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Time-dependent cavitation in a viscous fluid
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Kinetics of nucleation and growth of empty bubbles in a nonvolatile incompressible fluid under negative
pressure is considered within the generalized Zeldovich framework. The transient matched asymptotic solution
obtained earlier for predominantly viscous nucleation is used to evaluate the distribution of growing cavities over
sizes. Inertial effects described by the Rayleigh-Plesset equation are further included. The distributions are used
to estimate the volume occupied by cavities, which leads to increase of pressure and eventual self-quenching of
nucleation. Numerical solutions are obtained and compared with analytics. Due to rapid expansion of cavities the
conventional separation of the nucleation and the growth time scales can be less distinct, which increases the role
of transient effects. In particular, in the case of dominant viscosity a typical power-law tail of the quasistationary
distribution is replaced by a time-dependent exponential tail. For fluids of the glycerin type such distributions
can extend into the micrometer region, while in low-viscosity liquids (water, mercury) exponential distributions
are short lived and are restricted to nanometer scales due to inertial effects.
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I. INTRODUCTION

Cavitation, i.e., spontaneous formation of near-empty bub-
bles in a stretched liquid, belongs to a broad class of nucleation
problems [1] with an enormous variety of scientific and tech-
nological applications. While often destructive [2], cavitation
also offers a remarkable glimpse into the world of elementary
particles via the bubble chamber [3,4] and has a direct link to
such puzzling phenomena as sonoluminescence [5] and, more
generally, to sonochemistry [6]. Recent advances in molecular
dynamics (MD) studies of cavitation in nonmetallic [7–12]
and metallic [13,14] fluids can clarify the elusive properties of
the smallest subnano bubbles which provide a key boundary
condition for the classical-type nucleation-growth equations
and alternatively can reveal situations where the classical
approach has to be reassessed.

Cavitation was the first nucleation problem which was
treated starting from a purely macroscopic approach [15],
with a huge variety of subsequent generalizations, including
those to multi- [16–20] and infinite dimensions [21,22]. As
compared to “regular” nucleation-growth problems controlled
by the mass exchange between the nucleus and the metastable
phase, the specifics of cavitation is that no material has to
be exchanged between an empty cavity and the liquid [23].
Thus, the intuitively appealing microscopic picture of random
addition of monomers to a nucleus (due to Farkas, Becker,
and Döring) could not be applied to cavitation [24]. Also, the
absence of mass exchange implies that growth of a cavity
is limited only by viscosity and inertia of the liquid, and
under certain conditions (as in a viscous fluid) this growth
can be exponential, similar to growth of a “bubble” discussed
in cosmological inflation models [3,25]. As a result, growth
can occur on short time scales, comparable to those of
time-dependent nucleation and the neglect of the latter (which
is often justified in regular nucleation-growth situations) can
lead to an error. The main intent of this paper is to demonstrate
that time-dependent effects in classical cavitation indeed can
be strong and can result in a qualitative change in the structure

*vitaly@njit.edu

of the distribution of growing bubbles. In addition, inertial
effects which dominate for large cavities are included based
on asymptotic analysis of the Rayleigh-Plesset hydrodynamic
equation, which allows one to discuss potential experimental
implications.

II. BACKGROUND AND NOTATIONS

A. The Zeldovich equation

The general steps of the classical approach to the nucleation
problem involve the following. On the thermodynamic (Gibbs)
stage, the minimal work W which is needed to form a nucleus
of size R is evaluated. The maximum W∗ is achieved at the
critical size R = R∗ and determines the dimensionless barrier
to nucleation B = W∗/T � 1, with T being the thermal
energy (Boltzmann constant is taken as 1). According to ideas
of fluctuational thermodynamics, the nucleation rate can be
estimated as I ∼ exp (−B) [26], although at this stage little
can be said about the pre-exponential. Next, one considers
deterministic (i.e., neglecting fluctuations) growth or decay
of individual nuclei with a rate Ṙ(R) which changes sign
at R∗ . The associated inverse time scale τ−1 = dṘ/dR at
R = R∗ eventually determines the kinetic part of the pre-
exponential [15]. This completes the macroscopic part of
the analysis and sets the background for the microscopic
description which allows occasional rare nuclei to overcome
the deterministic decay and to cross the barrier. Here one con-
structs a Fokker-Planck equation for f (R,t), the distribution
of nuclei over sizes. The diffusion coefficient D(R) in that
equation is selected in such a way that the associated flux
j = −D∂f/∂R + Ṙf is identically zero if the distribution
coincides with the equilibrium one, f eq(R) ∼ exp (−W/T ).
For large B this requirement is equivalent to the Einstein
relation in the R space: Ṙ = −(D/T )dW/dR [15]. Formally,
the Fokker-Planck equation (also known in this context as the
“Zeldovich equation”) will resemble the continuous limit of
the microscopically derived Becker-Döring equation and, sim-
ilarly to the latter [27], can be solved exactly in the stationary
limit. More appropriate, though, is the asymptotic solution for
B � 1 since the Zeldovich equation relies on this assumption
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FIG. 1. Dimensionless representation of the main background
functions. w(r) = 3r2 − 2r3—the scaled work W/W∗ to form a
cavity, and ṙ(r) = r − 1—the growthor decay rate, time scaled by
τ in Eq. (3), with no inertial effects (solid lines). Inertial corrections,
which can be included iteratively at r ∼ 1, are practically negligible
for water and are visible but still small for mercury, as indicated by
dashed lines for B ≡ W∗/T = 50. The vertical dashed lines locate
the “critical region” where the change of the work W is comparable
to thermal energy T . The stationary distribution of cavities over sizes
f st(r) drops from near-equilibrium f eq(r) ∼ exp [−Bw(r)] to the left
of the critical region to the growth asymptote f st(r) � I/ṙ(r) to the
right of that region, I being the nucleation rate. The corresponding
solid line is Eq. (7).

from the start. In particular, the asymptotic stationary flux
determines the pre-exponential of the nucleation rate [15]
and, in contrast to its exact counterpart, allows time-dependent
generalizations.

In textbooks, the classical approach is usually described
in noncavitation terms, e.g., for nucleation in supersaturated
solutions [28]. While this undoubtedly increases the amount of
potential applications, some nontrivial hydrodynamic aspects
of the cavitation problem are lost. In addition, evaluation of the
work W , which can be a challenging task in other nucleation
scenarios [29], is rather straightforward for the formation
of an empty cavity in incompressible fluid considered in
Ref. [15], allowing one to focus on kinetic effects. Thus, below
we reproduce the Zeldovich equation closer to the original
Ref. [15], somewhat generalizing the hydrodynamic stage of
the derivation in order to better understand the connection
with the macroscopic Rayleigh-Plesset (RP) equation for the
growth and decay of cavities and to estimate the potential
inertial effects (some aspects of the latter were also discussed
in Refs. [19,30]).

Consider an isolated spherical cavity of radius R which
grows (or collapses) with the rate Ṙ. The velocity field around
the cavity is radial and for incompressible fluid is given by
u(r ′) = ṘR2/r ′2, where r ′ � R is the distance from the center
of the cavity. The minimal work which is required to create
the cavity, including the kinetic energy of the fluid, is then

W (R, Ṙ) = 4πR2σ + 4π

3
R3P + 2πρR3Ṙ2 (1)

(see the dimensionless bell-shaped solid and dashed curves in
Fig. 1). In the above, σ is the surface tension, P < 0 is the
pressure, and ρ is the density; R∗ = 2σ/(−P ) is the critical
size. The barrier to nucleation [saddle point in the (R, Ṙ)
space] is still given by the Gibbs expression W∗ = (4/3)πσR2

∗

and is unaffected by inertia. Although the absolute pressure
|P | can be large, it is expected to be smaller than the Young
modulus Y to ensure stability of the liquid on the atomic
level. The condition |P | � Y also ensures that the limiting
growth rate Ṙ∞ = √

2/3|P |/ρ remains smaller then the
speed of sound ∼√

Y/ρ, which justifies the incompressibility
assumption and which is satisfied for all liquids discussed
below [31].

Dissipation dW/dt is due to viscosity η, and after inte-
gration of the Navier-Stokes equation over the bulk of the
fluid can be expressed in general terms of a surface integral,
−η

∫
(∇u2) · d�f [32], where d�f is the element of the surface.

With the radial velocity field u(r ′) and a spherical surface the
integrand is constant, so that one has [33]

dW/dt = −16πηRṘ2. (2)

In a general situation this relation results in a nonlinear second-
order RP equation for R(t) which cannot be solved exactly (see
Sec. II D). Simplifications are possible since viscosity typically
prevails at nucleation sizes R � R∗ (see Fig. 1). For dominant
viscosity the above dissipation relation leads to a first-order
linear equation:

Ṙ � (R − R∗)/τ, τ = 4η/(−P ). (3)

From here, small inertial corrections can be accounted for
iteratively by replacing Ṙ in Eq. (1) with the leading viscous
term, Eq. (3). Since the work W is now uniquely determined by
the size R, the nucleation problem becomes effectively one-
dimensional. Inertial effects can become dominant at larger
sizes during growth, but that is another stage which can be
treated independently (see Sec. IV).

To describe nucleation, one constructs a Fokker-Planck
equation for the distribution of cavities over sizes, f (R,t):

∂f

∂t
= − ∂j

∂R
, j = −Df eq ∂

∂R

f

f eq
. (4)

The quasiequilibrium distribution f eq(R) is given by

f eq(R) = AR−1
∗ (R/R∗)ν exp[−W (R)/T ] (5)

(the total number of cavities is evaluated per molecule, so that
the constant A is dimensionless). The pre-exponential with
some modest power index ν is beyond the accuracy of the
classical approach [28] but is often included into some of the
nucleation problems [34–36] in order to improve its perfor-
mance. As mentioned, the diffusion coefficient D(R) in Eq. (4)
follows from the “Einstein relation”: T Ṙ = −D dW/dR [15].

Comparing this to dW/dt = −16πηRṘ2 one obtains

D(R) = T/(16πηR). (6)

Note that the above expression is robust and holds regardless of
the actual structure of W (R) (which can differ if, for example,
σ = σ (R) is considered). The left boundary condition to
Eq. (4) is taken as f (Rmin) = f eq(Rmin) at some small Rmin �
R∗ , which usually indicates the minimal size where the
macroscopic approach is still reasonable. On the right, one
assumes a smooth transition to deterministic growth j → Ṙf

[or equivalently, f (R,t)/f eq(R) → 0] for R − R∗ � 	, with
	−2 = −1/(2T ) d2W/dR2 at R = R∗ .

To construct an asymptotic stationary solution to Eq. (4),
one linearizes its coefficients near R∗, which implies
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D(R) � D(R∗) = 	2/2τ , W (R) � W∗ − (R − R∗)2/	2, and
(R/R∗)ν � 1. The resulting distribution, which is close to
equilibrium below the critical region, is given by

f st(R)/f eq(R) = 1

2
erfc(z), z = R − R∗

	
, (7)

where erfc(z) is the “complementary error integral” [37] (see
Fig. 1). The size-independent stationary flux (“nucleation
rate”) is then [15]

I � 	f eq(R∗)/(2τ
√

π ), (8)

which is Ae−B/(τ
√

12πB) in the viscous limit. This does
not contain Rmin or ν (and the latter also does not enter into
the time-dependent generalization described below), but those
parameters can have an effect on the constant A once the
normalization is specified (Appendix A). The distribution in
the growth region R − R∗ � 	 is determined by

f st(R) � I/Ṙ, (9)

which coincides with the asymptote of Eq. (7) in the overlap-
ping domain 	 � R − R∗ � R∗ , but also is valid for large
R � R∗ . If viscosity at those sizes still dominates, Eq. (9)
implies an R−1 tail of the distribution as follows from Eq. (3);
a constant tail is expected when growth is limited by inertia
with Ṙ � const = Ṙ∞.

B. Transient nucleation

During the early stage of cavitation, with negligible volume
of nucleated bubbles, the pressure (and thus the barrier and the
critical size) are near constant, and the time dependence is
due exclusively to transient effects. Although this interval is
relatively short, it determines formation of the largest bubbles
which can have a dominant effect on the increase of pressure
and eventual termination of nucleation.

To streamline notations, let us switch to a dimension-
less time t → ∫

dt/τ � t/τ (0) and size r = R/R∗(0). The
viscous growth rate, which is assumed to dominate, is just
ṙ = r − r∗(t), with r∗(0) = 1 (see Fig. 1). The flux j and
the nucleation rate I are multiplied by τ and become dimen-
sionless (although no new notations are used). Dimensional
notations are restored at the end of Sec. IV when discussing
potential relation to experiments. It is also convenient to define
a double-exponential,

φ(x) = exp{− exp(−x)}, (10)

which appears in several, often unrelated, analytical expres-
sions below.

For a large barrier B � 1, the time-dependent Eq. (4) can
be solved using matched asymptotic (singular perturbation)
technique [20,38,39]. A detailed description of the solution is
presented in Appendix B; here we outline the major steps and
the required results. First, Eq. (4) is rewritten in terms of the
reduced distribution f (r,t)/f eq(r) and the macroscopic growth
rate ṙ . The small parameter ε2 = (	/R∗)2 = 1/3B appears ex-
plicitly as a coefficient which multiplies the second derivative.
A Laplace transform with respect to time is applied to obtain an
ordinary differential equation with a transition boundary layer
near r = 1. This equation is solved using matched asymptotic
expansion, which is from the same group of perturbation

methods as the WKB approximation [40]. Within the boundary
layer, the erfc(z) of Eq. (7) is replaced by the “repeated error
integral” [37] with the same argument z = (r − 1)/ε and with
the proportionality coefficient dependent on the Laplace index.
The asymptote of the repeated error integral into the growth
region, z → ∞, allows one to determine the transform of
the flux, which unlike the stationary case is r dependent.
Inverting the Laplace transform at some r = r0 with ε � r0 −
1 � 1, one obtains the double-exponential time-dependence
j (r0 , t)/I = φ(x), which is defined in Eq. (10) with [38]

x = t − ti(x0). (11)

Here the “incubation time” ti(x0) indicates the instant when
the flux reaches 1/e of its stationary value and is given by

ti(x0) = ln(6B) + ln(x0 − 1) + const. (12)

The constant is independent of the barrier and is determined by
the properties of the integral

∫
dr/ṙ in the subcritical region.

(For linear viscous growth and Rmin = 0 this constant is zero—
see Appendix B). The flux at r = r0 can be treated as the
“nucleation rate,” implying that the shape of the flux does not
change with growth and that it can be obtained at arbitrary size
r > r0 as

j (r,t) = Iφ[t − ti(r)], (13)

with a shifted incubation time:

ti(r) = ti(r0) +
∫ r

r0

dr

ṙ
. (14)

The flux thus resembles a kind of “shock wave” with the
front determined by the function φ(x), which propagates in
the r space with the growth rate ṙ . As r → 1, the growth
integral

∫
dr/ṙ has the same logarithmic singularity as ti(r0),

so that the incubation time in Eq. (14) is r0 independent. This
becomes obvious if the integral can be evaluated in elementary
functions. In particular, for the viscous growth one has

ti(r) = ln[(r − 1)(1 − rmin)] + ln 6B, (15)

which generalizes a similar expression [39] for rmin =
Rmin/R∗ > 0. Similarly, elementary expressions for ti(r)
are available for regular interface- and diffusion-limited
growth [39]. If, on the other hand, the growth integral
cannot be evaluated explicitly (as in case of inertial effects
discussed in Sec. IV), one has to start with Eq. (14) and
use some approximation when evaluating the growth integral.
The approximation, however, should accurately reproduce
the aforementioned singularity, otherwise the result will be
sensitive to selection of r0 .

The distribution of growing cavities over sizes is given by
direct analog of the stationary Eq. (9), f (r,t) = j (r,t)/ṙ , so
that

f (r,t) = I

ṙ
φ[t − ti(r)]. (16)

The number of cavities with r > r0 corresponds to �0 =∫ ∞
r0

dr f (r,t). It can be determined by integration of the
transient flux over time [39]:

�0 = I

∫ t−ti

−ti

dx φ(x) � IE1[exp(ti − t)], (17)
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with E1 being the exponential integral [37]. (The exponentially
small contribution of the lower integration limit must be
neglected within the accuracy of the asymptotic treatment.)
At large t with t − ti � 1 the exponential integral of a small
argument can be replaced by its logarithmic asymptote, and
one has [39]

�0(r0,t) = I [t − ti(r0) − γ ]. (18)

Here γ = 0.5772 . . . is the Euler constant and ti + γ is known
as the “induction time” (or, the “time lag”) of transient
nucleation. Note that unlike the higher moments of the
distribution described below, which are mostly determined
by large sizes, the values of �0(r0,t) are sensitive to the
selection of r0 due to rapid increase of the distribution towards
small r . Those values, nevertheless are convenient for scaled
representation of the forthcoming results.

C. Cavitation feedback

In a fixed volume, which corresponds to tensile strength
experiments [2,41] or to typical MD simulations [10], the
cavitation feedback is due to the volume δV occupied by
expanding cavities. This results in the increase of the pressure

δP = Y
δV

vL

,

with Y being the aforementioned Young modulus and vL the
molecular volume of the fluid. Introducing v∗ = (4/3)πR3

∗(0),
the volume of a critical bubble, one can relate δV to the
dimensionless third moment:

δV = v∗ �3 , �3 =
∫ ∞

r1

dr r3f (r,t). (19)

This type of closing condition is typical for the Becker-Döring
equations [42]. Note that except for very early times, when
�3 is negligible, the integral is dominated by large r � 1
and selection of the lower limit r1 ∼ 1 should not matter (see
a similar discussion in Ref. [43]). From B ∝ P −2 one then
estimates the change of the barrier

δB = κB�3 (20)

with a dimensionless κ = 2Yv∗/(−PvL).

D. Inertial effects

Let us introduce a characteristic “inertial size” Rin =
8η2/ρσ and its dimensionless equivalent rin = Rin/R∗ which
is assumed to be large (see Table I). The dimensionless work
w ≡ W/W∗ takes the form

w(r,ṙ) = 3r2 − 2r3 + 3

rin
r3ṙ2 (21)

TABLE I. Parameters of the three liquids for B = 50 at room
temperature.

Liquid τ (ns) R∗ (Å) rin κ

Water 2.4 × 10−2 8.4 136 2144
Mercury 2.6 × 10−3 3.5 9.41 186
Glycerin 34 8.4 2.1 × 108 1172

(see Fig. 1), while the dissipation relation is given by

ẇ = −6rṙ2. (22)

At nucleation sizes r ∼ 1 the inertial contributions are
minor, of the order of 1/rin. Thus, one expects the general
validity of the Zeldovich equation, Eq. (4)—otherwise its two-
dimensional version in the (R, Ṙ) space could be required [19].
Growth, which involves large r � 1, however becomes differ-
ent, affecting both the incubation time and the volume taken
by the cavities (see Sec. IV). The full description of growth
requires the solution of the Rayleigh-Plesset equation, which
follows from the above equations for w and ẇ:

ṙ = r − 1 − r

rin

(
rr̈ + 3

2
ṙ2

)
. (23)

In order of appearance, the terms are due to viscosity, pressure,
and curvature, and the last two terms can be labeled as
“second-order” and “first-order” inertial terms, respectively.
Since the equation does not allow an exact solution, various
approximations are discussed in the literature [2]. In Sec. IV
we utilize the condition rin � 1 and focus on approximations
which allow a smooth extension of the incubation time ti(r)
from the viscosity-dominated region of small r � 1 towards
large r � √

rin dominated by inertia.

E. Numerics

In parallel to analytics, numerical solutions of the dis-
cretized version of Eqs. (4)–(6) (without inertial effects)
complemented by the closing Eq. (20) were obtained using
MATHEMATICA 10. The nucleation and the growth regions were
typically linked at r0 = 2, with a similar value used for r1 in
Eq. (19), and the insensitivity of the results to the selection
could be verified operationally. The dominant dimensionless
parameter is the barrier B = B(0) and two extreme values of
“small” B = 20 and “large” B = 50 were considered. This
lead to an enormous (∼1013) span of the nucleation rates and
to a noticeable change in the weak B-dependent functions,
such as ln B or B1/3, which allowed the testing of some
of the asymptotic scaling relations. The anticipated input
of other parameters is less dramatic, and they were mostly
held unchanged in simulations of Sec. III intended to assess
analytics: κA = 0.01B, ν = 0, and rmin = 0.1 .

Once inertial effects were included, numerics was used
to integrate the Rayleigh-Plesset equation. This was done in
order to verify some of the analytical approximations and
to generate results on incubation times, distributions, and
metastable-state life times for parameters related to several
common fluids (see Table I). One should keep in mind, though
that the classical expression for the nucleation rate I , Eq. (A2),
used in those calculations often underestimates experimental
values and leads to absolute pressures |P | which are much
higher than observable [2]. Thus, the physical parameters
which can be inferred from Table I should be treated as
tentative. In particular, identical values of σ � 0.07 N/m are
used for both water and for glycerin, which results in similar
thermodynamics of nucleation and highlights the differences
due to kinetic competition between the viscous and the inertial
effects.
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FIG. 2. Reduced flux j (r,t)/I (0) at r = 2 as a function of reduced
time t − ti(r) for two different initial barriers B. Solid line: Eqs. (13)
and (15). Symbols: Numerics. The vertical dashed lines indicate
quenching of nucleation by growing cavities, Eq. (25) for B = 50
(right) and B = 20 (left).

III. RESULTS

Typical time dependences of the nucleation flux j (r0 , t)
in a viscous fluid are shown in Fig. 2. During early times
the flux passes through a transient stage and approaches the
quasistationary value I � I (0). This value persists up to a
certain nucleation time tn (defined below) until the negative
pressure is increased by expanding cavities and nucleation is
quenched. Compared to regular nucleation problems with a
power-law growth, where the nucleation time is exponentially
large, in the case of cavitation this time is much shorter,
approximately only a linear function of the barrier, due to
rapid increase of the size of the growing cavities. Also, in
contrast to aforementioned regular problems where depletion
of the metastable phase leads to a gradual reduction of the
rate [43], in the present case the transition to near-zero flux at
t � tn is sharp, which expands the domain of applicability of
the transient solution.

As seen from Fig. 2, the Eqs. (13) and (15) are accurate:
shifting the time by ti(r) brings the early (transient) data onto
the parameter-free master curve given by Eq. (10). Thus, the
solution can be used to find the distribution of growing cavities
over sizes in Eq. (16).

From here, the problem can be treated iteratively. The above
distribution allows one to obtain the leading approximation for
the third moment. Without restrictions imposed by inertial
effects, the growth rate is just r − 1, and particles grow
exponentially with time. One has

�3(t) ≈ 2I exp{3(t − ln[6B(1 − rmin)])}. (24)

The logarithmic term is large, and transient nucleation effects
are important as long as growth is given by Eq. (3). In fact,
the neglect of such effects would leave an undetermined factor
O(1) since the stationary solution alone does not provide the
initial size r0 of nucleated cavities. (In contrast, the transient
distribution is r0 independent for a properly selected 	/R∗ �
r0 − 1 � 1; see Appendix B). The overall nucleation time tn
can be estimated by substituting the increased barrier B(t) =
B(0) + δB, with δB determined by Eqs. (20) and (24), into

FIG. 3. Reduced adiabatic nucleation rate from Eqs. (10) and (25)
(solid line) and from numerics (symbols). Note the large-time scaling
once time t is reduced by the nucleation time tn .

the adiabatic Eq. (8). Neglecting rmin , one obtains

I (t)/I (0) = φ[3(tn − t)], (25)

with

tn � −1

3
ln

Iκ

108B2
. (26)

This is illustrated in Fig. 3.
To explore the tail of the transient distribution at r � 1 we

scale it with a characteristic size r̄(t) at 1 � t � tn

r̄(t) =
(

�3

�0

)1/3

≈ et

6B

(
t̃

2

)−1/3

,

t̃ = t − ln(6B) − ln(r0 − 1) − γ. (27)

From Eqs. (15) and (16) one obtains the tail of the normalized
distribution f̃ (l,t) = (�0)−1r̄f (r,t) with the scaled size l =
r/r̄:

f̃ (l,t) � 1

lt̃
exp

[
−l

(
2

t̃

)1/3
]
. (28)

This is shown by solid lines in Figs. 4 and 5 together with
the scaled numerical data represented by symbols. The quasi-
steady-state distributions, scaled using the same (numerical)

FIG. 4. Exponential tail of the scaled distribution in Eq. (28) at
t ≈ tn for the initial barrier B = 20 (solid line). Symbols: Numerics.
he arrow indicates sizes which give maximum contribution to
the nucleated volume. Dashed line: Tail of the quasi-steady-state
distribution, a power law.
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FIG. 5. Same as in Fig. 4 for initial barrier B = 50.

values of �0 and �3 , are indicated by the dashed lines. Note
that the quasistationary power-law tail has been replaced by
an exponential, which is the first main result of the present
paper. The arrows in Figs. 4 and 5 indicate the maximums
of l3f̃ (l,t) achieved at lm � 22/3 t̃ 1/3, close to B1/3 if t ≈
tn (which is the upper limit of applicability). The values of
lm determine the sizes of bubbles which are responsible for
termination of nucleation; huge deviations at those sizes from
the quasistationary distribution are noteworthy.

IV. ESTIMATIONS OF INERTIAL EFFECTS
AND DISCUSSION

For small inertial contributions, one can insert the viscous
growth rate ṙ = r − 1 into the work w(r) given by Eq. (21).
This will modify the off-critical growth once the dissipation
relation ẇ = −6rṙ2 is used. One obtains the leading correction

ṙ = (r − 1)

[
1 + (3 − 5r)

r

2rin

]
, r � √

rin, (29)

where rin is defined in Sec. II D. The time scale τ ′ = 1/(dṙ/dr)
at r = 1 is given by 1/(1 − 1/rin). To evaluate the correction
to the incubation time ti(r) one isolates the singular term in
the inverse growth rate

1

τ ′ṙ
� 1

r − 1
+ μ(r),

with μ(r) = (2 + 5r)/2 rin. The singular term leads to Eq. (15)
multiplied by τ ′ (which is close to 1 and will be henceforth
ignored). Evaluation of the integrals involving μ(r), Eq. (B14),
gives the correction

δti(r) = 1

4rin

[
5
(
r2 + r2

min

) + 4(r + rmin) − 18
]
. (30)

At nucleation sizes r ∼ 1 the corrections are minor due to
large values of rin (see Table I). On the other hand, inertial
effects become important with growth—note the quadratic
term in Eq. (30)—and prevail for r � √

rin. Here one needs
the RP equation, Eq. (23). Considering dominance of various
terms at different sizes in the growth region (see Appendix B),
one obtains the following asymptotic dependence for the
growth time tgr (r0 , r) = ∫ r

r0
dr/ṙ from a near-critical size

r0 → 1+ to a large size r � √
rin � 1:

tgr (r0,r) � r

ṙ∞
+ ln

r3/4r
1/8
in

r0 − 1
+ const, (31)

with

ṙ∞ =
√

2rin

3
. (32)

The constant in Eq. (31) is r0 and rin independent and can
be obtained numerically as −0.6. Note that as r0 → 1 the
singularity in Eq. (31) is similar and opposite in sign to the
one in Eq. (15). Thus, in accord with Eq. (14) the inertial
incubation time t in

i (r) = ti(r0) + tgr (r0 , r) is r0 independent:

t in
i (r) � r

ṙ∞
+ 3

4
ln

r√
rin

+ ln(6B
√

rin) − 0.6. (33)

Here small inertial corrections due to δti(r0) ∼ 1/rin are
not included since that would exceed the accuracy of the
asymptotic treatment; similarly, the small rmin � 1 is dropped
from Eq. (15). Equation (33) represents the second main
result of this work.

To describe the entire growth region, at small r one can
consider mostly viscous growth described by Eq. (15) with
minor inertial corrections (30) and then, at larger sizes, switch
to Eq. (33) dominated by inertia. In order to minimize the
discontinuity, the transition should be made around 0.3

√
rin,

so that the interpolating incubation time, which replaces the
logarithmic ti(r) in Eqs. (13) and (16) is given by

ti(r) + δti(r), 1 < r � 0.3
√

rin,
(34)

t in
i (r), r > 0.3

√
rin.

Alternatively, one can deduce tgr (r0,r) from the time depen-
dence of the size of a growing cavity r(t) based on numerical
integration of the RP equation. Initial conditions are taken as
r(t0) = r0 = 2 and ṙ(t0) = r0 − 1, with t0 = ti(r0) + δti(r0).
Figure 6 shows comparison of numerics (solid lines) and
Eq. (34) (dashed) for parameters of several common liquids
with B = 50. Note the transition from logarithmic dependence
at all sizes, which is characteristic for viscous growth of
cavities in glycerin, to more conventional linear dependence
at r � √

rin for inertial growth in water and mercury. In the

FIG. 6. Incubation time including inertial effects in growth for
B = 50. All times are scaled with respective τ and sizes with
respective R∗ (see Table I). Solid line: From integration of Rayleigh-
Plesset equation. Dashed line: From interpolating Eq. (34). For the
sizes considered, inertial effects are invisible for glycerin at room
temperature, where the r dependence remains logarithmic.
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FIG. 7. Transition to quasistationary flux in the case of viscous
growth. The curves are labeled by dimensionless time t (in units of
τ ≈ 34 ns). The size is scaled by the critical size R∗ ≈ 8.4 Å for
B = 50.

latter case accuracy of the asymptotic approximation is lower
since rin is smaller, indicating stronger inertial effects.

To demonstrate the qualitative difference of the resulting
transient distributions of cavities over sizes, consider Figs. 7
and 8 which present the drift fluxes j (r,t) = f (r,t)ṙ (fluxes are
more convenient for visual comparison since they tend to an
r-independent constant in steady state, regardless of the growth
mechanism). The distributions are given by Eqs. (13) and (34).
In the viscous case one has broad exponential distributions,
with a time-dependent slope and without a well-defined front.
Conversely, in the inertial case one observes a sharp transition
to steady state via propagation of a “shock wave” in the r space,
with a narrow double-exponential front, similar to the one in
conventional interface-limited nucleation and growth [39].

Existence of the distributions of either type is limited by the
lifetime of a metastable state, or the nucleation time tn which
can be estimated from

κB�3(tn) ∼ 1. (35)

For viscous growth with exponential �3(t) this gives Eq. (26).
In the opposite, inertial limit one has

�in
3 (t) � 1

4I ṙ3
∞t4, (36)

FIG. 8. Same as in Fig. 7 but for inertial growth. Time is scaled
by τ ≈ 0.024 ns; size is scaled by 8.4 Å.

FIG. 9. Estimations of the dimensionless nucleation time (in units
of τ ≈ 4.8

√
B, ns) as a function of the initial barrier B. Symbols:

From Eq. (35) with numerical integration of the distribution of nuclei
over sizes. Dashed lines: B/3 and Eq. (37) for viscous and inertial
growth, respectively.

which is the cavitation equivalent of the Kolmogorov-Avrami
expression. With the classical estimation of the dimensionless
flux I (see Appendix A) and with ṙ∞ given by Eq. (32) one
obtains

t in
n � [

3π2
/(

2κ2r3
in

)]1/8
B−1/2eB/4. (37)

In the intermediate cases, �3 in Eq. (35) can be obtained
by numerical integration of the distribution given by Eqs. (13)
and (34). An additional requirement for the applicability of
the results is the large overall number of nuclei in the system
under consideration:

NAItn � 1.

Here the Avogadro number NA should be replaced by the
actual number of monomers in the system, if those numbers are
significantly different (as in MD simulations). Considering, for
the sake of estimation, NA ∼ 1024 and only the leading terms
in B, one obtains B � 58 and B � 76 for viscous and inertial
growth, respectively, and for larger barriers nucleation should
be treated statistically [44].

With the above restrictions in mind, typical nucleation times
tn are illustrated in Figs. 9 and 10. Note that smaller barriers
favor viscous cavitation, while for large barriers the inertial

FIG. 10. Same as in Fig. 9 for water with τ ≈ 3.4
√

B, ps, and
with predominantly inertial growth.
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effects in growth are dominant since there are fewer cavities
and they have to grow to larger sizes in order to have an effect.

To discuss potential observability of the time-dependent
exponential distributions of cavities over sizes, which are
expected for viscous nucleation and growth, we switch back
to dimensional variables. The sizes R should be limited by
R � R∗

√
rin , which is the “viscous domain” with minor

inertial effects. For room-temperature glycerin this extends
to optically visible sizes (see Table I), so it could be possible
to observe such distribution directly. The time limitation can
produce a more serious challenge and is determined by the
duration of the metastable state, about τB/3 ∼ 10−7–10−6 s;
lowering of temperature would increase this time which is
proportional to viscosity. On the other hand, for a low-viscous
liquid, such as water, the limiting size R is only one order
above R∗ while time is restricted by (1/2)τ ln (rin) � 1 ns.
(The metastable state will persist at larger times, but then
the distributions will be indistinguishable from conventional
f st(R) ∝ R−1 and f st(R) ∝ R0 in the viscous and inertial
domains, respectively, with transition to steady state described
by a sharp double-exponential front). Despite the difficulty
of the detection of such short-lived distributions, the above
analysis can still be useful in that it allows one to select the
size R0 from which growth starts as much larger than R∗, with
the nucleation rate at R0 accurately described by Eqs. (10)
and (13); the incubation time ti(R0) is given by Eq. (34).
Subsequent integration of the Rayleigh-Plesset equation for
growth of nucleated cavities is then simplified due to the
condition R0 � R∗, and the resulting distributions will be R0

independent. This can be of help in applied problems when
cavitation is part of a more complex hydrodynamics [2].

In summary, both viscous and inertial effects in nucleation
and growth of cavities were considered, and analytical
approximations for size-dependent incubation times were
derived. Typically, inertial effects are minor for nucleation
sizes of the order of the critical size, but become dominant with
the growth of cavities. The type of evolution to be considered,
viscous vs inertial, depends on whether the corresponding
sizes are reached before nucleation is quenched. In case the
metastable state survives the viscous stage and the inertial
growth becomes dominant (as in water), the distributions of
cavities over sizes resemble those for regular interface-limited
nucleation, with a long near-constant tail which is sharply
terminated due to brief transient nucleation. Exponential
distributions predicted by this study are still present, but
they are short lived and are restricted to nanometer sizes.
In contrast, in a viscous fluid such as glycerin, growth is
exponential, which shortens the lifetime of the metastable state
relative to the transient nucleation time scale. The resulting
exponential distributions persist during the entire nucleation
stage and can extend into the domain of micrometers. Most
likely, however, the easiest way to observe such distributions
would be in MD simulations where there are little restrictions
on the smallest times and sizes which can be considered.

APPENDIX A: PRE-EXPONENTIAL IN THE
QUASIEQUILIBRIUM DISTRIBUTION

Consider the normalization constant A in Eq. (5). Asymp-
totically, the contribution of the smallest bubbles to their

overall number (N per molecule of the fluid) is expected to
dominate. Neglecting the cubic terms in Eq. (1) and assuming
no bubbles with R < Rmin, one obtains

A ≈ 2N (3B)(ν+1)/2/�

[
ν + 1

2
, (Rmin/	)2

]
, (A1)

where �(a,b) is the incomplete Gamma function [37]. (The
presence of 	—the width of the near-critical region which is
outside of the main integration domain—is coincidental.) In
MD simulations the value of N can be measured directly [12],
otherwise N ∼ 1 for a small Rmin can be assumed. [If, instead
of N the “free volume” vf is known, a similar estimation for
A can be used with ν replaced by ν + 3 and N replaced by
(4π/3)vf /vL .] Although the factor A appears singular when
phase equilibrium with B → ∞ is approached, the full pre-
exponential of Eq. (5), which contains a compensating term,
R−ν−1

∗ , remains finite.
It is often assumed [28] that Rmin ≈ 0 and ν = 2, which

ensures a constant pre-exponential in the equilibrium distribu-
tion over the volumes of bubbles, f eq(v) = f eq(R)dR/dv. In
that case one has

A = 12N
√

3/πB3/2, (A2)

with the stationary nucleation rate per molecule of the viscous
fluid

I = 6

πτ
NBe−B � 2N

η

√
3Bσ 3

πT
e−B. (A3)

If, on the other hand, Rmin � 	, then Eq. (A1) leads to

A ∼ 2N (3B)(ν+1)/2(Rmin/	)1−ν exp[(Rmin/	)2], (A4)

which is exponentially large. This is notable since the classical
rate I from Eq. (A3) with N ∼ 1 typically underestimates the
experimental values. In fact, for Rmin � 	 the normalization
integral can be obtained somewhat more accurately, without
neglecting the cubic term. Due to dominance of the exponential
term on the lower limit of the asymptotic normalization integral∫

dRf eq(R) one has

I = N√
π

−Ṙmin

	

D(R∗)

D(Rmin)

(
R∗

Rmin

)ν

exp
W (Rmin) − W (R∗)

T
.

(A5)

The reduction of the barrier by the work required to form
a nucleus of the smallest size Rmin is well known, and
corresponding expressions for the nucleation rate are often
referred to as “adjusted classical theory.” The values of Ṙmin

and D(R) follow from Eqs. (3) and (6), respectively.

APPENDIX B: TRANSIENT SOLUTION OF THE VISCOUS
ZELDOVICH EQUATION [38,39] AND ITS EXTENSION

FOR INERTIAL EFFECTS

Let us define a small parameter ε = 	/R∗ = 1/
√

3B and
rewrite the Zeldovich equation, Eq. (4), in terms of dimen-
sionless size r = R/R∗ and reduced distribution q(r,t) =
f (r,t)/f eq(r):

1

2
ε2 ∂

∂r

D

D∗

∂q

∂r
+ ṙ

∂q

∂r
= ∂q

∂t
. (B1)
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At this point, general ε-independent known functions ṙ(r)
and D(r)/D∗ are assumed in Eq. (B1), with ṙ(1) = 0 and
D(1)/D∗ = 1. Time t is measured in units of τ , so that
dṙ/dr = 1 at r = 1. Introducing the Laplace transform (LT)

Q(r,s) =
∫ ∞

0
dtq(r,t)e−st,

one obtains an ordinary differential equation:

1

2
ε2 d

∂r

D

D∗

dQ

dr
+ ṙ

dQ

dr
= Qs, (B2)

where q(r,0) = 0 is assumed. The left boundary condition is
given by

Q(0 , s) = 1/s,

where for simplicity of notation rmin is treated as zero, similarly
to Refs. [38,39]; arbitrary 0 � rmin < 1 will be reintroduced
into the final answers. We now use the method of matched
asymptotic expansions [40], constructing an “outer” solution
of the first-order equation (in neglect of ε) in the subcritical
region and an “inner” solution of the linearized second-order
equation describing the transition boundary layer near r = 1.

One has the outer solution at 0 � r < 1 (with 1 − r � ε),
which satisfies the left-hand boundary condition

Qout(r,s) = 1

s
exp

[
s

∫ r

0

dr

ṙ

]
(B3)

(in time variables, the outer solution qout(r,t) = θ (t + ∫
dr/ṙ)

would correspond to a sharp front, which moves upstream,
against the deterministic decay in accord with “microscopic
reversibility”). Near r = 1 the integral diverges, and the
asymptote is given by

Qout(r → 1,s) ∼ 1

s
esC(1 − r)s , C =

∫ 1

0
dr

(
1

ṙ
− 1

r − 1

)
.

(B4)

The inner region is described in terms of a “stretched
variable,” z = (r − 1)/ε,

d2Q

dz2
+ 2z

dQ

dz
− 2sQ = 0, |z| � 1

ε
, (B5)

with the solution

Qin(r,s) = 1
2K(s)iserfc(z). (B6)

Here iserfc(z) is the “repeated error integral” [37] with asymp-
totes 2(−z)s/�(s + 1) for z → −∞ and (2/

√
π )e−z2

(2z)−s−1

for z → +∞ (and the second linearly independent solution
iserfc(−z) has a wrong asymptote as z → ∞). The domains
of applicability of the inner and outer solutions overlap at
ε � 1 − r � 1, which allows one to evaluate K(s) from
matching the asymptotes

K(s) = �(s)esCεs, (B7)

where �(s) is the Gamma function.
The LT of the flux is given by

J in(r,s) = −I
√

πez2 dQ

dz
= IK(s)

√
π

2
ez2

is−1erfc(z), (B8)

with an asymptote towards the growth region

J (r,s) = IK(s)

(
2

r − 1

ε

)−s

, r − 1 � ε. (B9)

For the inversion of the LT we use

j (r,t) �
∑

s

′
estRes J (r,s), (B10)

where the prime indicates summation over residues located in
the finite part of the complex s plane. (Note that the formula
is asymptotic, thus at t = 0 an asymptotic, not necessarily
an exact, zero is expected). The location of residues coincide
with those of �(s) at finite s, with Res �(s) = 1/(−s)! at s =
0, − 1, − 2, . . . [37]. Performing the summation explicitly one
obtains [38]

j (r,t) = I exp{− exp[ti(r) − t]}, (B11)

which is Iφ(t − ti) with φ(x) defined in Eq. (10). The
“incubation time” is given by [38]

ti(r) = ln
2

ε2
− C + ln(r − 1). (B12)

Equations (B11) and (B12) determine the nucleation rate at
some “initial size” r = r0 > 1 with r0 − 1 � 1. For viscous
growth with ṙ = r − 1 at any size (and not only near r ≈ 1)
there are no restrictions on r from above, and with C = 0
Eq. (B12) is valid for the entire growth region [39]. For a
nonlinear ṙ(r), one can extend Eq. (B12) (with r replaced by r0)
via increasing ti(r0) by the growth time

∫ r

r0
dr/ṙ , as in Eq. (14).

Since the growth integral has a singularity − ln (r0 − 1)
as r0 → 1, the result will be r0 independent, indicating
asymptotically smooth matching of the nucleation and the
growth regions. Two alternative explicit representations of the
final result are possible [39], and we use the one with isolated
ε dependence,

ti(r) = ln
2

ε2
+ P

∫ r

0

dr

ṙ
− 2C, (B13)

where P indicates the principal value of the integral.
The above expression can be used as a starting point to

include inertial effects, which is the novel part of the present
study. In the nucleation region such effects are small, and
result only in the modification of the functional form of ṙ(r)
(see Sec. IV). It is convenient then to represent the result as a
correction to the case with viscous (linear) growth by isolating
the singular part of the inverse rate:

1

τ ′ṙ
= 1/(r − 1) + μ(r),

with μ(r) which is regular at r = 1 and τ ′ = 1/(dṙ/dr) at r =
1. The singular part is the only one which requires the principal
value integration in Eq. (B13), which leads to Eq. (B12) (with
C = 0), multiplied by τ ′. The regular integration of μ(r) gives
the correction δti with

1

τ ′ δti(r) =
∫ r

1
drμ(r) −

∫ 1

0
drμ(r). (B14)

For a nonzero rmin the lower integration limit in the second
integral should be adjusted accordingly. In the cases of
interface- and diffusion-limited growth, respectively, μ(r) is
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given by 1 and by 1 + r; evaluation of the integrals then leads
to known polynomial corrections to the logarithmic equation,
Eq. (B12) [39]. In the case of inertial effects in the cavitation
problem, the function μ(r) is a linear combination of the
aforementioned expressions, and the resulting modifications
of the incubation time are presented in Sec. IV.

To describe the entire growth region, one needs to consider
the full RP equation, Eq. (23). Although this equation cannot be
solved exactly, certain asymptotic insight can be obtained from
the condition rin � 1 (i.e., the inertial effects are assumed to
be minor at the nucleation sizes, although they dominate when
the size becomes large). Let us rescale the size r as y = rr−α

in
with yet unknown power α. The RP equation takes the form

ẏrα
in = yrα

in − 1 − r3α−1
in y

(
ÿ + 3

2
ẏ2

)
. (B15)

There are two solutions, α = 0 and α = 1/2, when several
dominant terms balance each other. The former case corre-
sponds to dominance of viscous and curvature effects, with
a solution r − 1 ∼ (r0 − 1)et . The case α = 1/2 corresponds
to negligible curvature effects with viscous and inertial terms
balancing each other:

ẏ = y − y

(
yÿ + 3

2
ẏ2

)
. (B16)

At small t this equation has a solution y ∼ et (r0 − 1)/
√

rin,
where the constant is determined from matching with the
earlier region. At large t , one expects linear growth with
a constant rate ẏ∞ = √

2/3 and with a small nonlinear
correction:

y(t) = t ẏ∞ + δy(t).

Linearizing Eq. (B16) then gives

δy(t) = − 1

2ẏ∞
ln t + const.

In order to comply with the small time solution, the constant
must shift the time by ln (r0 − 1)/

√
rin so that one has

y(t) ∼ ẏ∞

(
t + ln

r0 − 1√
rin

− 3

4
ln t + O(1)

)
. (B17)

Returning to r(t) and solving the equation iteratively to find
time, one obtains for r � √

rin � 1 � r0 − 1

tgr(r0,r) = r

ṙ∞
− ln

r0 − 1√
rin

+ 3

4
ln

r√
rin

+ O(1).

The constant O(1) was estimated as close to −0.6 by
subtracting the above asymptotic equation from numerical
solutions of the RP equation at large r ∼ 105 for a variety
of the r0 and rin values. In order to obtain the incubation time,
one then uses Eq. (14), which cancels the singularity at r0 → 1;
the result is presented in Sec. IV.
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