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In a recent journal,1 the Becker–Döring equation �BDE�
was solved numerically for large cluster numbers n, giving
the time-dependent distributions of nuclei far into the growth
region. This provides a unique opportunity of a high-
precision verification of the matched asymptotic solution
�MAS� of Refs. 2 and 3, which, due to computational chal-
lenges of the large-n BDE, was previously tested only for
modest R�2R�, the critical size. Comparison is especially
interesting since large supersaturations S were considered in
Ref. 1, leading to strong discreteness effects with significant
deviations from the continuous “Zeldovich–Frenkel” limit.

A dimensionless radius r=R /R� will be used. To adjust
the time scale, consider the Hertz–Knudsen growth law,
which is associated with the BDE and which can be written
as

ṙ =
1

a�
�1 − e−a��, � � 1 − 1/r, a � ln S . �1�

This can serve as a definition of ��2.788 /C1 for parameters
used in Fig. 2 of Ref. 1. The growth-region flux in the MAS
has the form

j�r,t� = J exp�− e−x�, x = �t − ti�r��/� . �2�

Here, ti�r� is the “incubation time”3
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with the barrier W� /kT= �4 /27��3 /a2 in units of dimension-
less interfacial tension � used in Ref. 1, and P indicating the
principal value of the integral. With the above flux, the dis-
tribution is given by

f�r,t� = j�r,t�/ṙ �4�

and, at least for not too small times, successfully reproduces
the numerical data of Ref. 1 �see Fig. 1�.4

The authors of Ref. 1 also considered the “general dy-
namic equation” with a stationary nucleation source placed
at some small size rn�1 �in present notations� and turned on
at t=0. Such a source leads to a sharp front of the distribu-
tion, while the location of that front is sensitive to the selec-
tion of rn. The MAS, on the other hand, suggests that the

source should be both time-dependent and rn-dependent,
with intensity given by Eq. �2� evaluated for �rn−1�→0, i.e.,
with an asymptote

1

�
ti�rn� 
 ln�6W�

kT
� − C�a� + ln�rn − 1� . �5�

�This source appears on the intermediate stages of the
derivation.2,3� Distribution at larger sizes is then insensitive
to selection of rn, provides the latter remains close to 1, and
this distribution is characterized by a smooth front, as in Fig.
1, with a finite width −�� ln f /�r �x=0�−1��ṙ. Inclusion of the
diffusion component of the flux in the growth region is not
required.

An interesting suggested way to avoid ambiguity in se-
lecting the location of a stationary source is to request that
the resulting sharp front give asymptotically the proper num-
ber of nuclei.1 In terms of Eq. �2� this corresponds to x=�,
the Euler constant, quite similarly to the time-lag �“induction
time”� problem.3 Evaluating the related position rn, one ob-
tains

rn − 1 = �6W�

kT
�−1

e−�+C�a�. �6�

This gives a �−3 dependence, close to empirical �−2.9 in the
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FIG. 1. Reduced distribution f�r , t� /�J as a function of r=R /R� at different
times. From left to right: t /��7.2,10.8,17.9,25.1 �equivalently, dimension-
less “time” in Fig. 2 of Ref. 1 is 20, 30, 50 and 70�. Symbols—numerics
�Ref. 1�; lines—Eqs. �2�–�4�. No matching parameters were used.
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lower part of Fig. 4 in Ref. 1. The dependence on a=ln S
also appears reasonably accurate on the logarithmic scale
considered.
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APPENDIX A: EVALUATION OF THE INTEGRAL
IN EQUATION „3…

The presence of P, the principal value integration, was
met with certain caution in the past, which limited the appli-
cation of the MAS. In fact, an alternative representation of
Eq. �3� in more conventional terms of decay and growth
integrals is possible �see Eq. �9� of Ref. 3�. However, in a
situation when �dr / ṙ cannot be evaluated in elementary
functions, Eq. �3�, which splits off the barrier-dependence,
can be more convenient for actual calculations, especially
since modern computational packages can evaluate P auto-
matically. For example, one can use built-in numerical inte-
gration in the latest versions of Mathematica, with the extra
option Principal Value→True. This was done for a
=ln 20.57 of Ref. 1 for a set of sizes r ranging between 1.1

and 10, and was used to plot solid lines in Fig. 1 at different
times.

Alternatively, one could place the burden of P on � /�
=lima→0�1 / ṙ�, which can be integrated explicitly, while the
correction 1 / ṙ−� /� is finite near r=1 and allows integration
in conventional sense. One has
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with the elementary part corresponding to the Zeldovich–
Frenkel limit.3 The above form is more amenable to various
analytical approximations, as discussed in connection with
large-r fluxes observed by Granasy and James5 for the
Turnbull–Fisher alternative of the BDE.
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