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Abstract: It is shown that in the growth region (above the critical nucleation size) the transient
distributions obtained numerically from the Becker-Döring equation (BDE) by Abyzov et al., Entropy
2020, 22, 558, are in accurate correspondence with the matched asymptotic (singular perturbation)
solution by Shneidman, Sov. Phys. Tech. Phys. 1988, 33, 1338. The solution is unmodified by
“self-consistency” corrections which affect only the steady state rate. Sensitivity of the results to
selection of a specific form of the BDE (the “nucleation model”) also is briefly discussed.
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As part of a recent study by [1] transient behavior (relaxation to steady state) of the Becker-Döring
nucleation equation (BDE) with parameters related to those of lithium disilicate has been examined
using numerical methods. Indeed, the time-dependent BDE does not allow a closed form exact solution.
Nevertheless, an asymptotically exact solution (AES) is available in the limit of a large nucleation
barrier [2,3]. Since the parameters used by [1] lead to ∆G (nc) > 50 kBT, the AES is expected to be
very accurate in the domain of its applicability. Below I briefly describe the solution and present the
comparison; where possible, notations which are identical to those by [1] (except for τ) will be used.

The transient flux at size n in the growth region (i.e., for n− nc � δnc) is given by [2,3]

j(n, t) = Jst exp
{
− exp

[
ti(n)− t

τ

]}
(1)

Note two time scales τ, the “relaxation time” and ti(n) the “incubation time” which is larger than
τ and which depends on the size n where the flux is observed. One has

τ =
δn2

c
2w+(nc)

, (2)

while ti(n) is expressed in terms of the “deterministic growth rate” ṅ ' w+(n)− w−(n) [i.e., in terms
of an integral

∫
dn/ṅ]. One has [3]

ti(n) = tdec

(
nc −

δnc√
2

)
+ tgr

(
nc +

δnc√
2

, n
)

(3)

Here tdec is the positive decay time of a subcritical cluster with indicated initial size; tgr is the
growth time for a supercritical cluster with initial size nc +

δnc√
2

to reach the size n. The experimentally

obseved “induction time” (also, “time lag”) which is defined as tind(n) =
∫ ∞

0 [1− j(n, t)/Jst] dt is then
given by tind(n) = ti(n) + 0.5772τ.
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Above is the general solution. To specify the model one needs an explicit growth rate ṅ. For the
selection w+ ∝ n2/3 by [1] one has

ṅ =
dn
dR

Ṙ , Ṙ =
Rc

τ

kBT
∆µ

{
1− exp

[
− ∆µ

kBT

(
1− Rc

R

)]}
(4)

(which is the “Hertz-Knudsen” growth rate in vapor condensation context); R and n are related by
(4/3)πR3 = nd3

0. The decay and growth contributions to the incubation time ti(n) in Equation (3) now
can be directly evaluated:

ti(n) =
∫ nc− δnc√

2

1

dn
−ṅ

+
∫ n

nc+
δnc√

2

dn′

ṅ′
(5)

The “self consistency” corrections discussed by [1] do not change the rate ṅ and thus do not affect
the transient part of the AES.

In the growth region the distribution function f (n, t) is given by j(n, t)/ṅ. For comparison
with numerics by [1] it is convenient to express the distribution as a function of radius,
i.e., f (R, t) = f (n, t)dn/dR which tends to a constant at large R. Results of comparison are shown in
Figure 1. As mentioned, the numerical accuracy of the AES is due to large values of the barrier ∆G (nc)

compared to kBT.
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Figure 1. Comparison of the asymptotic solution [2,3] (lines) with numerics by [1] (symbols) at
different times: left t = 2284 s, middle t = 5710 s, right t = 11,420 s. Dashed line is the steady state
distribution in the growth region, Jst/Ṙ. No matching parameters were used.

In addition to the specific BDE considered by [1], other versions of the general BDE
(other “models”) are discussed in literature in connection with transient nucleation in lithium
disilicate. Such models differ by selection of the attachment rate w+(n), or by the mathematical
form, continuous vs. discrete, of the nucleation master equation. The double exponential
transient shape in Equation (1) remains unchanged, which allows a robust determination of τ from
experimental data [3]. Otherwise, selection of another model leads to a different ṅ compared to
Equation (4), affecting the incubation time ti(n). For example, the “Turnbull-Fischer” model leads to
Ṙ = 2RckBT/(τ∆µ) sinh [∆µ/(2kBT) (1− Rc/R)] [4–6]. In the limit of small ∆µ/kBT this growth rate,
as well as the one given by Equation (4) tend to a simpler Ṙ = Rc/τ (1− Rc/R) which is consistent
with continuous “Zeldovich-Frenkel” (ZF) version of the BDE. In that case the growth and decay
integrals can be evaluated in terms of elementary functions, and one has [3]:
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tZF
i (n) = τ

[
ln

6 ∆G (nc)

kBT
− 2 +

R
Rc

+ ln
(

R
Rc
− 1
)]

(6)

with explicit separation of the barrier- and the size-dependences. In the context of “self-consistent”
correction by [1], note that the full barrier ∆G (nc), rather than its reduced value ∆G (nc)− ∆G (1)
enters the above expression (and thus the correction affects only Jst). The logarithmic dependence on
the barrier in Equation (6) is expected to be adequate for parameters used by Abyzov et al. For the size
dependence however, due to large values of ∆µ/kBT one needs the general Equations (3) and (4) in
order to achieve the level of accuracy demonstrated in Figure 1.
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