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Early stages of Ostwald ripening
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The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in
the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation
is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the
enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized
BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner
asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial
conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the
matrix.
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In 1958 Lifshitz and Slyozov (LS) wrote one of the most
influential papers on phase transformation kinetics [1]. When
considering diffusion-limited growth of grains in supersat-
urated solid solutions, they showed that asymptotically the
distribution over sizes tends to a self-similar universal shape,
while the critical, average, and maximum sizes all change as
a cubic root of time (the t1/3 law). In sequel Refs. [2,3] it was
further demonstrated that these results were extremely robust,
and remained valid even if elastic stress, anisotropy, and other
effects were taken into consideration. Shortly after, Wagner [4]
described a similar scenario for the ballistic (interface-limited)
growth, with characteristic sizes changing as t1/2. Since then,
the LSW theory of “ripening” (i.e., growth of large particles
at the expense of small ones) was applied to an enormous
variety of problems in condensed matter physics and materials
science [5,6].

The nonlinear integro-differential equations describing
ripening also received much attention in mathematical lit-
erature [7–11]. In particular, it was shown [8] that at large
times these equations follow as a deterministic limit of the
Becker-Döring nucleation equation (BDE) combined with a
mass conservation law. Other self-similar solutions have been
constructed for the ripening equations (e.g., Ref. [8]), and the
formal extreme sensitivity to initial conditions (IC), labeled
as “mathematical chaos” [9], was demonstrated both analyt-
ically and numerically [12]. Despite the resulting “selection
dilemma” (e.g., [9,13–15]), the current consensus is that there
is no realistic alternative to the classical LSW limit. One needs,
however, to identify adequate physical IC for the ripening
equations. Such IC are supplied by the generalized BDE, yet
so far a transition to the LSW asymptotic regime starting from
proper nucleation distributions has not been observed.

From an experimental point, the unknown sensitivity to
IC can be especially detrimental. While ripening particles are
typically large and can be detected by conventional optical
methods, it remains unclear how the elusive information about
earlier stages can be reliably extracted from such observations.
For example, in many applied papers the t1/3 law is modified as
a∗(t)3 ≈ a∗(0)3 + const. × t and used to assess the nucleation
critical radius a∗(0), which is incorrect. Numerical description
(e.g., [12,16], and references therein) can be only of limited
assistance here since while direct solutions of the BDE on

the nucleation stage are straightforward [17,18], the ripening
equations require much larger, often unknown time scales and
need additional analytical insight. Still less is known about the
deviation from the LSW limiting values of the key ripening
parameters, such as γ , the dimensionless time derivative of the
critical size (see the definition below). The original suggestion
[3,19] that for noncompact IC the limit is approached from
above has not been tested, and is in contradiction with
observations of the present Rapid Communication, albeit for
rather different IC.

In the initial, fluctuational stage of a phase transformation
one can single out the “fast” and “slow” stages. During the
fast stage transient nucleation takes place and the quasi-
steady-state (QSS) or the “Zeldovich” [20] nucleation rate
J is established. During the slow stage the metastable phase
gets depleted by growing particles of the new one, and J

gradually vanishes, indicating the end of nucleation. The
fast stage can be described from the matched asymptotic
solution of the BDE [21,22], which leads to a characteristic
double-exponential “front” (DEF) in the distribution of the
largest particles. In principle, those particles should eventually
determine the peculiarities of the transition to the LSW
asymptotic regime [21], although the actual path to the latter
was not elucidated. Also, it remained unclear what happens
if the transient stage is neglected. In a recent Ref. [23] it was
demonstrated that the LSW regime will never be established
starting from the slow stage alone due to discontinuity of
the QSS distribution. General nucleation distributions, which
combine both the fast and slow stages and which have no
discontinuity, were constructed in Ref. [24]. In the present
communication these distributions are used as the IC for
growth and ripening, and they are sufficient for subsequent
convergence to the LSW limit. Numerics is similar to the
growth part of the earlier scheme [24], with an additional
“ripening” feature: Particles with subzero sizes are removed.
The initial number of representative sizes is chosen around
N ∼ 5 × 103, with about half of this value assigned to the DEF,
which replaces the QSS discontinuity. Typically, a simulation
is stopped for N � 100.

Main notations will be close to standard [19], with γ being
the inverse of the one used in the textbook. Consider determin-
istic growth of particles of radius a: ȧ = λa∗u−θ (1 − 1/u),
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with u ≡ a/a∗, λ ∝ a−θ−2
∗ , and θ = 0, 1 corresponding to

interface- and diffusion-limited growth, respectively. (The case
θ = −1 with linear growth is special [25] and will not be
discussed here.) Furthermore, let us redefine the “time” to
have the growth law as

a∗u̇ = u−θ (1 − 1/u) − γ u , γ ≡ ȧ∗ . (1)

With the new definition a∗(t) becomes linear in the LSW
limit, and a uniform time step can be used in numeri-
cal integration. The distribution f (a,t) follows the con-
tinuity equation ∂f/∂t + ∂/∂a (ȧf ) = 0, and will be rep-
resented as �0(t)P (u,t) with a normalized P and with
�k ≡ ∫ ∞

0 akf (a,t) da. The conservation law is written as
1/a∗ ∝ const. − �3 with const. = (S0 − 1) /S0 , the initial
supersaturation, to comply with notations of Ref. [24].

For a self-similar distribution P (u,t) = P (u) the continuity
equation requires γ = const., while the conservation law leads
to a time-independent product �0a

3
∗ . One thus has a∗ = γ t ,

�0 ∝ 1/t3, and

Pγ (u) = 3γ

−a∗u̇
exp [3γ τ (u)] � (u1 − u) ,

(2)

τ (u) =
∫ u

0

du′

a∗u̇′ ,

where u1 is the smaller positive root of u̇, with τ (u1) =
−∞. This is in general agreement with previous stud-
ies mentioned in the Introduction. The explicit � func-
tion is useful for further construction of a non-self-
similar approximation. The LSW case corresponds to
γ = γmax when the two roots coalesce, with γmax = 1/4
or 4/27 for θ = 0 or 1, and the distributions given
by P 0

1/4(u) = 24u exp [3 − 6/(2 − u)] (2 − u)−5 and P 1
4/27 =

324u2 exp [1 − 3/(3 − 2u)] (3 − 2u)−11/3(3 + u)−7/3 .
In case of γ < γmax in Eq. (2), the singularity in the pre-

exponential at u → u1 can be compensated by the divergence
of τ (u) only for γ � γmin with γmin = 4/25 and 25/216 for
θ = 0, 1 (and outside of the interval [γmin , γmax] a physically
reasonable self-similar solution does not exist). For γ = γmin

the distributions are discontinuous:

P 0
4/25(u) = 1500u(5 − u)−5� (5/4 − u) (3)

and

P 1
25/216(u) = 16200u2

(36 − 6u − 5u2)3

(
12 + (

√
21 − 1)u

12 − (
√

21 + 1)u

)√
3/7

×�

(
6

5
− u

)
. (4)

Except for normalization constant and the theta function, the
second equation (θ = 1) is equivalent to a combination of
exponential and inverse hyperbolic functions of Ref. [23].

We are now interested in whether and how fast the distribu-
tions discussed above are established. The dimensionless input
parameters are the nucleation barrier B � 1, which determines
the exponential part of the initial QSS rate J ∝ λ exp(−B),
and the initial “critical radius” (cubic root of the number
of monomers in a nucleus) a0

∗ � B1/3, with supersaturation
S � 1 + 2B/a3

∗ . The characteristic nucleation physical time
is t̃ ∝ (J0)−1/α � 1/λ with α = (θ + 4)/(θ + 1) and with

0.5 1.0 1.5
u

0.5

1.0

1.5

2.0

2.5

P u,t

50 100 150
u

0.005

0.01

P u,0

FIG. 1. (Color online) Selection between the LSW distribution
(lower bell-shaped dashed curve) and the discontinuous distribution,
Eq. (3) (sharply peaked solid line). Initial conditions (IC) for growth
and ripening (inset) are either QSS (dotted) or with transient nucle-
ation (line). The distribution with QSS IC is shown at t = 200 000 by
solid symbols, closely approaching the discontinuous curve. With
transient IC (open symbols), the smoothed distribution given by
Eqs. (3), (6) is initially approached (middle line at t = 80 000);
later the distribution broadens (shown at t = 800 000) and practically
blends in with the LSW curve.

�0 ∼ J0 t̃ . The post-nucleation distributions [24] depend on the
time tn � t̃ during which the system is allowed to nucleate, and
with selected a0

∗ = 6, tn = 2t̃ are shown in the insets in Figs. 1
and 2 for θ = 0 (B = 32.5) and θ = 1 (B = 30), respectively.
These distributions are confined between some a0

min � a0
∗ and

a0
max � a0

∗ . The value of tn which affects both a0
min and

a0
max should be selected before a∗ changes significantly, but

otherwise tn only shifts the “ripening time” t (which, in the
current definition, starts from zero once the nucleation is
over). Similarly, the structure of the initial distribution of small

0.6 0.8 1.0 1.2 1.4
u

1

2

3

4

5

P u,t

20 30
u

0.05

0.1

P u,0

FIG. 2. (Color online) Same as in Fig. 1 but for diffusion-limited
growth. The discontinuous distribution is Eq. (4) (solid line); it is
approached starting from QSS initial conditions (solid symbols, at
t = 1 500 000). The distributions from non-QSS IC are shown by
open symbols. At early ripening times they are approximated by
Eqs. (4), (6) (smooth tall and intermediate solid lines, at t = 1 500 000
and t = 1 550 000, respectively). At t = 3 000 000 the LSW shape
(lower line) is approached.
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FIG. 3. (Color online) Time dependence of the critical size
(main panel) and its derivative γ (inset) in the ballistic case. Main
panel: Symbols (thick line), with QSS IC; thin solid line, with
transient nucleation IC. Dashed straight line has the LSW slope
γ = 1/4; dotted straight line has γ = 4/25, as for the discontinuous
distribution. Inset: Horizontal dashed lines, γmin = 4/25 and γmax =
1/4; solid line, numerical γ , averaged over a number of steps (with
transient nucleation IC). A sharp peak at t ∼ 104 indicates the end of
growth and the onset of pre-ripening.

particles is expected to have only a quantitative effect on the
delay of ripening, which, however, will crucially depend on the
distribution in the vicinity of the front. The latter can be defined
as a size a0

f , close to a0
max, where the distribution abruptly

drops to 1/e of its “smooth” value. Here the distribution has a
near-universal shape

f (ρ,0) � A(ρ) exp (−eρ) , ρ � a − a0
f

a0∗

(
a

a0∗

)θ

, (5)

where A(ρ) [24] is a slowly changing function (otherwise, the
explicit analytical form of A(ρ) is unimportant for the present
study and can be treated just as a time-saving alternative to
direct numerical solution of the BDE [24]). In the u variables
the front is exceptionally narrow (see the insets in Figs. 1 and
2), but it is this double-exponential transient front (DEF) which
eventually selects the true LSW ripening regime, as shown in
the main panels.

The importance of early transient nucleation is also clear
from the late time dependence of the critical size, as in Figs. 3
and 4. Ignoring the DEF leads to non-LSW slopes of γ � γmin

(dotted lines in both figures), instead of the proper values of
γ = γmax.

In intermediate evolution of the distribution one can single
out several stages. At first, the depletion effects are minor, and
the characteristic median size ā is much larger than a∗(t) � a0

∗ .
The growth law can be approximated as ˙̄a ≈ (a0

∗/ā)θ , valid
during tgr ∼ a0

∗[1/a0
∗((S0 − 1)/(S0�

0
0))1/3]θ+1/(θ + 1). The

values of γ are extremely small here. Next, due to depletion
a∗(t) catches up with ā with a value a+

∗ ∼ tgr � 8.9 × 103 for
θ = 0, which can be examined in somewhat more detail. The
change in a∗ happens fast, leading to a sharp peak in γ (t), as
in the inset of Fig. 3. An estimation gives (4/9)a+

∗ /a0
∗ ∼ 103

for the height of the peak.
The subsequent interval with a∗ remaining close to a+

∗
can be called pre-ripening, which continues as long as the

0.5 1 1.5 2 2.5 3
10 6 t

0.05

0.1

0.15

0.2

10 6 a

FIG. 4. (Color online) The diffusion case; lines and symbols as in
Fig. 3. The dashed and the dotted straight lines have slopes γ = 4/27
and γ = 25/216, respectively.

smallest particles remain in the system. Here both moments
�0 and �3 are conserved. From the condition amin(t) = 0
one has the duration of pre-ripening: �t = a+

∗ Bx(2 + θ,0)
with x = amin(tgr )/a+

∗ and Bx(a,b) being the incomplete
beta function with a logarithmic asymptote for x → 1. The
value of x can be estimated from ā(t) − amin(t) ≈ [(θ +
1)t/a0

∗]−θ/θ+1(ā0/a0
∗)θ (ā0 − a0

min) with ā(tgr ) � a+
∗ . Transi-

tion from growth to pre-ripening resembles the one in a
nucleation pulse [26] where the critical size undergoes a
similar abrupt increase between two near-constant values. In
the case θ = 0 this allows one to approximate the distribution
analytically in terms of a Lambert W function. With current
parameters, such an approximation can be shown to be
reasonably accurate for tgr < t � 25000, and at this stage there
yet is no visible difference between distributions due to either
the QSS or the transient nucleation IC.

The first self-similar solution is approached when γ

increases close to γmin , although precise identification of
γ was hard to achieve due to observed oscillations. Those
distributions, however, still contain a non-self-similar part due
to the front which cannot be treated as infinitely thin anymore,
and which keeps spreading with a rate determined by λf = ∂

∂u
u̇

at u � u1(γmin). As long as the spread remains small, the shape
of the front is close to double exponential. This suggests using
the discontinuous self-similar solution with the � function
smoothed in accord with

� (u1 − u) → exp

[
− exp

(
u − u1

δ(t)
− C

)]
,

C = 0.5772 . . . (6)

[the Euler constant C preserves normalization of Pγ (u) in the
leading order in δ]. As seen from Figs. 1 and 2 accuracy of such
an approximation can be quite reasonable; the value of δ(t) was
evaluated numerically by tracking the difference between af

and af + a∗δ(t) with δ(0) = [a0
∗/a

f (0)]θ to comply with the
initial front width in Eq. (5). Since λf is inversely proportional
to a∗ , at the initial stages of ripening δ should approach a power
law. Numerics seems to confirm this, especially in the ballistic
case with a power index slightly less than 2.
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Once the double-exponential front (DEF) spreads enough
to violate the condition δ(t)  1, the distribution gradually
evolves towards the LSW limit; γ also increases towards
γmax , although not quite monotonically, as mentioned above.
However, since typical t are large and the “physical time” is
proportional to t2 or t3 for θ = 0 or 1, in practice the LSW limit
can be nonrealizable for sufficiently high nucleation barriers.
This increases the potential role of other self-similar solutions
Pγ (u) in Eq. (2) evaluated for current (numerical) values
of γ . For a distribution approximated by a histogram at N

representative sizes ui , one can define an “error” of a given an-
alytical approximation: E = 1

N

∑N
i=1 [P an (ui) − P num (ui)]

2.
Once fluctuations in γ are over (see the inset of Fig. 3) this
error is typically almost one order of magnitude smaller for
Pγ than for the LSW distribution with γ = γmax = 1/4 (in the
diffusion-limited case fluctuations in γ are much larger, which
prevented a similar comparison).

Finally, one should mention that the DEF can be not the only
reason for selection of the LSW regime, which can emerge
from a variety of smooth IC. Nevertheless, the DEF appears
to remain crucial for such selection if one remains within
the generalized Becker-Döring scheme, starting from a “pure”
metastable system and avoiding any external intervention such
as injection of particles or control of parameters. In principle,
fluctuations which are an inherent part of the BDE can provide
additional spreading by adding a diffusion-like term −D∂f/∂a

to the flux in the size space, with D(a) ∝ (a/a∗)−θ−2. At
the early stage fluctuations are crucial for nucleation and are
responsible for the formation of DEF [21], but generally they

should be of minor effect during growth (small D) and ripening
(small ∂f/∂a). In a numerical study [27], which started from
rather broad IC, no accelerated transition to LSW regime
due to fluctuations was observed. However, in view of the
exceptionally narrow initial DEF and the large time scales
before the LSW regime is approached, additional studies are
required here, especially for θ = 1. Other types of fluctuations,
which are beyond the BDE, also can drive the system towards
the LSW regime [11,13,14] but the effect of those fluctuations
on nucleation still needs to be investigated.

In summary, during a brief initial period at the start of
a phase transformation the distribution of largest particles
acquires a double-exponential front (DEF) which is due to
transient nucleation. When used as initial conditions (IC) for
subsequent growth and ripening in an isolated system, as in
the present study, the distribution undergoes a series of distinct
transformations with the last stage—the LSW asymptotic
regime—being selected exclusively due to the initial DEF.

At the very beginning of ripening the distribution is close
to a discontinuous non-LSW solution, analogous to the one
established in neglect of transient effects [23], but with the
discontinuity smoothed out by a double-exponential in a non-
self-similar manner, as in Eq. (6). Such a distribution, with the
width δ determined by preceding stages, can serve as semi-
universal IC for the late-stage ripening problem regardless of
the type of mass exchange (the value of θ ) between the nucleus
and the matrix. Due to rapid decay with size this IC appears to
defy the standard mathematical classification of “compact” or
“noncompact.”
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