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The classical description of nucleation of cavities in a stretched fluid relies on a one-dimensional
Fokker-Planck equation (FPE) in the space of their sizes r, with the diffusion coefficient D(r) con-
structed for all r from macroscopic hydrodynamics and thermodynamics, as shown by Zeldovich.
When additional variables (e.g., vapor pressure) are required to describe the state of a bubble, a
similar approach to construct a diffusion tensor D̂ generally works only in the direct vicinity of the
thermodynamic saddle point corresponding to the critical nucleus. It is shown, nevertheless, that
“proper” kinetic variables to describe a cavity can be selected, allowing to introduce D̂ in the entire
domain of parameters. In this way, for the first time, complete FPE’s are constructed for viscous
volatile and inertial fluids. In the former case, the FPE with symmetric D̂ is solved numerically.
Alternatively, in the case of an inertial fluid, an equivalent Langevin equation is considered; results
are compared with analytics. The suggested approach is quite general and can be applied beyond the
cavitation problem. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997934]

Cavitation is of enormous interest in many technologi-
cal and scientific applications, ranging from the explanation
of erosion of turbine blades to particle detection in bub-
ble chambers.1,2 The recent experimental1,3 and molecular
dynamics studies4 further challenge the theoretical under-
standing of various cavitation mechanisms. In addition, the
theory of cavitation can provide a broader insight into the
plethora of other nucleation phenomena.5 In particular, Zel-
dovich’s description6 of formation of a cavity in a stretched
viscous fluid crowned what is now known as the “classi-
cal theory of nucleation” by providing the first example of
a macroscopic derivation of the diffusion coefficient D(R)
responsible for the random walk of a nucleus in the space of its
sizes.

Generalization of the macroscopic approach for the case
of multiparametric nucleation (when extra variables, such as
fluctuating pressure, are required to characterize a nucleus)
is straightforward only in the vicinity of the saddle point,7–9

the multidimensional equivalent of the critical size. While the
saddle point properties are sufficient for some of the ana-
lytical conclusions (see below), the full description of the
cavitation problem requires specification of the Fokker-Planck
equation (FPE) for the entire domain of the parameters. Cur-
rently, in the absence of appropriate FPE’s, there are practically
no numerical simulations of the early (nucleation) stages of
cavitation. This is in contrast to the problem of multicom-
ponent condensation where the microscopic diffusion tensor
is introduced and where a large amount of numerical work
has been performed.5,10 Analytical descriptions could also
benefit from having a complete FPE since many nucleation
issues require an off-saddle point analysis.9 The intent of the
present communication is thus to demonstrate a possibility
of a macroscopic construction of a complete diffusion tensor,
generalizing the 1-dimensional Zeldovich approach. Specifi-
cations will be made for the cavitation problems in volatile

and inertial fluids. Numerical simulations will follow, with
accuracy sufficient to extract the pre-exponential of the nucle-
ation rate. Comparison of the results with available expressions
will clarify connection between single- and multidimensional
descriptions.

Let us start with the original problem6 of formation of
an empty cavity of radius R in a viscous fluid under negative
pressure P. The critical radius R∗ = 2σ/(−P) with σ being the
surface tension is determined by the balance between P and
the Laplace pressure, and in what follows, the asterisk will
indicate a function evaluated at R∗. The minimal work to form
a cavity is given by W (R) = W∗w0(r), with w0(r) = 3r2

� 2r3,
r = R/R∗, and W∗ = 4πσR2

∗/3. If R , R∗, the cavity will
grow/decay in accord with macroscopic hydrodynamic equa-
tions, Ṙ = (R − R∗) |P |/4η, η being the viscosity. Further, a
FPE for the distribution of cavities over sizes f (R, t) is con-
structed as ∂f /∂t = −∂j/∂R, where the flux along the R axis is
given by j = −Df eq (∂/∂R) f /f eq with f eq(R) ∼ exp (−W/T )
being the quasiequilibrium distribution (the Boltzmann con-
stant is taken as 1). The diffusion coefficient D(R) has to ensure
transition to correct drift flux Ṙf in the case of a smooth dis-
tribution. This leads to the “Einstein relation” in the R-space6

with

D(R) = −TṘ
/
(dW/dR). (1)

The nucleation rate I is then obtained from the asymptotic
solution of a Fokker-Planck equation with the stationary flux
given by6

I =
λ0
√

2π
f eq (R∗)

(
−

1
T

d2W

dR2

�����∗

)−1/2

, λ0 =
dṘ
dR

�����∗
. (2)

Subsequently, when evaluating λ0 in the above equation,
Kagan11 discussed various kinetic effects due to inertia, evap-
oration, and heat conductivity of the fluid. Two- and multi-
dimensional FPE’s were later considered, e.g., in Refs. 7–9,
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based on a generalized FPE for the distribution f
(
~u, t

)
with a

d-component ~u = (r, z, . . .) and f eq (
~u
)
∼ exp

[
−W

(
~u
)
/T

]
,

∂f
∂t
= −∇̂ ·~j , ~j = −f eqD̂ ·

(
∇̂

f
f eq

)
. (3)

Here z represents “additional variables” (to be specified below)
that characterize the state of an r-sized nucleus and the diffu-
sion tensor D̂ is linked to the deterministic (macroscopic) rate
~̇u via

~̇u = −
1
T

D̂
(
~u
)
· ∇̂W

(
~u
)
. (4)

The work W
(
~u
)

has a saddle point at~u = ~u∗ and the stationary
flux across the saddle had been derived in a non-cavitation
context as12

I = λ0Qf eq (r∗ , z∗), Q =
(2π)d/2−1√
− det V̂

. (5)

The analog of λ0 in Eq. (2) is defined as the positive eigen-
value of the kinetic (Jacobian) matrix K̂ = ∇̂~̇u and the Hessian
matrix V̂ = (1/T )

(
∇̂∇̂

)
W

(
~u
)
|∗ describes the shape of the

saddle. The technique of simultaneous diagonalization of the
symmetric tensors D̂∗ and V̂ , which leads a straightforward
derivation of the flux I, also allows the time-dependent treat-
ment of the cavitation problem.9 In the case of inertial effects
with non-symmetric D̂, such a diagonalization is impossible
but the general equation (5) remains adequate, being equivalent
to Kramers solution for a barrier crossing in the overdamped
limit.13

In a general situation, the issue of reconstructing D̂ at
arbitrary ~u remains. The apparent similarity of the multidi-
mensional equation (4) with Eq. (1) is deceptive. Indeed, a
symmetric d-dimensional tensor has d(d + 1)/2 independent
components, while Eq. (4) gives only d relations between
them—a situation which can be uniquely resolved only for
d = 1. On the other hand, if there exists a set of variables ~u
such that D̂

(
~u
)

is diagonal everywhere, one needs only d inde-
pendent components, which allows us to generalize Eq. (1)
as

D̂
(
~u
)
= −Tdiag

{
~̇u

/
∇̂W

}
(6)

(the symbol diag indicates the diagonal matrix). The consis-
tency of the treatment is indicated by positive non-singular
values of the diagonal elements for the entire domain of ~u.
Similar ideas can be used for antisymmetric D̂, as will be dis-
cussed below. When such a set of “proper” kinetic variables ~u
can be found, as in the case of cavitation, the coefficients of
the FPE can be deduced solely from macroscopic kinetics (~̇u)
and thermodynamics (W ).

Volatile fluid. When selecting the additional variable to
characterize the state of a bubble, one can choose between the
vapor pressure Pv or the number of molecules n inside a bub-
ble. The former leads to a diagonal V̂ ,9 the latter results in a
diagonal D̂ and is preferable in the present context. Specif-
ically, z = n/n∗ will be used, where n∗ is the number of
molecules in a critical bubble. If the vapor is treated as an ideal
gas, the work W is known11 and in current variables is given
by

1
W∗

W (r, z) = w0(r) +
2
b

(
r3 − z

(
1 − ln

z

r3

))
. (7)

Here b = 1 − P/Pv,∗ (where Pv,∗ is the equilibrium vapor
pressure), R∗ = 2σ/bPv,∗, and W∗/T = 1

2 bn∗ . In order to
dimensionalize the growth rates, time will be measured in units
of 4η/

(
bPv,∗

)
, where η is the viscosity, and the dimensionless

evaporation rate will be defined as θ '
√

6/παcvTη/σ, with αc

as the condensation coefficient and vT as the thermal velocity
of vapor molecules. One has

ṙ = r − 1 +
1
b

( z

r2
− r

)
, ż = θr2

(
1 −

z

r3

)
. (8)

The first equation corresponds to the viscous limit of the
Rayleigh-Plesset equation, while ż is determined by the differ-
ence of the evaporation and condensation rates on the surface
of the bubble. The θ-independent conditions ṙ(r, z) = 0 and
ż(r, z) = 0 correspond to mechanical and chemical equilib-
rium, respectively. The below two equations determine K̂∗
and V̂ ,

K̂∗ = *
,

1 − 3/b 1/b

3θ −θ
+
-

, V̂ = 6
W∗
T

*
,

3/b − 1 −1/b

−1/b 1/3b
+
-

.

(9)
Evaluation of the eigenvalue λ0 from det ���K̂∗ − λÎ

��� = 0 (with Î
being a 2× 2 identity matrix) leads to an elementary quadratic
equation, and following Ref. 9, only the leading terms as θ → 0
are presented explicitly (note that K̂∗ and thus λ0 are invariant
upon transformation of variables). For θ � |b − 3|,

λ0 '




bθ
3 − b

, b < 3,

1 − 3/b , b > 3.
(10)

A zero limit for θ → 0 and b < 3 implies that for a vanishingly
small evaporation rate, empty, rather than filled, cavities will

be nucleated.9 From λ0 and
√
− det V̂ = n∗

√
3b, one obtains

the nucleation rate in Eq. (5).
From Eq. (9), one gets a diagonal D∗ = −K̂∗ · V̂−1.

This strongly simplifies its evaluation at arbitrary (r, z). From
Eq. (6), one has

D̂(r, z) =
T

6W∗
diag

{
1
r

, 3bθ
z/r − r2

ln
(
z/r3) } . (11)

Formally, adding a certain symmetric tensor δD̂(r, z) with a
zero determinant and with zero components at (r∗, z∗) would
lead to the same ṙ and ż in Eq. (4). Nevertheless, symmetry—in
this case, the diagonal structure of D̂∗—is a powerful property
and at least from a macroscopic point, it is unlikely to abruptly
break down in the non-saddle region.

Once D̂(r, z) was specified, the FPE, Eq. (3) was dis-
cretized on a 200 × 200 grid with spacing δr = δz = 0.01
so that the upper boundaries rmax = zmax = 2 are sufficiently
far from the saddle located at r∗ = z∗ = 1. A Dirichlet-
type boundary condition f (δr, z) = A exp [−W∗w(δr, z)/T ]
was used at the smallest size, while a reflecting (Neumann-
type) boundary with jz(r, 0) = 0 was used for empty cav-
ities. The value of the normalization constant A does not
matter as long as the scaled rate I/f eq (r∗, z∗) is considered.
Absorbing boundaries f (rmax, z) = f (r, zmax) = 0 were
assumed on the two other sides of the square. In the sta-
tionary limit, one obtains a set of linear equations for f (r, z)
at the grid points, which was solved using Mathematica.
A more stable (also, more time-consuming) alternative is
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FIG. 1. Thermodynamic part of the nucleation pre-exponential Q = I
/[

λ0f eq (r∗ , n∗)
]

for cavitation in a volatile fluid. Symbols—numerics (from
the Fokker-Planck equation); line—Q = 1/

√
3b.

the propagation of the time-dependent solution. The rate I
was calculated as the total flux across the right and the
upper boundaries. The results were used to determine the
pre-exponential of the nucleation rate, as in Fig. 1. After the
unstable eigenvalue λ0 is scaled out, almost all numerical data
become insensitive to kinetics and collapse on the expected
thermodynamic curve (which appears perfectly smooth at
b = 3). Minor deviations at extreme θ are likely due to mod-
erate values of the nucleation barrier W∗/T = 25 used in
simulations.

Having confirmed the accuracy of the 2-dimensional treat-
ment, we return to Eq. (2). One has for the 1-dimensional
equilibrium distribution over sizes

f eq(r) =
∫ ∞

0
dzf eq(r, z) ' A

√
2πr3

n∗
exp

[
−

W∗w0(r)
T

]
.

(12)
The major contribution to the integral comes from the vicin-
ity of the line of chemical equilibrium z = r3, and w0(r)
= 3r2

� 2r3 describes the reduced work to create a correspond-
ing bubble. If the factor A is not assumed constant, it should
be evaluated on the same line. After that Eq. (2) gives the
same rate I; λ0 can be determined either as dṙ/dr |∗ along the
growth/decay trajectory11 (which is different from the chemi-
cal equilibrium for finite θ) or as a positive eigenvalue of K̂∗. At
the same time, there are subtleties associated with the “quasi-
1-dimensional description” when the Zeldovich equation (2) is
applied in the multiparametric situations. For example, if one
re-writes it in terms of the number of molecules in a bubble
rather than in terms of its radius, which implies swapping r
and z in Eq. (2) and under the integral in Eq. (12), this integral
diverges for b ≥ 3 and f eq(n) is not defined. The latter is related
to the breakdown of the original Döring’s approach in this
region.

Inertial fluid. Let us follow notations in Ref. 14 introduc-
ing a dimensionless “inertial size” rin = 8η2/ (ρσR∗) with
ρ being the density of the fluid and using “time” t time mea-
sured in units of 4η/|P |. In addition to “potential energy” w0(r)
= 3r2

� 2r3, the dimensionless work includes kinetic energy
of the surrounding fluid;8 in current variables,

1
W∗

W (r, ṙ) = w0(r) +
1
2

m(r)ṙ2 , m(r) =
6r3

rin
. (13)

Here m(r) is the “associated mass.” The growth/decay rate
of a cavity follows from the dissipation relation ẇ = −6rṙ2

and is given by the dimensionless version of the Rayleigh-
Plesset equation with negligible vapor pressure inside the
cavity,

ṙ = r − 1 −
r

rin

(
rr̈ +

3
2

ṙ2
)
. (14)

Nucleation can be described as a random walk in the (r, ṙ)
space and, except for an r-dependent mass, is close to the
Kramers escape problem.13,15 In view of the current empha-
sis on the symmetry (antisymmetry) of the diffusion tensor,
the “best” kinetic variable, however, is the associated gener-
alized momentum p = m(r)ṙ, similar to the case of quantum
cavitation.16 Using h(r, p) = w0(r) + p2/2m(r) as a “reduced
Hamiltonian,” one has an equivalent representation of
Eq. (14),

ṙ =
∂h
∂p

, ṗ = −
∂h
∂r
− p

rin

r2
, (15)

with the last term describing the “friction force.”
The quasiequilibrium distribution is given by f eq(r, p)

= A exp
[
−W∗h(r, p)/T

]
. Unlike the previous case of the

volatile fluid where the pre-exponential could be specified
within the classical theory only as “a slowly changing func-
tion,” in the (r, p) space, a constant A is well justified since it
complies with the Gibbs distribution. Thus, it makes sense to
evaluate A explicitly. The 1-dimensional distribution f eq(r) is
similar to the one in Eq. (12) with n∗ replaced by rinW∗/6T .
Assuming a known number of primary bubbles and keep-
ing in mind that the leading asymptotic approximation can
be insufficient when not-too-large barriers are of interest (see
below), one obtains an asymptotic series for normalization per
bubble,

A =

(
W∗
T

) 7
4 3

3
4
√

rin
√
πΓ

(
5
4

) *.
,
1 +

∑
n

′
(

4T
27W∗

) n
2 Γ

(
5
4 + 3n

2

)
n! Γ

(
5
4

) +/
-

−1

.

(16)
Here Γ(x) is the Gamma function and the prime indicates that
summation should be terminated once the smallest term is
achieved.

To evaluate the nucleation rate, one can use the simplest
equation (2). The positive eigenvalue of the kinetic matrix K∗
= ∂ (ṙ, ṗ) /∂(r, p)|∗ (with r∗ = 1, p∗ = 0) coincides with the
Kramers expression13 if the mass of the particle is fixed at the
critical value m (r∗) = 6/rin,

λ (rin) =
1
2

(√
r2

in + 4rin − rin

)
(17)

(see also Refs. 8 and 17), with the viscous limit rin → ∞

corresponding to λ→ 1. Thus,

I = λ (rin) Ĩ , Ĩ = A

(
W∗
T

)−1
√

m (r∗)
6

e−W∗/T . (18)

Similarly, the same result follows from Eq. (5) with V̂
= (W∗/T ) diag {−6, 1/m (r∗)} and Q = T/

(
W∗
√

rin

)
. Due

to normalization, the pre-exponential Ã = I exp (W∗/T ) dif-
fers from earlier expressions and will be verified numeri-
cally below. For small η and large W∗ � kT , one has in
dimensional units Ã ' 4π1/4Γ−1

(
5
4

)
σ5/4T−3/4ρ−1/2. The lat-

ter is non-singular near the line of the phase equilibrium
W∗ → ∞ and evaluates to about 1013 s�1 for a water-like
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FIG. 2. Kinetic part of the pre-exponential in inertial cavitation for two values
of the dimensionless barrier B = W∗/T . The values of λ, Eq. (17), can range
between 0 and 1 corresponding to non-viscous and highly viscous limits,
respectively. Symbols—simulations based on the Langevin equation; line—
from Eq. (18).

fluid albeit with negligible viscosity. The analog of the under-
damped Kramers solution mentioned in Ref. 6 is not required
even for η → 0 9 due to vanishing mass m(r) as r → 0,
which always makes the problem “overdamped” at small
sizes.

From here, we can proceed in evaluating D̂(r, p). To
keep the antisymmetric structure of D̂∗ = −K̂∗ · V̂−1, one
constructs

D̂(r, p) =
T

W∗
*
,

0 −1

1 6r
+
-

. (19)

This specifies the FPE for cavitation limited by viscosity and
inertia of the fluid. Again, we reject the possibility of adding
a correcting tensor δD̂(r, z), even if Eq. (4) is satisfied, since
that would violate the symmetry.18

In practice, the numerical solution of Eq. (3) with an
asymmetric tensor D̂ can be complicated. Instead, one can
use a discrete version of the Langevin equation describing the
stochastic evolution of a single cavity. (This is similar to sim-
ulations of the Kramers problem, e.g., Ref. 19, albeit with an
r-dependent mass.) If one considers a small time increment δt
and a random variable ξ(t) = ±1, the changes of the radius ∆r
and the momentum ∆p of a cavity are given by

∆p = ṗδt +
√

2δtDpp ξ(t) , ∆r =
p

m(r)
δt. (20)

When solving the Langevin equation, the barrier (and
thus the exponential part of the nucleation rate) is deter-
mined by the noise intensity. This makes extraction of the
pre-exponential more challenging than in the case of the FPE
for the volatile fluid described earlier, where the correct bar-
rier is introduced from the start via the input of f eq(r, z). In
addition, since the associated mass of the cavity vanishes as
r → 0, a rather small time step δt has to be selected, while
a reflecting boundary is required at some small rmin to pre-
vent the simulated particle from approaching the singularity.
Thus, smaller barriers W∗/T ∼ 10 were used, with rmin = 0.05
and δt ∼ 0.000 125 – 0.000 062 5. Simulations were done with

Mathematica, with about 100 runs for each data point; the
rates I were determined as the inverse averages of the waiting
time for the cavity to reach a size of r = 2 (using the inverses
of the standard deviations20 gave comparable values). Results
for the kinetic part of the pre-exponential are shown in Fig. 2;
doubling of some symbols is due to doubling of the time step
for the same parameters and the indicated statistical scatter is
about 10%.

In conclusion, the study describes a general macroscopic
approach to constructing a diffusion tensor for the mul-
tiparametric nucleation problem, which generalizes the 1-
dimensional Zeldovich method. This allows us to fully specify
the multidimensional Fokker-Planck equation (FPE) in the
entire space of the parameters of a nucleus, as shown explic-
itly for cavitation in viscous volatile and inertial fluids. The
FPE, or its stochastic counterpart, the Langevin equation, can
be solved with accuracy which is sufficient to extract the pre-
exponential of the nucleation rate. This opens the possibilities
of future descriptions of cavitation, as well as other nucleation
problems, which are not restricted to the saddle point approxi-
mation and which would clarify the role of selected boundary
conditions, time dependent effects, redistribution of nucleation
paths, etc.
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