discrete spectrum all ψk can be real-valued in 1D). Thus,

ak =
∫ ∞

−∞
dxψk(x)Ψ(x, t)e+iEkt/h̄

HW verify the orthogonality condition for the WF (a) of the rectangular box and (b) of

the harmonic oscillator

Example - might skip it in class. The coherent states of an oscillator (Shrödinger).

Ψ(x, t) =
(

mω

πh̄

)1/4

exp

{

iβ(t)x

h̄
− mω(x− α(t))2

2h̄
− iωt

2
− iα(t)β(t)

2h̄

}

α and β can be selected arbitrary, but satisfying the classical equations of motion for the

same harmonic oscillator; α has a meaning of x̄(t) ( HW-optional-show this) and β is the

average momentum p̄(t). Now one can expand

Ψ =
∞
∑

n=0

anΨn

22



with

Ψn(x, t) = ψn(x) exp
{

−i
(

n+
1

2

)

ω
}

and with ψ(x) (now with the coefficient) given by

ψn(x) =
(

mω

πh̄

)1/4 1√
2nn!

exp
(

−mω
2h̄

x2
)

Hn

(

x

√

mω

h̄

)

(8)

HW (optional) Show that

wn = |an|2 = e−n̄
n̄n

n!

(Poisson distribution)

with

n̄ =
1

h̄ω

(

β2

2m
+
mω2α2

2

)

B. Periodic perturbations

we consider the SE

ih̄
∂Ψ

∂t
=
(

Ĥ0 + V̂
)

Ψ

and at any time look for a solution

Ψ =
∑

k

ak(t)Ψ
(0)
k (9)

where Ψ
(0)
k are eigenfunctions of a non-perturbed Hamiltonian

ih̄
∂Ψ

(0)
k

∂t
= Ĥ0Ψ

(0)
k

From the orthogonality condition one has

ih̄
dam
dt

=
∑

k

Vmk(t)ak

with

Vmk =
∫

dxΨ(0)∗
m V̂Ψ

(0)
k ≡ Vmke

iωmkt , ωmk =
E(0)
m − E

(0)
k

h̄
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We now solve the above equations using iterations. let us start from the n-th state:

a(0)n = 1 and a
(0)
k = 0 for n 6= k. We will use the 2d index to emphasize the n-th level. From

the 1st iteration:

ih̄
a
(1)
kn

dt
= Vkn(t)

or

a
(1)
kn = − i

h̄

∫

Vkn(t)dt = −
i

h̄

∫

Vkne
iωkntdt

Consider now a periodic perturbation

V̂ = 2F̂ (x) cos (ωt) = F̂
(

eiωt + e−iωt
)

Thus,

Vkn(t) = Vkne
iωknt = Fkn {exp [i (ωkn− ω) t] + exp [i (ωkn + ω) t]}

After integration,

a
(1)
kn = −Fkne

iωknt

h̄

(

eiωt

ωkn + ω
+

e−iωt

ωkn − ω

)

VIII. SHRÖDINGER EQUATION IN 3D; THE HYDROGEN ATOM

Main differences from 1D:

• discrete spectrum can be degenerate

• a shallow well can have no discrete level

• angular momentum becomes crucial (there is no such in 1D)

A. Elementary theory of hydrogen levels

Pang = pr

Quantization:

2πr = nλdB = n
h

p
= n

2πh̄

p

24



Pang = nh̄
(Bohr). The rest is classical (CGS):

mv2

r
=
e2

r2

r =
P 2
ang

me2

U = −e
2

r
= −2K , K =

mv2

2

Thus,

E = −mv
2

2
= − e

2

2r
= − me4

2n2h̄2

In SI units and with Z > 1:

U = − Ze2

4πε0r

E = − Z2me4

2n2 (4πε0h̄)
2

HW: Calculate for n = 1

25



Dr. Vitaly A. Shneidman, Phys 719, 6th Lecture

IX. SCHRÖDINGER EQUATION IN 3D: THE HYDROGEN ATOM

The Hamilton operator

H =
p2

2m
+ U (~r)→ Ĥ = − h̄2

2m
∆̂ + U (~r)

∆̂ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, i.e. ∆̂ψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

Look for a steady-state solution:

Ĥψ (~r) = Eψ (~r) (10)

In spherical coordinates one has

∆̂ = ∆̂r −
1

r2
l̂2 (11)

with l̂2 given by

l̂2 = − 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− 1

sin2 θ

∂2

∂φ2
(12)

∆̂r =
1

r2
∂

∂r
r2
∂

∂r
(13)

(although specific form of these operators mostly will not be required...)

First we use just spherical symmetry (but not specific U(r)). Look for

ψ (r, θ, φ) = R(r)Y (θ, φ)

From

∆̂ψ +
2m

h̄2
[E − U(r)]ψ = 0

Y ∆̂rR−
R

r2
l̂2Y + (E − U)RY 2m

h̄2
= 0

Now divide both sides by RY and multiply by r2:

r2

R
∆̂rR +

2m(E − U)r2
h̄2

=
1

Y
l̂2Y (14)

Note that the l.h.s depends only on r while the r.h.s only on θ, φ. Thus, both sides should

be a const ≡ λ. We thus achieved separation of variables using physical understanding of

symmetry. The rest is math.
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First consider

l̂2 = λY

now look for

Y (θ, φ) = Φ(φ)×Θ(θ)

and repeat separation of variables. (HW -optional - do that). Recall that key to discrete

eigenvalues - BC. Periodicity in φ leads to

Y (θ, φ) = eimφ ×Θ(θ) , m = 0,±1,±2, . . .

(HW -optional - show that). For θ dependence harder (polynomials in cos θ, but pure math:

Ylm - spherical harmonics.

l̂2Ylm = l(l + 1)Ylm (15)

Note no m - degeneracy of levels(!). (m - ”magnetic quantum number”, l - ”orbital quantum

number”).

Now go back to radial

∆̂rR +

{

2m

h̄2
[E − U(r)]− l(l + 1)

r2

}

R = 0

r is the only variable, but l enters as a parameter. Solve (also pure math) - Bohrs formula

for En ∝ −1/n2. Radial WF: Rnl will not need explicitly; (optional HW, nevertheless find

it in a textbook, and plot).

Summary:

Ψnlm (r, θ, φ) = e−iEnt/h̄Rnl(r)Ylm (θ, φ)

with

n = 1, 2, 3, . . . , l ≤ n− 1 , m = 0,±1,±2, . . . ,±(l − 1)

n - principal quantum number. Levels - VERY degenerate. Why? System very symmetric.

Field - less symmetry; Stark effect ( ~E) and Zeeman effect ~B), splitting of levels.

(for more on plotting electronic density in hydrogen - see P. Tam, Mathematica for Physi-

cists).
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FIG. 9: Electronic densities in the excited hydrogen atom
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A. Transitions between levels

Emission - hard; absorption - can be calculated.

If V is a weak perturbation potential, transition rate is proportional to

∫

Ψn1l1m1
VΨn2l2m2

Now can treat almost classically: ~E(t) ' ~E0 cos(ωt)

(Why no kx? - recall that λ = 2π/k À a, the size of the atom).

Now ~D = e~r - the dipole moment and

V = ~D · ~E0 cos(ωt)

• transitions only for E1 − E2 = h̄ω

• very many
∫

Ψn1l1m1
VΨn2l2m2

= 0 from symmetry

• alowed:

∆l = ±1 , ∆m = 0,±1
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X. QUANTUM ASPECTS OF EMISSION AND ABSORPTION; LASER

So far quantum mechanics was used to explain the discrete energy levels. After that ligth

emission and absorption almost classical. In particular, in AES intensity is proportional

to the Boltzmann population of the excited level. There are, however, limitations to this

description.

A. Einstein’s coefficients

Consider a 2-level system with Ej > Ei. let

Bij - probability of absorption

Aji probability of spontaneous emission.

Supposedely, if ρ(ν) is the density of photons with hν = Ej−Ei, and ni, nj are populations

of the levels (i.e., numbers of atoms in each state), the rate of absorption is

Bijniρ(ν)− Ajinj , WRONG!

Why?

Consider equilibrium

neqj /n
eq
i = exp

{

−Ej − Ei

kBT

}

(the Boltzmann distribution), then

ρeq(ν) = (Aji/Bij) exp
{

−Ej − Ei

kBT

}

, WRONG!!!

must be Planck distribution. Thus, need induced transitions Bjiρ(ν) (”stimulated”). Then,

rate of absorption is

Bijniρ(ν)−Bjinjρ(ν)− Ajinj

Now with hν = Ej − Ei

ρeq(ν) =
Aji

Bijehν/kBT −Bji

compare this with Planck

ρ(ν)eq =
8πhν3

c3
1

ehν/kBT − 1
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Thus:

Bij = Bji

(to ensure symmetry for very strong fields) and

Bij = Aij

(

c3

8πhν3

)

Idea of a laser: let nj > ni ¿ neqj , inverse population. An incident photon with

hν = Ej − Ei will cause Bni up transitions and Bnj down transitions. The number of

photoons will increase, leading to amplification of light.

A protoypelaser is just 2 mirrors with reflectivity R1 ≈ 1 and R2 < 1. The distance is

L = mλ/2. Let β be gain per ion (related to Einstein coefficients) and N = nj − ni. Round
trip 2L, thus gain intensity

e2NβL

. Losses are

R1R2e
−2αl

(α - attenuation coefficient). For stable operation:

R1R2e
2L(Nβ−α)

How to create inverse population?

3 level: E1 < E3 < E2 and A23 À A31. Strong (and long) pumping leads to n2 ≈ n1 and

lasing between 3 and 1.

4-level: E1 < E4 < E3 < E2 with A23 À A34. Lasing betwen 3 and 4. Advantage: don’t

have to exceed n1.

XI. VIBRATIONAL AND ROTATIONAL SPECTRA OF MOLECULES. RAMAN

SPECTROSCOPY

A. Estimations

Why so well separated?

ωel À ωvib À ωrot

Large parameter
√

me/M - will explain in class.
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FIG. 10: Relative intensities of spectral lines of hypothetical molecule shaped as a spherical top

with rotational inertia I = 3 · 10−47 kg ·m2. On the x-axes is the number J .

• vibrations - almost classical. Natural frequencies ωvib give discrete levels h̄ωvib(n+1/2),

but only one line per frequency, λ = 2πc/ωvib (anharmonicity - more lines, but also

near-classical)

• rotational - more quantum. Discrete spectrum from periodicity of the WF in angle.

Also, classical part is much harder.

E (J, ν) = hcwe

(

ν +
1

2

)

− hcwexe

(

ν +
1

2

)2

+ hcBνJ(J + 1) (16)

with

Bν = Be − αe
(

ν +
1

2

)

, Be = 10.593cm−1 , αe = 0.3072cm−1

we = 2990.9cm−1 , wexe = 52.82cm−1

(see Physical Chemistry with Mathematica, although an old version of Mathematica is used

there)
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FIG. 11: Rotational- vibrational spectrum of a diatomic molecule HCl from eq. (11).
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FIG. 12: Rotational spectrum of NH3 with IA = IB = 2.816 · 10−47kg · m2 and IC = 4.437 ·

10−47kg ·m2 (oblate top).

Dr. Vitaly A. Shneidman, Phys 719, 8th Lecture
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IR: Rayleigh

Raman-St.

Raman-antiSt.

FIG. 13: Molecular (red) and virtual (blue) energy levels and types of spectroscopy.

XII. APPLICATIONS: INFRARED AND RAMAN SPECTROSCOPIES

A. Quantum

see Fig. 13 Note: Intensity of anti Stokes grows with T .

B. Classical

Why classical? - Intensities! Dipole moment

d = Eα

α - polarizability

E = E0 cos (ωt)

If Ω - natural frequency of the molecule

α = α0 + α′δr cos((Ωt)

Thus,

d(t) = α0E0 cos (ωt) +
1

2
α′δrE0 {cos [(ω − Ω) t] + cos [(ω + Ω) t]}

the 1st trem is Rayleigh, the 2d is Raman Stokes, the 3d - Anti Stokes

Difference: let Q be generalized coordinates associated with vibrations. The

I ∝ α2
0 , Rayleigh
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I ∝
(

∂α

∂Q

)2

Q̄2 , Raman

XIII. PHONONS

A. Linear monoatomic chain

Let g -spring constant; ul - displacement from equilibrium. Force

Fl = g (ul+1 − ul)− g (ul − ul−1)

or

mül = g (ul+1 + ul−1 − 2ul)

Acoustic wave:

a · l → x , (. . .)→ a2
∂2u

∂x2

with m/a = ρ, linear density, and ag = G

ρ
∂2u

∂t2
= G

∂2u

∂x2

or
∂2u

∂t2
= v2

∂2u

∂x2

with the ”speed of sound”

v2 = G/ρ = a2g/m

Any u(x− vt) - solution. E.g., exp {i (ωt− kx)} with any ω, k with ω = kv.

Return to discreet:

look for

ul ∝ exp {i (ωt− kx)} , x = la

Then,

−mω2 = g
[

eika + e−ika − 2
]

= g
[

eika/2 − e−ika/2−
]2

Or,

ω(k) =

√

4g

m

∣

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

∣

For k → 0, ω ≈ kv.

−π
a
< k <

π

a
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Brillouin zone. See figure (and file phonons.m with m =M).

Debye frequency:

ωmax ∼
v

a
∼ 1013 − 1014 Hz

(infrared)

B. 3D - monoatomic

Three accoustic branches - 1 longitudinal and 2 transverse.

C. Applications of neutron scattering

Note that k0 and k + 2π/a - same. in 3D: ~b - vector of reciprocal lattice, analog of 2π/a

(will study more in connection with crystallography). Let ~k be the momentum of an emitted

phonon, and ~K the momentum of the neutron. Then,

~K = ~K ′ + ~k + n~b , n = 0, 1, 2, . . .

• ~k = 0 (no energy loss to phonon) and

∣

∣

∣

~K
∣

∣

∣ =
∣

∣

∣

~K ′
∣

∣

∣

Bragg scattering

• n = 0 no diffraction. Spectroscopy.

~K = ~K ′ + ~k

Energy: p2/2m for a neutron, h̄ω for a photon

h̄2K2

2m
=
h̄2 (K ′)2

2m
+ h̄ω

(

~k
)

(see slides with experimental data)

D. Polyatomic lattice: Optical branches

will be discussed in class (also, see file phonons.m).
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XIV. FREE ELECTRONS IN METALS: FERMI ENERGY

∆px · Lx = 2πh̄ , . . .

∆kx · Lx = 2π , . . .

N = 2 · 4
3
πK3

F

1

∆kx ·∆ky ·∆kz
= V

K3
F

π2

n =
K3
F

3π2

(density of electrons)

Estimations:

n ∼ 1/Å3 , KF ∼ 1Å−1

vF ∼
pF
m

=
h̄KF

m
∼ 106 m/s

EF =
h̄2K2

F

2m
∼ 1.5− 15 eV

HW: Find EF for Ag

with (cgs)

a0 = h̄2/me2 = 0.529 · 10−8 cm

and

rs =
(

3

4πn

)1/3

KF = 3.63
(

a0
rs

)

Å−1

EF = 50.1
(

a0
rs

)2

eV

vF = 4.20 · 108
(

a0
rs

)

cm/s

HW - show that

37



ρ(E) =
1

exp






E−EF
kBT







+ 1

XV. ELECTRONS IN PERIODIC POTENTIAL: BANDS

ψ (~r) = ei~q~ru~q (~r) , u~q (~r + ~a) = u~q (~r)

(Bloch, 1929).

A. Dirac comb

U(x) =
h̄2

m
Ω

∞
∑

n=−∞

δ (x− na)

see Fig. 14.
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FIG. 14: Energy bands for the ”Dirac comb” (Kronig-Penney model) for different values of the

interaction potential.

Dr. Vitaly A. Shneidman, Phys 719, 10th Lecture

XVI. RUTHERFORD BACKSCATTERING SPECTROSCOPY (RBS)

A. Introduction

see Fig. 15 Estimation: energy to hit a nucleus

E [eV ] = kee/r ∼ 9 · 1091.6 · 10−19/10−14 ∼ . . .

B. Differential and total cross-sections

dσ =
dN

n

dN = 2πρdρ · n
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FIG. 15: Scattering of positive particles by a heavy nucleus (upper figure). For small values of the

impact parameter (distance from axes) particles are backscattered. For the same impact parameter

the scattering angle is smaller for larger energies. Note that incoming particles never approach the

nucleus (∼ 10−14 m) but are repelled by Coulomb forces. The lower figure shows negative particles

with similar parameters. Note the symmetry - negative particles are scattered by the same angle,

only deviate in an opposite direction. In principle, negative particles can hit the nucleus, although

such events are extremely rare.

ρ [cm] - impact parameter

dσ = 2πρdρ = 2πρ (θ)

∣

∣

∣

∣

∣

dρ

dθ

∣

∣

∣

∣

∣

dθ

dΩ = 2π sin θdθ
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spherical angle

dσ =
ρ (θ)

sin θ

∣

∣

∣

∣

∣

dρ

dθ

∣

∣

∣

∣

∣

dΩ (17)

Total:

σ =
∫ 4π

0

dσ

dΩ
dΩ

Example: hard sphere (in class)

C. Rutherford formula

Motion in central field

U(r) =
α

r

can be described analytically (in class). Then, eq. (17) gives

dσ =

(

α

2mv2∞

)2
dΩ

sin4 (θ/2)
(18)

Note: α2 - sign does not matter. Thus, dσ ∝ Z2, the charge of the nucleus. Also, dσ ∝ E−2.

Remarkable: quantum -same formula! (Mott & Gordon, 1928).

D. Energy exchange

Consider here head-on collisons only (in class).

E = E0

(

M −m
M +m

)2

Or with K ≡ E0/E

M

m
=

√
K + 1√
K − 1

XVII. MID-TERM EXAM
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FIG. 16:

Dr. Vitaly A. Shneidman, Phys 719, 11th Lecture

XVIII. ELEMENTS OF CRYSTALLOGRAPHY

A. Bravais lattice

~R = n1~a1 + n2~a2 + n3~a3 , n1,2,3 = 0,±1,±2, . . .

a1,2,3 - primitive vectors (non-unique -see fig. 17).

Not all lattices are Bravais, e.g honeycomb.

1. BCC

~a1 = ax̂ , ~a2 = aŷ , ~a3 =
a

2
(x̂+ ŷ + ẑ)

or more symmetric

a

2
(−x̂+ ŷ + ẑ) ,

a

2
(x̂− ŷ + ẑ) ,

a

2
(x̂+ ŷ − ẑ)
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FIG. 17:

2. FCC

~a1 =
a

2
(ŷ + ẑ) , ~a2 =

a

2
(x̂+ ẑ) , ~a2 =

a

2
(x̂+ ŷ)

3. Coordination number

4. Primitive and Elementary cells

5. Wigner-Seitz cell

HW: try to sketch for triangular lattice

B. Bravais lattice with a basis

BCC: SC with

~0 ,
a

2
(x̂+ ŷ + ẑ)
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FIG. 18:

FCC: SC with

~0 ,
a

2
(ŷ + ẑ) ,

a

2
(x̂+ ẑ) ,

a

2
(ŷ + x̂)

Diamond: 2 FCC displaced by 1/4 of big diagonal

Hexagonal CP: triangular + c-along z- axes

C. Reciprocal lattice

Define volume

v = ~a1 · (~a2 × ~a3)

~b1 =
2π

v
~a2 × ~a3

~b2 =
2π

v
~a3 × ~a1

~b3 =
2π

v
~a1 × ~a2

Check:

reciprocal to SC - SC
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reciprocal to BCC - FCC

reciprocal to FCC - BCC

1. Brillouin zone

D. Atomic planes

1. Miller indices

Dr. Vitaly A. Shneidman, Phys 719, 12th Lecture

XIX. XRD

A. Theory (some)

Can use Maxwell equations as in optics, but

• λ ∼ a (not a continum) - harder

• ω À ωel - easier. Why?

ωel ∼ v/a

and

ω ∼ c/λ ∼ c/a

Thus,

m~̇v = e ~E

Next, everything ∝ e−iωt;

~v = ie ~E/mω

Let n (~r) be the density of electrons.

~j = en~v =
ie2n

mω
~E

(Note; ~j along ~E). Also note: n (~r), not n (~r, t), i.e. only coherent scattering is considered.

Now ~j into the ME

∇× ~H =
1

c

∂ ~E

∂t
+

4π

c
~j = − iω

c

(

1− 4πe2n

mω2

)

~E
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This is similar to optics, but n, not n̄. Also note that

(. . .) =
(

1− ω2
p/ω

2
)

Now the 2d standard ME can be invoked -see Landau-Lifshitz, vol.III for detail. Scat-

tering cross-section: similar to particles. Intensity in angle dΩ to energy density in insident

wave. Θ - deviation from original direction

~q = ~k′ − ~k , q = k sinΘ

In CGS:

dσ =
1

2

(

e2

mc2

)2
(

1 + cos2Θ
)

∣

∣

∣

∣

∫

n (~r) e−i~q·~rdV
∣

∣

∣

∣

2

dΩ

HW: re-write this in SI units

Note the Fourier component of density. Optics limit:

~q → 0 , |. . .| →
∫

ndV = n̄V

(no difference between glass and crystal. Think where the anisotropy was lost).

Crystal:

n (~r) =
∑

~K

n ~Ke
i ~K·~r

~K from reciprocal lattice. Now consider

∫

dV exp
{

−i
(

~q − ~K
)

· ~r
}

For ~q 6= ~K rapid oscillations,
∫ → 0. Thus,

~q = ~K

(Laue)

Theorem: Laue equivalent to Bragg.

Proof: consider a family of planes separated by d. Then,

~K = n ~K0 , K0 =
2π

d

From Laue (K = q) and geometry

K = 2k sin θ
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Thus,
2

λ
sin θ =

n

d

or

nλ = 2d sin θ

(Bragg)

B. Experimental

1. Ewald construction

2. Laue method

(non-monochromatic)

3. Rotating crystal (Bragg) method

4. Powder diffraction method

Particles large on atomic scale. Rings:

K = 2k sin (φ/2)

BCC (rec.):

K1 : K2 : K3 : K4 : . . . =

√
3

2
: 1 :
√
2 :

√
11

2
: . . .

(see xrdBCCr.nb)

FCC (rec.)

K1 : K2 : K3 : K4 : . . . =

√
2

2
: 1 :

√

3/2 :
√
2 : . . .

HW: rings were observed at the following angles (in deg.)

42.2, 49.2 , 72.0, 87.3

and

28.8, 41.0, 50.8, 59.6

in each case identify the lattice type. Also, find the lattice constant a if λ = 1.5Å.
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1 1

FIG. 19: HCP with ”small” and ”large” atoms

C. Geometric structure factor

S ~K =
∑

j

ei
~K·~dj

Imax ∝ |S ~K |
2

can go to zero - see xrd.nb

D. Different ions - atomic form-factor

S ~K =
∑

j

fj
(

~K
)

ei
~K·~dj

see xrd.nb and figures below. Also, you will have a Mathematica printout on form factor of

a uniformly charged sherical ion. If a is the radius of ion,

f(K) ∝ 2π
∫ a

0
drr2

sin (kr)

Kr

The rest will be discussed in class.
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2 2

2

FIG. 20: SC lattice with a basis with (a) different atoms, (b) identical finite size atoms, (c) identical

point atoms

Dr. Vitaly A. Shneidman, Phys 719, 13th Lecture

XX. SELECTED APPLICATIONS

A. XPS

Analysis of electrons emitted from the surface (2-5nm) due to X-rays (the most common

surface analysis). Sampling area - about 1 cm2, and small areas ∼ 0. × 0.2 mm2 can be

achieved.

Detection limit: 1% of a monolayer for light elements - 0.1% for heavy. Only ≥ Li can be

studied (Why?)
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Basic relation:

E = hν − Eb

(More delicate recoil + interactions with electrons of other atoms - ∼ 1% effect.

In solids - ”chemical shift”. Tabulations: Muilenburg, G. Handbook of X-ray ... (1979).

Hard to find absolute energies, but comparison with tabulated - insight into chemical binding.

Metals: Eb from Fermi level.

1. Instrumentation

X-ray source: often 2 anodes (Why? -later, to distinguish from Auger), e.g. Al, 1486.6 eV

and Mg, 1253.6 eV + vacuum.

Energy analyzer: hemispherical (higher resolution) or cylindrical (higher efficiency):

SLIDE/HANDOUT

2. Examples

SLIDE

B. Auger

Similar to XPS - analysis of electron enrgies (often, same instrumentation).

Incident radiation: X-rays or electrons. Electrons are easier to focus, thus can be used for

scanning, ∼ 50 nm resolution.

Used to determine elements in the surface layer, 0.3 − 3nm and get info on the chemical

state. Detection limit 0.01 − 0.001 at %, À XPS.

Also, ≥ Li

History: Auger, 1923 - discovered the process. Lander, 1952 - idea to use for surface

analysis. Harris, 1967 - differentiation to enhance the Auger signal.

1. Fundamentas

in CLASS + SLIDE/HANDOUT
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2. Emission probabilities

SLIDE/HANDOUT

C. SEM

1. General

A focussed electron beam is swept over a surface, and any of the reslting emissions are

detected.

Image is formed on a cathode ray screen.

Large depth of focus (compared to optics). Resoluton as good as ∼ 3nm.

Elemental analysis is possible through X-rays.

2. Specifics

Energies:

From surface:

incident beam - 30 KeV (SEM) - 100 KeV (TEM)

BS electrons - about the same (as in RBS, only very light)

secondary - < 50eV

Auger - > 50eV

+X-rays

Transmitted (for a thin film)

elestically scattered

inelestically scattered

DETECTORS:

BSE: concentric ring (direct line of sight)

SE: see DIAGRAM

SLIDE ”figure 2”
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D. TEM

SLIDE ”figure 1a”. Similar to optics, but ”lenses” - magnetic field. Fixed lenses with

variable f (current). Books - see syllabus.

Strong: resoution better than 0.2nm + both image and diffraction info. Individual

dislocations can be imaged. But: slow and careful specimen preparation.

Crystal planes - similar to Bragg diffraction of X-rays, but λ - smaller, thus angles smaller.

Interesting: relativistic corrections.

√

m2c4 + p2c2 = eV +mc2

First approximation p¿ mc:

p ≈
√
2meV

(HW -derive this, will be counted for the Exam) Second approximation (iteration)

p '
√
2meV

(

1 +
eV

2mc2

)1/2

(HW -derive this) with

2mc2 ≈ 1Mev

(HW - check this) and

λ = h/p

one obtains

λ [nm] ' 1.23 nm
√

V (1 + 10−6V )

(HW -derive this)

Example: V = 100kV , λ = 0.0037nm (near-classical!) From

λ = 2d sin(θ)

and d = 0.15nm, one has θ ' 0.7o. Thus, Ewald spher - VERY LARGE:

k = 2π/λ ≈ 1700nm−1

Compare this to reciprocal lattice with

K ∼ 0.1− 05nm−1
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Thin films

∆K ∼ 2π/t

(t-thickness). Kikuchi lines.

E. STM

Tunneling:

ψout ∼ exp
(

−
∫ x2

x1

|p| dx/h̄
)

For a rectangular barrier W = const this is

exp
(

−d
√
2mW/h̄

)

Current:

I ∼
∣

∣

∣ψ2
out

∣

∣

∣ = exp
(

−d[nm] · 1.62 ·
√

W[eV ]

)

(HW - derive this)

HW (optional) generalize for W = W0 − Ex
Two modes : I ≈ const, d− changes. Atomic scale profie, about 10Hz.

Or, d ≈ const, record current, abot 1kHz.

Competition: thermal

Ith ∼ exp
(

−W
kT

)

≈ exp
(

−40W[eV ]
Tr
T

)

Thus, for ”clean” tunneling

T/Tr ¿
20
√

W[eV ]

1.62d[nm]

(HW - drive this)

Actual microscope: Bining and Roeher (1982). Key - atomically sharp tip. Resolution:

2Å horisontal (parallel to surface) 0.02Å vertical. (Why?)

Can operate in vacuum, air, liquid nitrogen. Best for metals and semiconductors with

good conductivity (alternative - AFM).

Experimental: key precise mechanics, shielding from vibrations→ small size (then, fres ∼
5kHz, compare to 20Hz in buildings)
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XXI. AFM

Similar. New feature -soft cantilever spring to measure deflection.
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