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We propose a simple-form mathematical description that allows us to account simultaneously for
the effects of time-dependent nucleation and of latent heat during rapid cooling of a thin film. The
method is based on a combination of analytical description of nucleation and a numerical~or,
semianalytical! description of thermal effects due to postnucleation growth of crystallites. The
accuracy of the treatment is tested against numerically exact solutions of the Farkas–Becker–
Döring master equation, and is applied to several realistic cooling histories consistent with
experimental studies of silicon on silicon oxide films of Stiffleret al.@Phys. Rev. B43, 9851~1991!#
and Sameshima and Usui@J. Appl. Phys.70, 1281~1991!#, respectively. Special attention is paid to
the region of high cooling rates~very thin films of less than 100 nm! where the transition to
complete amorphization occurs. For such cooling rates the time-dependent nucleation effects turn
out to be especially important, and their neglect would lead to significant overestimates of the
critical cooling rate that separates the recrystallization and the amorphization regions. ©1996
American Institute of Physics.@S0021-8979~96!04814-1#

I. INTRODUCTION

Pulsed laser annealing of thin silicon films represents a
powerful tool both for understanding fundamental properties
of this element and for manipulating these properties on a
microstructural level in view of applications in semiconduc-
tor devices.1–9 Normally, the pulsed irradiation of a film
leads to its partial melting and subsequent recrystallization;1

partial amorphization of the melted fraction on the surface of
bulk silicon also was observed in pico-10 and nanosecond
laser experiments.11 On certain occasions, however, com-
plete melting of the silicon film is achieved and is followed
by a deep undercooling of the melt3 with a possibility of its
quenching into the amorphous state.4 The two latter situa-
tions will be of primary interest for the present study.

Due to the very high cooling rates achieved after pulsed-
laser irradiation~1010 K/s and more!, the expected mecha-
nism of phase transformation is homogeneous nucleation and
growth of crystallites. The standard description of these two
processes can be traced back to the works of Volmer and
Weber, Farkas, Becker and Do¨ring, Zeldovich, and Frenkel12

~nucleation! and by Kolmogorov, Johnson and Mehl, and
Avrami13 ~postnucleation growth and interaction between
crystallites!, respectively. Both descriptions12 and13 involve
an essential assumption that the nucleation rate is a function
of the current state of the system and does not depend on the
cooling rate@for that reason we henceforth label this descrip-
tion as the quasi-steady-state~QSS! approximation#. One can
show that the other assumption, the one of size-independent
growth,13 is valid under the same conditions as the QSS
nucleation rate. The standard approach, thus, is very well
balanced in its basic approximations and, generally speaking,
gives an accurate description of the crystallized volume frac-
tion. It turns out, however, that due to the above mentioned
high values of the cooling rate~and due to specific values of

physical parameters of silicon! the QSS approximation can
lose its accuracy when the crystallized fraction is evaluated
in very thin films and, on certain special occasions, can lead
even to qualitatively incorrect results when the final state of
the film is predicted. The possibility of non-QSS nucleation
effects in pulsed-laser melted silicon films was first indicated
in connection with the experimental study,3 and subsequent
numerical analysis14 confirmed the potential failure of the
QSS approximation when evaluating the limits of undercool-
ing in such systems.

Numerical solutions of the time-dependent version of the
nucleation master equation~due to Farkas, and Becker and
Döring! and of the equations for postnucleation growth of
crystallites provide a powerful tool in the description of the
phase transformation kinetics in situations when the QSS
approximation is invalid. Under the conditions of continuous
cooling, the numerical approach was introduced by Kelton
and Greer15 to describe the formation of lithium disilicate
and several metallic glasses and, without taking account of
latent heat effects~small volume fractions of the crystalline
phase! a similar approach was applied to melted silicon films
by Evans and Stiffler.14 In a sense, the numerical description
is more accurate than any analytical approximation, and be-
low we will often refer to it as to ‘‘numerically exact.’’ Nev-
ertheless, even this approach can have its limitations in com-
plicated ~spatially inhomogeneous! systems that already
require extensive computational effort to describe heat con-
ductivity, melt flow, etc. A reasonably accurate analytical
approximation in description of nucleation and growth can,
thus, deserve consideration not only from a purely academic
point, but also in applications.

In the analytical description one can distinguish between
the isothermal~transient! formulation of the general problem
of time-dependent nucleation and its nonisothermal formula-
tion, which is more relevant to the experimental situations
discussed. The method of solution of the nucleation equation
in both formulations is based on the matched asymptotica!Electronic mail: vitaly@louie.aml.arizona.edu
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~singular perturbation! approach16 that employs large values
of the nucleation barrier,W

*
, compared to the thermal en-

ergy, kT. The difference, however, comes at the growth
stage. In the isothermal case the growth equations can be
solved exactly, which allows one a direct extension of the
nucleation solution up to an arbitrary size in the growth
region.17 In the nonisothermal situation, in a general case the
growth equations cannot be solved exactlyin principle. For
that reason inclusion of growth in the nucleation solution in
the nonisothermal case inevitably involves additional ap-
proximations and requires as much analytical effort as the
solution of the nucleation equation itself.18 Fortunately, the
final analytical result~which is described below! turns out to
be an elementary function that compared to the QSS
expression12 contains only one additional parameter, the di-
mensionless rate of the barrier change. Thus, the non-QSS
analytical description can be represented in the same stan-
dard form as the familiar QSS approximation with only mi-
nor modification of the coefficients.

With respect to applications, an account of nucleation
and growth is only the starting point of the description of the
phase transformation. One still has to consider latent heat
released in the course of crystallization19 that, in turn, affects
both nucleation and growth. For a realistic setting of the
problem such nonlinear effects hardly can be described ana-
lytically in a reasonably simple manner. On the other hand,
since the analytical results on nucleation and growth in any
case are to be placed into the numerical description of ther-
mal effects, one can seek for the most ‘‘convenient’’~for
applications! semianalytical representation of the analytical
expressions. The latter represents one of the key points of the
present study, leading to a method that potentially combines
the advantages of both analytical and numerical approaches,
i.e., the simplicity of the former and the accuracy of the
latter. For a simpler, spatially homogeneous situation~which
nevertheless is expected to imitate realistically the experi-
mental setting of Ref. 3!, the method will be tested against a
numerically exact description with latent heat effects in-
cluded. The description will be used to gain quantitative un-
derstanding of the interplay of non-QSS nucleation effects
and the effects of latent heat for cooling rates close the criti-
cal cooling rate,S* , which separates the cases of recrystal-
lization and amorphization.

The paper is organized in the following manner:
In Sec. II the standard QSS approximation for nucleation

and growth is introduced, and the non-QSS corrections are
considered. Selection of the nucleation-growth model is also
discussed here.

In Sec. III thermal effects are examined. A closed sys-
tem of equations that allows us to combine in a simple man-
ner the non-QSS nucleation effects with those due to latent
heat released in the course of crystallization, is introduced in
Sec. III A. In Sec. III B the heat conductivity problem is
considered for two specific settings that are related to experi-
mental studies of Refs. 3 and 4, respectively, and simple
relations between the film/insulator thickness and the cooling
rate are established. A criterion of spatial homogeneity of
nucleation, which allows an essential simplification of the
general description is also discussed.

In Sec. IV A the physical parameters in the proposed
semianalytical description are adjusted for experimental data
of Ref. 3. In Sec. IV B this description is used to evaluate the
crystallized volume fraction for different values of the cool-
ing rate and to calculate the critical cooling rate,S* . Under
identical conditions the numerical and the QSS approaches
are applied as well. This allows us to estimate the accuracy
of the proposed semianalytical description and to elucidate
the limitations of the QSS approximation. The predicted val-
ues ofS* are used to assess the critical film thicknessh in
the experimental setting close to the one of Ref. 4 and to
compare it to the values measured in that study.

Section V contains the discussion.

II. BACKGROUND

A. Nucleation and growth: selection of the model

The classical treatment12 describes nucleation as a ran-
dom walk of a nucleus in the space of its ‘‘sizes’’~cluster
numbers,g!. Evolution with time of the cluster distribution
function f g(t) can be described by a master equation, which
according to Farkas, and Becker and Do¨ring12 can be written
as

] f g /]t5 j g2 j g11 , j g5bg21f g212agf g , ~1!

with ag andbg being the kinetic loss and gain coefficients,
respectively. The principle of detailed balance allows one to
relate the two groups of kinetic coefficients via the quasi-
equilibrium distribution, f g

eq, which corresponds to a zero
flux, j g . From general thermodynamic considerations it can
be estimated as

f g
eq' f 1 exp$2W~g!/kT%, ~2!

with f 1 being the number of monomers in the system and
W(g) the minimal work required to form a nucleus with a
given cluster number. In the classical description12 this work
has the form

W~g!52gdm14pR2s, R[~3Vg/4p!1/3, ~3!

wheredm is the difference of chemical potentials,s the in-
terfacial tension,R the radius of a spherical cluster, andV is
the molecular volume of the solid phase. At the critical ra-
dius,R

*
52sV/dm, Eq. ~3! has a maximum,W

*
[W(R

*
),

which represents the barrier to nucleation.
The specification of a kinetic model comes through a

particular selection of the size and temperature dependence
of the kinetic coefficientsbg in Eq. ~1!. The size-dependence
bg}g

2/3 was originally discussed by Farkas, and Becker and
Döring12 in terms of vapor condensation. In solid-state
nucleation the most frequently used is the Turnbull–Fisher
~TF! model20 with

bg;g2/3 exp$@W~g!2W~g11!#/2kT%. ~4!

In the steady-state case predictions of all models for the
nucleation flux,j g5const[I st are asymptotically identical in
the limit of a high barrierW

*
@kT. This flux ~per monomer

of the metastable phase! is given by12
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I st'
D

2tAp
expS 2

W*
kT D , ~5!

with

t5
D2

2b~g* !
, D2252

1

2kT

]2W

]g2 U
*
. ~6!

In contrast, in the time-dependent situation and when
describing postnucleation growth~see below! the differences
between models can become important. From the experimen-
tal point of view, however, different models are very hard to
distinguish and, qualitatively at least, the results are expected
to be more general than the specific TF model employed.

The treatment of postnucleation growth requires a
knowledge of the deterministic growth rate,Ṙ. Correspon-
dence with the nucleation description dictates the form of
Ṙ(R).dR/dg(bg2ag), which in the TF case leads to15

Ṙ.
2kTR*

dmt
sinhF dm

2kT S 12
R*
R D G . ~7!

In the following study we expect that Eq.~7! is valid for
sizes large enough to give the main contribution to the crys-
tallized volume fraction and that these sizes are still smaller
than the film thickness~otherwise, the type of growth will
change8,21!. The growth rate of large crystallites can, thus, be
determined as

u[Ṙ~`!52kTR* /~dmt!sinh@dm/2kT#. ~8!

With respect to the temperature dependence of the ki-
netic coefficientbg ~or, equivalently of the time scalet!, two
alternative approaches are possible. The first one relatesbg

to microscopic characteristics of the metastable phase, as
was discussed for the solid-phase nucleation by Turnbull and
Fisher. The second approach, which was originally intro-
duced by Zeldovich to describe cavitation in a viscous
fluid,12 starts with a macroscopic~hydrodynamic! description
of growth Ṙ(R). In principle, this allows one to obtain the
time scalet as the inverse ofdṘ/dR atR5R

*
and, hence, to

reconstruct the temperature dependence ofbg using Eq.~6!.
Although no hydrodynamic-type description of growth of a
crystallite from a melt is currently available, it seems very
likely ~and is generally accepted22,23! that for strongly under-
cooled melts the growth rate should be limited by the viscos-
ity, h. If, in addition, one takes into account the conditions
u}dm for dm→0, and assumes insensitivity oft to the sur-
face tension, then, just from the dimensional considerations,
one obtains

t}
hVkT

~dm!2
. ~9!

The same time scalet turns out to be responsible for tran-
sient nucleation effects as well~see next section!; in this
sense the temperature part of Eq.~9! is consistent with the
one proposed in Ref. 24. The temperature dependence of the
viscosity is usually described as

ln h5A1B/~T2T0!, ~10!

whereA, B, andT0 are empirical coefficients known as the
‘‘Fulcher parameters.’’ The proportionality coefficient in Eq.
~9! cannot be specified until a consistent hydrodynamic
theory of growth is constructed, but it always can be cor-
rected by adjustment of the parameterA in the Fulcher ex-
pression.

After all kinetic parameters of growth are specified, one
can describe the evolution of the distribution function
f (R,t)[ f g(t)dg/dR using a continuity equation

] f

]t
1

]

]R
~Ṙf !50. ~11!

The ‘‘nucleation rate,’’I , enters this expression via the left-
hand boundary conditionṘf (R,t)5I at some postcritical
sizeR5R0. This just means that crystallites are ‘‘injected’’
into the growth region with a rateI and with initial sizeR0.
The value of I can be associated with the fluxj g at
g5g0[4pR0

3/3V. The sizeR0 that marks the transition from
random nucleation to deterministic growth is an auxiliary
parameter and must not affect the results in a consistent treat-
ment. This insensitivity is of asymptotic nature and origi-
nates from large values of the reduced barrierW

*
/kT ~oth-

erwise, separation of the nucleation and growth regions is
impossible!. In the analytical expressions that we present be-
low, matching of the nucleation and growth regions is com-
pleted, and these expressions are, thus, explicitly indepen-
dent ofR0. On the other hand, in numerical descriptions a
choice ofR0 is inevitable and, similarly to Refs. 15 and 25,
several different values will be considered in order to test the
aforementioned insensitivity.

B. Time-dependent effects

One can show16 that in the absence of a quench, i.e., in
the isothermal case, establishment of the steady-state nucle-
ation rate can be characterized by two time scales,t and
t ln(W

*
/kT) ~‘‘relaxation’’ and ‘‘incubation’’ times, respec-

tively!, with t defined in Eqs.~5! and ~6!. @An explicit ex-
pression for the time dependence of the isothermal~tran-
sient! flux is also available16,17although it is less relevant to
the situation discussed#.

In view of the crucial importance of the reduced barrier,
W
*
/kT, in the nucleation problem one can expect that in a

general nonisothermal situation deviation of the nucleation
flux I from I st will be mainly determined by the dimension-
less rate of the barrier change on the scale oft. In other
words, the ‘‘nonstationary parameter’’16

n52t
]

]t

W*
kT

~12!

is expected to be responsible for non-QSS nucleation effects.
The presence of the second, larger time scale implies that the
non-QSS effects become strong already for moderate values
of n;1. An n- ~andg0! dependent expression for the nucle-
ation flux is given by Eq.~20! ~Ref. 16!. Remarkably, the
same parametern also turns out crucial in the description of
postnucleation growth.18 Due to the rapid increase of the
growth rateu with temperature, the size of a crystallite by
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the end of the quench,R̄, is mainly determined by the instant
when this crystallite was nucleated, which gives18

R̄'
4R*
n~T!

. ~13!

This allows one to extend the nucleation solution into the
growth region, and to introduce an ‘‘effective nucleation
rate,’’ which accounts for both non-QSS nucleation effects
and for size-dependent effects in post-nucleation growth18

I eff.I stS W*
nkTD

2n

. ~14!

In contrast to the steady-state expression, Eq.~5!, the
effective nucleation rate does depend on the quench rate via
the dimensionless parametern. The deviation ofI eff from I st
can be substantial even for small values ofn due to the
presence of the large parameterW

*
/kT. Rigorously speak-

ing, Eq.~14! is expected to be accurate only forn,1, but in
practice, in the spirit of asymptotic expansions, it can be
used until the correction decays withn, i.e., for
n,W

*
/(ekT) ~e52.718...!. For larger values ofn the time-

dependent effects dramatically suppress the nucleation rate
and it can be set to zero. Note that the effective nucleation
rate I eff ~in contrast to the fluxj g! does not depend on size.
This signifies that matching with the growth region has al-
ready been performed and subsequent growth can be de-
scribed as size independent~i.e., Ṙ.u!. As will be discussed
below, the latter circumstance allows an essential simplifica-
tion of the solution of the continuity Eq.~11! and the de-
scription of the entire phase transformation process.

III. THERMAL EFFECTS

A. Heat released from nucleation and growth

For a large number of finely dispersed crystallites one
can describe the coarse-grained temperature distribution by a
standard heat conductivity equation with a distributed heat
source,Q ~Ref. 26!

CpṪ~r ,t !5“~k¹T!1Q~r ,t !. ~15!

~Cp is the specific heat andk the heat conductivity coeffi-
cient!. The intensity of the heat source is determined by the
latent heat released during growth and is given by

Q5Lẋ. ~16!

HereL is the latent heat of fusion~'4200 J/cm3 for silicon!
and x is the crystallized volume fraction, which for small
values discussed in the present study just corresponds to
V3~r ,t!, the third moment of the distributionf ~R,t,r !

x.~4p/3V!V3 . ~17!

There exist two possibilities of evaluation ofV3 and its de-
rivatives that give the intensity of the heat source,Q.

The first method, the ‘‘numerically exact’’ one, requires
a direct solution of Eqs.~1! and~11!. In this case, evaluation
of the distribution of large particles allows one to calculate
the moments of this distribution and their increments. In its
main features this method corresponds to the one of Refs. 14,
15, and 25. Adding the latent heat effects just effectively

changes the cooling rate,2dT/dt. @For strong heat release
effects cooling can be replaced by heating~see below!, but
this does not lead to any essential modification of the com-
putations.# Adding the space dependence of the distribution
increases the computational time, but, in principle, should
not lead to any dramatic complications as long as diffusion
of nuclei in ther space is neglected.

The second, semianalytical approach that is of primary
interest for the present study, is based on Eq.~14! for the
effective nucleation rate. When describing further growth of
nucleated particles this equation allows one to treat the
growth rateṘ as size independent~i.e., replaceṘ(R) by u!.
In this case the continuity Eq.~11! can be replaced by a
simple set ofordinary differential equations for its lower
moments,Vi

dV i

dt
5 iuV i21 , i51,2,3, ~18!

dV0

dt
5I eff~T,n!. ~19!

A similar form of the equations withI eff replaced byI st
~which corresponds to the QSS approximation! is familiar in
vapor condensation problems.27 The major novelty of the
present study is the incorporation of time-dependent nucle-
ation effects and the effects of size-dependent growth via the
nucleation rateI eff(T,n) without otherwise altering the con-
venientform of the QSS description. In the specific applica-
tion of Eqs.~18! and~19! to thin films, an additional require-
ment V i /V i21!h should be satisfied, implying that the
characteristic size of the particles is much smaller than the
film thickness,h.

As mentioned, strong latent heat effects can reverse the
sign of the cooling rate, leading to negative values of the
parametern. In this case Eq.~14!, which was obtained spe-
cifically for cooling ~n.0!, becomes inapplicable, but one
can show that the number of crystallites nucleated during
heating~n,0! is negligible compared to the cooling stage
nucleation. Thus, one can either completely neglect nucle-
ation on the heating stage, i.e., putI eff[0 for n,0 or, in
order to keep the expression continuous, use forn,0 the
QSS approximationI eff5I st ~the latter will be mostly em-
ployed in the forthcoming calculations!. The insensitivity of
the physical results to the specific choice ofI eff at n,0
~which is tested in numerical simulations! is the best indica-
tor that nucleation effects on the heating stage are already
minor and only growth of previously nucleated crystallites is
important.

The system of Eq.~14!–~19!, together with the boundary
conditions for the temperature on the surface of the sample,
provides a closed description of time-dependent nucleation
with thermal effects. In the next section a simple setting of
the heat conductivity problem that allows one to eliminate
the dependence on space variables will be considered. This
will permit a simultaneous application of both the more ac-
curate ‘‘numerically exact’’ and the semianalytical ap-
proaches, thus providing a crucial test for the latter and per-
mitting its potential use in more complicated situations.
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B. Two simplified models of experimental situations

In experimental studies a silicon film that was previously
melted by a laser pulse is rapidly cooled due to heat leakage
into the substrate. The substrate~crystalline Si! is separated
from the film by a thin layer of SiO2 ~Ref. 3! or, alterna-
tively; the substrate itself can be composed of quartz,4 see
Figs. 1~a! and 1~b!, respectively~we are discussing only ex-
periments where complete melting was achieved!. The heat
conductivity of the insulator,kSiO2, is substantially smaller
than that of liquid silicon@about 70 times~see, e.g., Table I
in Ref. 6!#. This allows one to approximate the silicon film as
a system with an infinite heat conductivity~limitations of this
approximation will be evaluated below later!. Further simpli-
fication is achieved when only two limiting cases of ‘‘thin’’
and ‘‘thick’’ insulators are considered, as in Fig. 1. Radiative
cooling from the surface is neglected. The two simple mod-
els are not intended in any way to replace the full solution of

the nonstationary heat conductivity problem~which in a gen-
eral case requires a nontrivial combination of experimental
and numerical methods3,5,6,11,19!. Rather, the intent of these
models is to ‘‘mimic’’ the realistic values of cooling rates
achieved in experiments~see below!, thus providing a quali-
tatively correct basis for investigation of latent heat and
nucleation effects.

Let us first consider case I@Fig. 1~a!#. The temperature
and other variables are uniform across the Si film in the limit
of infinite conductivity, and the cooling rate is determined by
the balance of the rates of the heat leakage,q, in the sub-
strate and the rate of latent heat release,Qh with h being the
thickness of the Si film. For the heat leakage one has

q5kSiO2~T2Tr !/ l , ~20!

with l being the thickness of the SiO2 film, kSiO2 . 0.02
J/~cm s K! heat conductivity of quartz,6 and Tr.300 K
‘‘room temperature’’ ~the temperature of the silicon sub-
strate!. One, thus, obtains for the cooling rate

2Ṫ5
kSiO2

Cp
Si

T2Tr
hl

2
Q

Cp
Si , ~21!

with Cp
Si'2.61331024(T2Tm) J/cm

3 K being the specific
heat of melted silicon. The heat capacity of the SiO2 film in
this approximation is neglected, which impliesl,h.

Numerical values of the cooling rates predicted by Eq.
~21! before the onset of intensive nucleation and growth~i.e.,
with Q50! are shown in Fig. 2 for two different values of
the undercoolingTm2T ~Tm51685 K is the melting tem-
perature!. This figure also contains the cooling rate data re-
ported in Table I of Ref. 3 for the same values ofh and l .
The scatter of experimental points is partly due to the crude-
ness of the present model used for their presentation in Fig.
2. In reality, the producthl is not the only parameter that
affects the cooling rate@particularly, taking into account the
finite heat capacity of the SiO2 film by replacingh in Eq.
~21! by h1 lCp

SiO2/2Cp
Si could reduce the scatter#. Neverthe-

less, since no matching parameters were used in Fig. 2, the
model at least can be considered reasonable when describing
the cooling history.

FIG. 1. Two settings of the heat conductivity problem and approximations
used in the analytical treatment.~a! ‘‘Thin insulator limit.’’ ~b! ‘‘Thick
insulator limit.’’ The heated layer,l 0, is due to the heat leakage into the
substrate during laser melting. Att50 ~immediately after melting! the tem-
perature inside this layer is expected to coincide with the melting tempera-
ture of silicon,Tm .

FIG. 2. Cooling rate in the model setting of Fig. 1~a! as a function of the
product of the thicknesses~in 10210 cm2! of the film (h) and the insulator
( l ).
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The assumption of spatial homogeneity of variables in-
side the silicon film becomes most vulnerable when applied
to the nucleation rate, which is extremely sensitive to tem-
perature. The temperature gradient inside the film can
be estimated as (kSiO2/kSi)(T 2 Tr)/ l , and the derivative of
the nucleation barrier is estimated as](W

*
/kT)/]T

;2(W
*
/kT)/(Tm2T). This gives the condition that allows

one to treat the nucleation rate as homogeneous

2W*
kT FkSiO2

kSi

h

l

T2Tr
Tm2TG!1. ~22!

Actually, this condition is close to violation in the experi-
mental situation discussed: Although the term in square
brackets in Eq.~22! is small~which just means small values
of the thermal gradient; see also numerical estimations in
Refs. 5 and 14!, the remaining factor 2W

*
/kT is large

enough to make the nucleation rate change noticeably across
the film. In what follows, nucleation will still be treated as
spatially homogeneous. This is mostly due to our intent to
test the analytical approximation against the numerically ex-
act description, which technically is much harder to obtain in
the inhomogeneous case. However, one can expect that as
long as onlysmallvalues of the crystallized volume fraction
are discussed~i.e., no such specifically inhomogeneous ef-
fects as formation of a crystallization front are encountered!,
the ‘‘homogeneous’’ approximation for nucleation remains
reasonable at least on a qualitative level.

Consider now case II, which is the ‘‘thick insulator
limit’’ @Fig. 2~b!#. Here the heat conductivity problem turns
out to be much more sensitive to initial conditions, which are
determined by heat leakageduring the pulsed-laser heating.
To imitate this effect we introduce a heated layer with a
thicknessl 0 at the beginning of cooling. The thickness can be
estimated from the assumption that during a fractiona,1 of
the heating period the boundary of the insulator had the tem-
perature of melted silicon,Tm ~the values ofa can be ad-
justed to describe a more realistic heating history!. The tem-
perature of the heated layer upon completion of heating after
the timeth ~th.30 ns! Ref. 4 in this case is close toTm and
its width can be estimated as26 l 0 . (4akSiO2th /Cp

SiO2)1/2.
The solution of the corresponding heat-conductivity problem
is readily obtained by the Laplace transformation method.
After certain transformations one obtains for the temperature
of the silicon film

T2Tr
Tm2Tr

[j~z!5erf
a

Az
1exp~2a1z!erfcS Az1

a

AzD ,
~23!

with

a5
l 0
2h

Cp
SiO2

Cp
Si , z5

kSiO2Cp
SiO2

h2~Cp
Si!2

t. ~24!

The cooling rate is given by

Ṫ5~Tm2Tr !
kSiO2Cp

SiO2

h2~Cp
Si!2

dj

dz
. ~25!

Note that despite the seemingly unlimited increase of the
cooling rate@Eq. ~25!# in the limit h→0, this cooling rate is
bounded in the case of finite heat leakage~a.0! due to the
increase in the relative thickness of the heated layer,a. In
fact, for h→0 ~a→`! the second term in Eq.~24! can be
neglected and the temperature of 1100 K is achieved ata/Az
.0.57. For the cooling rate one, thus, obtains an
h-independent expression

2Ṫ;
33109

a
K/s. ~26!

In Sec. IV we will show that the critical cooling rate is
close to 1011 K/s, which means that in the thick-insulator
limit it can be achieved only for extremely small heat leak-
agea, not more than several percent.

IV. ILLUSTRATIVE RESULTS

Due to the abundance of unknown parameters in the
nucleation and growth formulas it is hard to imagine a set of
experimental data that could not be matched by a given ana-
lytical expression. For a meaningful comparison, however,
one could still attempt to~a! minimize the number of match-
ing parameters used to describe a chosen set of data and~b!
use the predictions for comparison with data of different ex-
periments~with no matching parameters used at that point!.
This at least will give a feeling of the possible error and,
thus, of the degree of reliability of the general conclusions.
As mentioned, the goal of the present study isnot an accu-
rate evaluation of the physical parameters of undercooled
silicon, but rather, their realistic estimation, which would
allow one to discuss latent heat vs time-dependent nucleation
effects. Another goal that could be achieved here is to test
the consistency of experimental studies of recrystallization3

with those of complete amorphization.4 Note, however, that
the present treatment does not distinguish between the
‘‘amorphous’’ and the ‘‘supercooled liquid’’ states~which
may differ from the experimental point of view2!, and the
results related to temperatures under 1000 K should be taken
with certain caution.

A. Identification of nucleation and growth parameters

Consider first the ‘‘thin-insulator’’ cooling history de-
scribed by Eq.~21!. Using either the numerically exact or the
analytical description of nucleation combined with numerical
description of thermal effects, as described in Sec. III, one
obtains the crystallized volume fraction as a function of tem-
perature for different cooling rates~equivalently, for differ-
ent values of the product of the silicon film and the insulator
thicknessesh• l !. This is depicted in Fig. 3. The meaning of
the plotted curves will be discussed in Sec. IV. B, but at the
moment we note that the predicted undercoolings can be
identified with the experimental data of Ref. 3 in order to
obtain the values of unknown parameters. The parameters
that werenot adjusted in comparison with experimental data
were those related to the temperature dependence and abso-
lute values of the nucleation barrier and to the temperature
dependence of the viscosity. These parameters were taken
the same as in Refs. 3 and 14, respectively~e.g., the values

808 J. Appl. Phys., Vol. 80, No. 2, 15 July 1996 Vitaly A. Shneidman



B511 590 K andT050 K were taken for the Fulcher param-
eters!. The proportionality coefficient in Eq.~9! that relates
the time scalet to viscosity was taken as 16. The only pa-
rameter used for matching was the absolute value of the vis-
cosity, described by the first Fulcher parameter,A. This pa-
rameter was adjusted to obtain an undercooling of 570 K at a
cooling rate of 14 K/ns,3 giving A5212.6 when the viscos-
ity is measured in cgs units~upon this choice other data of
Ref. 3 are also fitted with reasonable accuracy, but this is
more due to the successful choice of the activation energy,
B, in Ref. 14!.

Unfortunately, there are no measurements of viscosity
and/or the growth rates at such high undercoolings that could
provide an independent test of the chosen numbers. Never-
theless, extrapolating the analytic expressions close to the
melting temperature one can compare the viscosity with the
measurements reportedabove Tm ~Ref. 28! ~there seems to
be no reason to expect a discontinuity inh when crossing
Tm!. The measured values~;1022 g/cm s! are about three
times larger, but this is a tolerable error since the values ofh
increase almost by two orders of magnitude betweenTm and
the nucleation temperature. The temperature derivative of the
growth rateu(T) at small undercoolings is about four times
larger than the measured rate of the recrystallization front
@;1/15 ~m/s!/K ~Ref. 3!#. Since the growth rate of an indi-
vidual crystallite is the upper limit of the recrystallization
rate,29 and with the same arguments as used in the case of
viscosity, the correspondence can be considered as accept-
able at the moment.

Thus, we dare to conclude that the parameters that were
obtained exclusively from the undercooling measurements of
Ref. 3 at least do not contradict the high-temperature mea-
surements, although additional study is required for more
quantitative purposes.@Particularly, nonzero values of the
Fulcher temperature,T0 ~with a corresponding modification
of the parameterB! could be required to describe the low-
temperature region#.

B. Results

One can discuss two alternative situations that can take
place during a rapid quench. In the case where the quench
rate,S, is smaller than some critical value,S* , the latent heat
effects become sufficiently strong to reverse the sign ofṪ,
leading to subsequent recrystallization of the film. For larger
values ofS the latent heat effects are too weak and the film
becomes partly~or, completely, for very largeS! amorphous
due to small values of the crystallized volume fraction. The
critical cooling rate corresponds approximately to the situa-
tion when the so-called ‘‘nose temperature’’~i.e., the one
corresponding to the maximum ofI st(T)u(T)

3,30 which is
988.8 K for the chosen parameters! is approached in the
course of supercooling.

The two above mentioned alternatives are clearly seen
from Fig. 3, where for the purpose of comparison all three
methods of description are applied. The solid lines were pro-
duced using the semianalytical method given by Eqs.~18!
and ~19! ~nucleation and growth! and Eqs.~16! and ~21!

FIG. 3. Crystallized volume fraction for different quench rates. Solid lines, Eqs.~18! and ~19!; diamonds, numerically exact description of nucleation and
growth; dashed lines, the QSS approximation.@For thermal effects in all three cases Eqs.~16! and ~21! were employed.# The volume fraction for very fast
quenches~the inset! is multiplied by 104; the QSS approximation, which is shown only partly forS5470 K/ns saturates atx'2.531025.
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~thermal effects!. Alternatively, Eq. ~19! was replaced by
V05I st, which corresponds to the QSS approximation
~dashed lines!. Finally, the numerically exact description of
nucleation and growth based on Eqs.~1! and ~11!, respec-
tively, was employed instead of Eqs.~18! and ~19! ~dia-
monds!. The values of the cooling rate,S, which label each
set of data in Fig. 3 were estimated around 1100 K~without
latent heat effects for the slowest cooling!.

As one can see from Fig. 3, the QSS approximation pro-
vides an accurate description only for sufficiently small val-
ues ofS. Otherwise, it substantially overestimates the values
of the volume fraction transformed and the amount of latent
heat released. For that reason, in estimation of the critical
rate,S* , ~which for the chosen parameters equals 66.5 K/s!
the QSS approximation makes an error of more than 20%.
There, thus, exists a certain region ofS around the critical
value where the QSS approximation isqualitatively incor-
rect, predicting complete recrystallization in situations where
the film remains practically amorphous~as for 70 K/ns in
Fig. 3!. The inset of Fig. 3 shows the case of very high
cooling rates so that ‘‘complete amorphization’’@i.e., values
of V3,1026 ~Ref. 31!# is achieved. The QSS approximation
overestimates here the volume fraction transformed by al-
most 30 times which, equivalently, implies about a 100%
error in estimation of the cooling rate required for complete
amorphization.

Predictions of the proposed semianalytical method, on
the other hand, are rather close to numerically exact results.
A minor difference at low temperatures is most likely due to
the fact that the proposed analytical results are asymptotic,
i.e., are accurate for sufficiently high values of the reduced
nucleation barrierW

*
/kT. At low temperatures these values

are not excessively large~18.9 at the ‘‘nose’’ temperature!,
which limits the accuracy of the analytical description~al-
though this accuracy remains more than sufficient in view of
experimental uncertainties!.

Consider now the second type of experimental setting
with a ‘‘thick’’ insulator, as in Ref. 4. It was observed in
these studies that amorphization is possible only for film
thicknesses less than the ‘‘critical value’’h*;50 nm. One
could wish to test here that this value is consistent with the
critical cooling rate of 66.5 K/s predicted by the non-QSS
treatment with parameters based on the ‘‘thin-insulator’’ data
of Ref. 3. Using Eqs.~23!–~25! with no heat leakage~a50!
one obtains the critical thickness ash*;80 nm. As men-
tioned, however, this result is extremely sensitive to the ther-
mal state of the substrate. E.g., if only 1% of the irradiation
time the temperature of the film–substrate boundary equals
the melting temperature of silicon,Tm ~i.e., a50.01!, the
critical thickness is reduced to about 35 nm, and fora ex-
ceeding several percent amorphization cannot be achieved at
all. Unfortunately, there are insufficient data to estimate the
heat leakage more definitely. Nevertheless, from the above
numbers one still can conclude that in view of the non-QSS
treatment the data of two very different experimental studies
of Refs. 3 and 4 are at least not in contradiction with each
other.

The value ofS* obtained is comparable with the values
of 1011 K/s, which were mentioned in connection with

pulsed-laser amorphization of the surface ofbulk silicon.11

However, quite similarly to the ‘‘thick insulator’’ situation
discussed above, precise values ofS are extremely sensitive
to the thermal state of the substrate~unmelted silicon! right
after the irradiation~see Fig. 1 in Ref. 11!, which is not too
well known, preventing a more quantitative comparison.

V. DISCUSSION

In the present study a semianalytical method to describe
non-QSS nucleation and growth of crystallites in thin films
was proposed. Accuracy of the method was tested against
numerically exact data for the maximal undercoolings
achieved for moderate cooling rates before recrystallization
and for the amount of the crystalline phase trapped in the
amorphous state for faster coolings~as well as for the values
of the critical cooling rateS* , which separates these two
regimes!. Although the test was performed for a relatively
simple~spatially homogeneous! setting of the problem, there
seems to be no reasons to expect the method to fail for more
complicated situations~or, for different physical systems!.
The QSS approximation, on the other hand, is inaccurate for
fast cooling rates~exceeding 10 K/ns in the case of silicon!.

The proposed method can be directly generalized to de-
scribe nucleation and growth of crystallites in a flowing melt
with a velocity fieldv~r !. This is achieved by transition from
local to full time-derivatives:d/dt→]/]t1v]/]r in Eqs.~18!
and ~19!.

In view of the available experimental data, the non-QSS
approach seems consistent~at least no contradictions were
found! since it allows one to describe qualitatively different
experiments~which lead either to amorphization or to recrys-
tallization! without additional adjustment of parameters.

Normally, the non-QSS effects in nucleation are impor-
tant only for very small values of the crystallized volume
fraction, while the effects of latent heat are important when
the volume fraction is sufficiently large. The possibility to
observe these two effects simultaneously is rather unusual
and is an additional reason to consider silicon as a remark-
able element. The main reason for such an ‘‘overlap’’ of
non-QSS and latent heat effects is due to moderate values of
the reduced nucleation barrier,W

*
/kT, which for deeply un-

dercooled silicon is close to 20. Although the latter number
should be considered tentative, one can expect that the situ-
ation is described qualitatively correctly since the ultimate
limitation to observing the non-QSS nucleation effects is
much higher@W

*
/kT&30 ~Ref. 18!#.

In view of potential applications it seems worth reiterat-
ing the role of the thermal state of the substrate immediately
after irradiation~see also the discussion in Ref. 11!. This
effect is especially pronounced when the silicon film is
placed directly on the substrate as in Fig. 1~b!. E.g., prelimi-
nary cooling of the remote part of the substrate below room
temperature could essentially facilitate achieving the critical
cooling rate. The seemingly obvious reduction of the film
thickness, on the other hand, has only a limited effect due to
the relative increase of the heat leakage into the substrate
during the laser pulse.
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