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Non-stationary random formation of stable nuclei from a small metastable system is considered. Dis-
tribution of waiting times to observe the first nucleus is examined, and it is shown that the steady-state
nucleation rate is given by inverse of the standard deviation, which is independent of the post-critical
size n where the nucleus is detected. The mean time, on the other hand, is n-sensitive and contains
additional information on transient nucleation and growth effects. The method is applied to Monte
Carlo data on nucleation in a cold two-dimensional Ising ferromagnet with Metropolis dynamics,
where nucleation rates obtained earlier from low-temperature cluster expansions can provide a strict
independent test. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891980]

Nucleation in small droplets of liquid metal was studied
by Turnbull in early 1950s and the interest in such problems
only increased with time, promising an enhanced control over
solidification.1 In present context, the term “small” implies
a system where phase transformation is due to a single (at
most, a few) nucleation event, as also can be of interest in
boiling,2 ice formation,3, 4 or in biological nucleation.1, 5 In
molecular dynamics, small systems are almost standard6 and
attempts to achieve experimentally realistic nucleation barri-
ers can make a system “small” even if it contains up to 109

monomers.7 Similarly, while in the Monte Carlo nucleation
studies of lattice dynamics both large and small systems are
encountered,8, 9 the latter have a significant advantage of pro-
ducing less stress on computer memory. At the same time,
fluctuations in small systems can be enormous, and efficient
statistical methods tailored to specifics of the nucleation prob-
lem are required.

The primary goal of most nucleation studies, whether
experimental or computational, is the evaluation of the rate,
which in neglect of boundary effects can be written as NI with
N being the number of monomers in the system and I the spe-
cific rate per monomer. In the ideal case of a very high bar-
rier, random nucleation represents a stationary Poisson pro-
cess, and the rate can be deduced from the average waiting
time to observe the first nucleus

t̄ ≈ 1/NI . (1)

In reality, however this expression is rarely accurate due to
contribution of non-stationary effects and due to the time re-
quired for a nucleus to grow to “detectable size” n. In such
cases Eq. (1) should be increased by the time lag (“induction
time”) t0—a situation well known to experimentalists,10 even
though analytical expressions for t0(n), which accounts for
both transient nucleation and growth, were constructed later.
Alternatively, at least in computer studies one can attempt to
minimize transient effects by lowering the n value, but then
the rate I in Eq. (1) becomes n-dependent and, assuming the
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validity of the Becker-Döring picture, is modified as11

I (n)−1 = 1

2I
erfc

n∗ − n

�
(2)

(here n∗ is the critical size and � is the width of the near-
critical region—notations are standard). An analogous ex-
pression was suggested12 based on similarity with the “mean-
first-passage time” in the theory of random processes, and by
now Eq. (2) became a widely used tool in analysis of nucle-
ation data.13, 14 Nevertheless, one should keep in mind that
Eq. (2) at least formally is valid only in the near-critical re-
gion, and for some applications large discrepancies have been
reported.14, 15 In addition, it is unclear how the “detector”
affects nucleation in non-classical cases which allow multi-
ple configurations with the same n (the methods based on
Eqs. (1) and (2) were never tested for those few lattice systems
where analytical results for the nucleation rate are available).
Thus, the present treatment which considers non-stationary
effects and larger sizes n well outside of the near-critical re-
gion will be complementary to the one given by Eqs. (1) and
(2). It will be shown that the “mean waiting time” is not the
most adequate way to evaluate the nucleation rate I, and al-
ternatives will be discussed. The treatment will be applied to
dynamic Monte Carlo studies of nucleation in an Ising ferro-
magnet (which is equivalent to lattice gas) where the results
of independent low-temperature cluster expansions16 can pro-
vide a rigorous test.

The probability density function (PDF) w(t) for the dis-
tribution of waiting times and the cumulative distribution
(CDF) F(t) can be related to nucleation parameters as

w(t) = j (n, t)e−ρ(t), (3)

F (t) = 1 − e−ρ(t). (4)

Here j(n, t) is the nucleation flux with a stationary limit NI and
ρ(t) = ∫ t

0 dt ′ j
(
n, t ′

)
with a large-time asymptote NI(t − t0)

where t0(n) is the aforementioned time lag.
In case nucleation is described by a phenomenolog-

ical Becker-Döring equation (BDE), the stationary rate
can be estimated from the Zeldovich formula17 I � �/

(2τ
√

π ) exp(−B), asymptotically accurate for a large
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dimensionless barrier B. The time constant τ is defined as
the inverse of dṅ/dn at n = n∗ where ṅ is the determinis-
tic growth rate associated a given BDE. Similarly, for a large
B the transient flux and ρ(t) are obtained from the matched
asymptotic (singular perturbation) solution of the BDE.18, 19

In the growth region with n − n∗ � � one has18, 19

j (n, t) = NI exp[−e−r ] , r = t − ti(n)

τ
(5)

and

ρ(t) = NIτ E1

(
e−r

)
. (6)

Here E1 is the first exponential integral,20 while the “incuba-
tion time” ti(n) � τ is related to the time lag

t0(n) = ti(n) + γ τ , γ = 0.5772 . . . (7)

and increases with n as
∫

dn/ṅ. (For explicit examples of ti(n)
see Ref. 19.) In a large system ρ(t) can be associated with the
number of nuclei exceeding size n. The results were indepen-
dently tested against high-precision numerics,21, 22 and can be
used for analysis of nucleation data if the Becker-Döring pic-
ture is deemed appropriate.

For a small system with ε = NIτ � 1 the characteristic
time is large, and one can further simplify the PDF by using
the asymptote of the exponential integral and adjusting the
constant to preserve normalization. In terms of dimensionless
reduced “time” r defined in Eq. (5):

w(r) � ε exp[−e−r − εr]/�(1 + ε). (8)

For ε → 0 this becomes a delayed exponential distribution. In
original time units one has

w(t) ≈ NI	(t − t0)e−NI (t−t0). (9)

When evaluating the moments of the distribution t̄ k

= ∫ ∞
0 t kw(t) dt , the lower integration limit can be replaced

by −∞. This allows one to express t̄ k as combinations of
ti and the moments of the reduced time r. In particular, t̄

= ti + τ r̄ and the variance σ 2 is given by τ 2(r̄2 − r̄2). The el-
ementary approximation given by Eq. (8) then allows explicit
evaluations:

t̄ = t0(n) − γ τ − τ�(Iτ ) � 1

NI
+ t0(n) − 1

6NI
(πε)2,

(10)

σ = τ
√

�1(ε) � 1

NI
+ 1

12NI
(πε)2, (11)

with �(z) = d/dz ln �(z)—the digamma function, and �1(z)
= d�(z)/dz. Note that even without the assumption of small
ε, the standard deviation σ is independent of the cluster
size n, which is the main conclusion of this Communica-
tion. The leading part of Eq. (11) is expected to be accu-
rate when applied to small systems with ε � 1, allowing
an immediate estimation of the stationary rate I � 1/Nσ . In
practice there are several possibilities to evaluate ε, either
from the fit to the observed w(t), or as τ /σ where τ can be
obtained when considering growth and decay of individual
nuclei.23 In the example below, however, I and τ are known

independently, so that the accuracy of the approach can be
verified.

Consider non-classical nucleation in a two-dimensional
Ising model on a square lattice with nearest-neighbor inter-
actions and Metropolis dynamics. The model is standard for
Monte Carlo (MC) simulations.8, 24 The treatment is restricted
to the “cold” region corresponding to 0.35 of the critical tem-
perature. While simulations take longer here, there is a unique
opportunity to compare the MC results and the statistical anal-
ysis to accurate estimations of the rate I and transient fluxes
j(n, t)/N, which can be obtained using symbolic computations
and matrix methods.16 Next, although the Becker-Döring pic-
ture formally is not applicable due to the presence of “magic
numbers” and due to branching of the nucleation path, the
general double-exponential shape of the transient flux remains
accurate.16 This bolsters the justification of the approach. The
parameters t0 and τ have to be evaluated directly, however,
using the aforementioned symbolic and matrix methods. Here
we will use I = 1.75 × 10−6, τ = 6.134, corresponding to di-
mensionless field (“supersaturation”) of 0.22, and t0 = 19.964
for n = 20.16

The MC scheme was similar to the one used before,9 up-
dated for Mathematica 9. A typical lattice had dimensions N
= 141 × 141 � 20 000, corresponding to ε � 0.2. The system
was prepared with all spins pointing “down” while the exter-
nal field favored the “up” direction. On each step a spin was
randomly selected for an attempted flip. After each N steps
the time t was increased by +1 and the Hoshen-Kopelman al-
gorithm was used to identify the largest cluster with n spins.
Once n reached a selected “detection limit” the correspond-
ing t was recorded as the “waiting time,” and the simula-
tion run was restarted. Typically, 1000 data were generated
in each case, with about 3% expected error when finding the
mean.

The values of n in Fig. 1 were selected as perfect squares,
reflecting the shape of a bulk nucleus at low temperatures.
The standard deviation (SD) indeed remains near-constant at
a = √

n > 3, and is in good agreement with the inverse of
the independently calculated “first-principle” nucleation rate.

3 4 5 6 7
n

10

20

30

40

50

waiting time

FIG. 1. Monte Carlo (MC) data for the mean of waiting times (solid sym-
bols) and their standard deviation (open symbols) as functions of the “size” n
(number of spins) in a detectable cluster on a square lattice with N � 20 000.
The horizontal straight line is 1/NI with I found from low-temperature cluster
expansions.16
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Rapid decay of the SD at smaller n indicates the vicinity of the
critical size. Within the Becker-Döring picture one expects the
SD to drop to 1/2 of its value at n = n∗ for small ε. In princi-
ple, this could serve as an indicator of n∗ , much more accurate
than the one given by Eq. (2) since the average waiting time
does not tend to a constant at large n. The t̄ values still can be
used to estimate the rate I, but measurements for two differ-
ent lattices are required. Neglecting the small-ε corrections,
one has I � (1/N1 − 1/N2)/

[
t̄1(n) − t̄2(n)

]
, with I = 1.87

× 10−6 if data for N1 = 141 × 141, N2 = 200 × 200, and
n = 20 are used; in general, the expected error is quadratic in
ε evaluated for the larger lattice.

The average waiting time can also indicate the critical
size a∗ = √

n∗ if one uses an explicit expression for ti(a) as
a fit function. For example, in the case of non-conserved dy-
namics and neglecting the discrete structure of n, one has19, 23

ti(a) = τ [const + ln (a/a∗ − 1) + a/a∗], where the const is
logarithmically sensitive to the nucleation barrier and also de-
pends on the dimensionality of the system. A similar structure
is then expected for t̄(a), which can be fitted to data in Fig. 1
at a ≥ 3 to give a∗ ≈ 2.15 . The latter is reasonably close
to a∗ = √

5 � 2.24 from Refs. 16 and 25, although there are
subtle issues in identifying the “first-principle” critical size
with its phenomenological “Becker-Döring” counterpart.16, 25

The phenomenological barrier B can be deduced from the Zel-
dovich expression for the rate. In two dimensions one has
B = 1

2 W[a4∗/(2πI 2τ 2)] ≈ 10.5 where W[z] is the Lambert
W function.

The PDF of waiting times at n = 20 is shown in Fig. 2.
Correspondence between MC and analytics is reasonable; for
small ε the general asymptotic expression, which involves a
special function, indeed can be accurately approximated by a
simpler Eq. (8). The delayed exponential distribution, which
ignores the smallest transient time scale τ but accounts for the
time lag t0(n), is inaccurate in terms of PDF but would give
almost correct average and SD. The complementary CDF 1 −
F(t) is shown in Fig. 3 which compares MC data to the gen-
eral asymptotic expression exp [ − εE1(e−r)]. The correspon-

0 50 100 150 200
t

0.005

0.010

0.015

0.020

0.025

0.030

0.035
w(t)

FIG. 2. The probability distribution function (PDF) for the waiting times.
Symbols—MC data (binned) on the same lattice as in Fig. 1. Lines: solid—
from Eqs. (3), (5), and (6); smooth dashed—elementary approximation,
Eq. (8); sharp dashed—delayed exponential, Eq. (9). No matching param-
eters were used.
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FIG. 3. Complementary CDF for two square lattices with N = 40 000 (left)
and N � 20 000 (right). Step-like lines—from MC simulations; smooth solid
lines—from Eqs. (4) and (6).

dence is decent if one keeps in mind the absence of matching
parameters.

In summary, the mean of waiting times to observe the
first nucleus contains useful information on both steady state
and on transient nucleation, and is sensitive to the “detection
size” n. In contrast, the standard deviation is practically n-
independent in the growth region, and is close to the inverse of
the stationary nucleation rate, allowing a more efficient eval-
uation of the latter. The full distribution of waiting times also
was considered, and the statistical approach was verified for
a cold Ising ferromagnet where independent “first-principle”
data are available.
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