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Abstract

The Earth’s primary source of energy is the radiant energy
generated by the Sun, which is referred to as solar irradiance,
or total solar irradiance (TSI) when all of the radiation is mea-
sured. A minor change in the solar irradiance can have a sig-
nificant impact on the Earth’s climate and atmosphere. As a
result, studying and measuring solar irradiance is crucial in
understanding climate changes and solar variability. Several
methods have been developed to reconstruct total solar irra-
diance for long and short periods of time; however, they are
physics-based and rely on the availability of data, which does
not go beyond 9,000 years. In this paper we propose a new
method, called TSInet, to reconstruct total solar irradiance by
deep learning for short and long periods of time that span be-
yond the physical models’ data availability. On the data that
are available, our method agrees well with the state-of-the-art
physics-based reconstruction models. To our knowledge, this
is the first time that deep learning has been used to reconstruct
total solar irradiance for more than 9,000 years.

Introduction
Deep learning has drawn significant interest in recent years.
It has been used extensively in biomedical applications for
Parkinson’s disease assessment (Hammerla et al. 2015),
drug-disease interaction learning (Chen and Li 2020), drug-
drug interaction prediction (Lin et al. 2020), clinical event
prediction (Qiao et al. 2018), breast cancer subtype classifi-
cation (Rhee, Seo, and Kim 2018), medical image segmen-
tation (Zhang et al. 2020b) and so on. It finds many applica-
tions in other domains as well. For example, deep learning
has been used for power load forecasting (Chen et al. 2018)
and traffic forecasting (Yu, Yin, and Zhu 2018). More re-
cently, Zhang et al. (2020a) employed a periodic long short-
term memory (LSTM) network for parking behavior predic-
tion. Jiang et al. (2020) used a U-shaped convolutional neu-
ral network (CNN) to track solar magnetic flux elements. In
this paper, we propose a new deep learning method for re-
constructing total solar irradiance.

Solar irradiance is the primary source of energy for our
Earth (Kren, Pilewskie, and Coddington 2017), and is a key
input for climate models and changes (Ball et al. 2011). It
is described in terms of total solar irradiance (TSI) when
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all of the radiation is measured. Irradiance is defined as the
amount of light energy from an object that is hitting a square
meter of another object each second. Solar irradiance is the
amount of light energy from the Sun’s entire disk measured
at the Earth, and it is known to vary over different temporal
scales, in a manner that is strongly wavelength dependent
(Kopp 2016). TSI variability affects the Earth’s atmosphere
and climate in many ways (Gray et al. 2010). To understand
the effect of solar radiation on our Earth’s climate changes,
solar irradiance records for long periods of time are required.
Since systematic measurements of irradiance started only in
the late seventies, many models were introduced to provide
irradiance records dating back to times ranging from cen-
tury to millennia. All such models are based on the empiri-
cal evidence that irradiance variability is modulated by sur-
face magnetism (Domingo et al. 2009), while the approaches
adopted in the different models are mostly driven by the type
of proxies of the magnetic field available at the temporal
scales considered.

Most of the published models aim to reconstruct irradi-
ance variability up to a few centuries into the past (Lean
2000; Krivova, Balmaceda, and Solanki 2007). Such mod-
els are intended to address the impact of solar variability
on Earth’s increase of temperatures registered from the pre-
industrial era, and mostly make use of sunspot, or sunspot-
group number, as a proxy of the surface magnetic activity. A
few models have instead been proposed in the literature aim-
ing at reconstructing irradiance variations at longer temporal
scales. Because at those times telescopic observations were
not available, such reconstructions necessarily make use of
indirect proxies. These mostly consist of radioisotopes like
14C, 10Be and nitrate-related species (Usoskin 2017), which
are generated by the interaction of energetic particles with
the Earth’s atmosphere, whose flux, in turn, is regulated by
the heliospheric magnetic field.

Some of the historical irradiance reconstruction models
used linear regression relationships between the irradiance
measured at modern times and input proxies. More com-
plex techniques make use of geomagnetic models to estimate
from radioisotopes the open and closed components of the
solar magnetic field, from which the distribution of magnetic
features over the Sun’s disk is recovered. The most recent
state-of-the-art model of this kind was developed by Wu et
al. (2018a), who reconstructed TSI for the previous 9 millen-



nia, making use of two different cosmogenic isotopes, 10Be
and 14C, derived from various datasets (Wu et al. 2018b).
All of the published models reconstructed solar irradiance
based on physics properties (Wu et al. 2018a).

In this paper, we present the first deep learning model,
called TSInet, to reconstruct total solar irradiance for more
than 9,000 years. Our main contributions are outlined as fol-
lows:

1. We use TSInet to reconstruct TSI for the entire 9,000
years already covered in the recent reconstruction by Wu
et al. (2018a) and for additional 1,000 years when physi-
cal data are not available.

2. Our deep learning model does not rely on proxies; hence
our model is not affected by uncertainties in the proxies
including errors in their measurements and estimates.

3. Our TSInet method can be extended back at times when
proxies are not available. When physical data are avail-
able, TSInet agrees well with the state-of-the-art physics-
based reconstruction models on the available data.

Data
In this work, we use measurements of the TSI pro-
vided by the Total Irradiance Monitor aboard the SO-
lar Radiation and Climate Experiment (SORCE)(Rottman
2005) and available at http://lasp.colorado.edu/
home/sorce/data/tsi-data/. This dataset, used as
our training set, contains daily TSI measurements carried out
from 2003 to the present. Figure 1 illustrates the SORCE
time series dataset showing the total solar irradiance over
time.

Figure 1: SORCE total solar irradiance (TSI) data from 2003
to the present.

Our testing set contains measurements from TCTE Total
Solar Irradiance daily averages, available at http://
lasp.colorado.edu/lisird/data/tcte_tsi_
24hr/. Total Solar Irradiance Calibration Transfer Experi-
ment (TCTE) (http://lasp.colorado.edu/home/
missions-projects/quick-facts-tcte/) mea-
surements are made by the LASP TCTE Total Irradiance
Monitor (TIM) instrument aboard the U.S. Air Force’s

STPSat-3 spacecraft. This TIM has been measuring total
solar irradiance since late 2013.

In addition, we adopt the following publicly available
datasets obtained, over different temporal ranges, by differ-
ent physics-based models, which will be used as testing sets
in our work.
• NRLTSI2 Daily Averages, available at http://lasp.
colorado.edu/lisird/, is the daily climate record
of total solar irradiance from 1882 to the present. It is
constructed using version 2 of the Naval Research Lab-
oratory’s (NRL) solar variability model (NRLTSI2). The
NRLTSI2 model computes TSI based on the changes of
the quiet Sun conditions arising from bright faculae and
dark sunspots on the solar disk. It uses linear regression
between solar sunspots and facular features, as well as ir-
radiance observations from SORCE.

• SATIRE-S (Spectral And Total Irradiance RE-
construction model - Space era), available at
http://www2.mps.mpg.de/projects/
sun-climate/data.html, provides daily re-
construction of solar irradiance in the period of 1974
– 2013. Irradiance is reconstructed by combining the
area coverage of magnetic and quiet features as derived
by full-disk magnetograms and continuum images of
the Sun, together with spectral syntheses obtained by
one-dimensional, static, atmosphere models (Yeo et al.
2014).

• SATIRE-M (Spectral And Total Irradiance RE-
construction model - Millennia), available at
http://www2.mps.mpg.de/projects/
sun-climate/data.html, is similar to SATIRE-S,
but the area coverage of magnetic structures is estimated
by making use of a model which relies on the sunspot
number (Wu et al. 2018b). This model provides decennial
averages and reconstructs the solar irradiance over the
last 9,000 years. The model is used to reconstruct decadal
total TSI.
The total solar irradiance values range from 1356.656 to

1363.525. We use a feature scaling technique, also known
as data normalization, to normalize the range of data to in-
crease the cohesion of the TSI values. Specifically, we use
the min-max normalization that is calculated as follows:

v̂i =
vi −min(S)

max(S)−min(S)
(1)

where v̂i (vi, respectively) is the normalized value (actual
value, respectively) at time point i, and S represents the in-
put data set. The normalized TSI values range from 0 to 1.

Proposed Method
Architecture and Training of TSInet
Figure 2 presents the architecture of our TSInet. Let t be
the latest time point. Data sample xt contains w values
vt, vt−1, . . . , vt−w+1 and the label vt−w where vt is the
TSI value at time point t. (In the study presented here, the
time window, w, is set to 7.) We train TSInet with multi-
ple batches. In the first batch, we use the n training data



Figure 2: Architecture of TSInet.

samples, xt, xt−1, . . . , xt−n+1, to train TSInet. (In the study
presented here, the number of input data samples, n, is set
to 10.) The label of the n training data samples is deter-
mined by the label of the last data sample (i.e., xt−n+1).
In the second batch, we use the next n training data sam-
ples, xt−n, xt−n−1, . . . , xt−2n+1, to train TSInet. The la-
bel of the n training data samples is determined by the la-
bel of xt−2n+1. In the third batch, we use the following
n training data samples, xt−2n, xt−2n−1, . . . , xt−3n+1, to
train TSInet. The label of the n training data samples is de-
termined by the label of xt−3n+1. We continue this training
process until all TSI values in the training set are used. For
every two adjacent data samples xi, xi−1, they overlap on
w − 1 TSI values, namely vi−1, vi−2, . . . , vi−w+1.

TSInet consists of three convolutional layers (Conv1d 1,
Conv1d 2, and Conv1d 3) where the kernel slides along 1
dimension on the time series, a max pooling layer, a flat-
ten layer, a repeat vector layer, an LSTM (long short-term
memory) layer, an attention layer, two fully connected lay-
ers, and an output layer. The output from the three convolu-
tional layers is flattened by the flatten layer and transformed
into a sequence, also known as a feature vector. The repeat
vector layer repeats the feature vector to reshape and prepare
it as the input to the LSTM layer. The LSTM layer in our ar-
chitecture contains m LSTM cells (in this study, m is set to
10). The attention layer with m neurons is used to focus on

the relevant information in each time step (Bahdanau, Cho,
and Bengio 2014). Each of the two fully connected layers
has 200 neurons. The activation function used in our model
is ReLU (rectified linear unit). TSInet produces as output a
predicted TSI value.

The proposed TSInet is implemented in Python, Keras,
and Tensorflow. We use adaptive moment estimation
(Adam) (LeCun, Bengio, and Hinton 2015; Goodfellow,
Bengio, and Courville 2016) as the network optimizer,
which is a stochastic gradient descent algorithm that can up-
date network weights based on training data. Adam is con-
figured with a learning rate of 0.003 and a weight decay of
0.000005 to regularize the weights and minimize the test er-
ror during training in each epoch. Other Adam parameters
(β1, β2, respectively) are set to default values (0.9, 0.999,
respectively). To achieve faster back-propagation conver-
gence, we adopt the mini-batch strategy described in (Le-
Cun, Bengio, and Hinton 2015; Goodfellow, Bengio, and
Courville 2016). The number of epochs is set to 10 by de-
fault.

Reconstruction of Total Solar Irradiance
After describing the architecture and training procedure of
TSInet, we now turn to the algorithms for reconstructing to-
tal solar irradiance (TSI) in a testing set. We develop two re-
construction algorithms: (i) single-step or 1-step reconstruc-
tion; (ii) multi-step or k-step, k > 1, reconstruction.

Let t be the latest time point. With single-step reconstruc-
tion, we begin by considering the n testing data samples
xt, xt−1, . . . , xt−n+1 where xt contains the w + 1 TSI val-
ues vt, vt−1, . . . , vt−w+1, vt−w in the testing set. Our TSInet
model, which is trained as described in Section “Architec-
ture and Training of TSInet,” takes as input the n testing
data samples and predicts the label of the last testing data
sample (i.e., xt−n+1), which is treated as the label of the n
testing data samples. We then use the n testing data sam-
ples together with the predicted label to re-fit or re-train
TSInet. The re-trained TSInet then takes as input the next
n testing data samples xt−1, xt−2, . . . , xt−n and predicts
the label of the last testing data sample (i.e., xt−n), which
is treated as the label of the n testing data samples. We
again use the n testing data samples together with the pre-
dicted label to re-fit or re-train TSInet. The re-trained TSInet
then takes as input the following n testing data samples
xt−2, xt−3, . . . , xt−n−1 and predicts the label of the last
testing data sample (i.e., xt−n−1), which is treated as the
label of the n testing data samples. We then use the n test-
ing data samples together with the predicted label to re-train
TSInet. We continue this predicting-retraining process until
all TSI values (labels) in the testing set have been predicted,
at which point we have reconstructed all the TSI values in
the testing set.

With multi-step reconstruction, we begin by consider-
ing the first batch containing the n testing data samples
xt, xt−1, . . . , xt−n+1 in the testing set. Our trained TSInet
takes as input these n testing data samples and predicts the
label of the last testing data sample (i.e., xt−n+1), which is
treated as the label of the n testing data samples. Then, the
same TSInet model takes as input the second batch contain-



ing the next n testing data samples xt−1, xt−2, . . . , xt−n and
predicts the label of the last testing data sample (i.e., xt−n),
which is treated as the label of the n testing data samples. We
keep on using the same TSInet model until the model takes
as input the kth batch containing the n testing data samples
xt−k+1, xt−k, . . . , xt−n−k+2 and predicts the label of the
last testing data sample (i.e., xt−n−k+2), which is treated as
the label of the n testing data samples. We then use the k
batches, where each batch contains n testing data samples
together with their predicted label, to retrain our TSInet as
shown in Figure 2. Then we use the re-trained model to pre-
dict the labels for the next k × n testing data samples.

The difference between single-step reconstruction and
multi-step reconstruction is that the former retrains TSInet
once using one batch containing n testing data sample in
every one step while the latter retrains TSInet once using
k batches containing k × n testing data samples in every k
steps.

Experiments and Results
Performance Metrics
We conducted a series of experiments to evaluate the perfor-
mance of the proposed TSInet and compare it with related
methods. The performance metrics used here are the root
mean square error (RMSE) and Pearson correlation coeffi-
cient (CORR). RMSE is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2)

where ŷi (yi, respectively) represents the predicted TSI
value (actual TSI value, respectively) at time point i. RMSE
measures the differences between the actual TSI values and
the predicted TSI values by a method. The lower the RMSE
value, the more accurate the method is. CORR is calculated
as follows:

CORR =

∑
i(ŷi − µ(ŷ))(yi − µ(y))√∑2

i (ŷi − µ(ŷ))2
√∑2

i (yi − µ(y))2
(3)

where µ(ŷ) denotes the mean of all predicted TSI values
and µ(y) denotes the mean of all actual TSI values. CORR
is used to measure how strong the relationship between the
predicted and actual TSI values is. CORR ranges from 1 to
-1, where 1 means there is a strong positive correlation, -1
means there is a strong negative correlation, and 0 means
there is no correlation between the predicted and actual TSI
values.

Single-Step vs. Multi-Step Reconstruction
Algorithms
In this experiment, we compared the single-step (i.e., 1-
step) and multi-step (i.e., k-step) reconstruction algorithms
described in Section “Reconstruction of Total Solar Irradi-
ance.” We used the SORCE training set to train TSInet and
reconstructed the TSI values in the TCTE testing set for
varying k, k = 1, . . . , 10. For each k, we computed the per-
formance metrics and recorded the runtime used by the al-
gorithms. Figure 3(i) shows the performance metrics, RMSE

and CORR, for varying k. it can be seen from the figure
that the performance of TSInet degrades as k increases. This
happens because the TSInet model is refitted more often, and
hence is more accurate when k is smaller. On the other hand,
smaller k requires more runtime, as shown in Figure 3(ii). In
subsequent experiments, we fixed k = 5 as it achieved good
performance while requiring reasonable runtime.

Ablation Tests
In this experiment, we performed ablation tests to analyze
and evaluate the components of our TSInet framework by
considering two models based on TSInet: CNN and LSTM.
The CNN model is a subnet of TSInet, keeping the three
convolutional layers, max pooling layer, flatten layer, re-
peat vector layer, attention layer, two fully connected layers,
and output layer, but removing the LSTM layer. The LSTM
model is also a subnet of TSInet, keeping the LSTM layer,
attention layer, two fully connected layers, and output layer,
but removing the three convolutional layers, max pooling
layer, flatten layer, and repeat vector layer.

Figure 3(iii) (Figure 3(iv), respectively) presents the
RMSE (CORR, respectively) results from TSInet, CNN, and
LSTM. It can be seen from the figures that TSInet yields
the best accuracy and correlation among the three methods.
This happens because CNN learns characteristics from the
input data but it lacks temporal components to deeply an-
alyze the time series information in the data. On the other
hand, LSTM captures the temporal correlation in the input
data, but it works on the raw input data without learning ad-
ditional characteristics to strengthen the correlation between
the data entries. TSInet combines the characteristics it learns
in the CNN network and temporal correlation it learns in the
LSTM network. Therefore, TSInet achieves the best perfor-
mance.

Comparison with Related Methods
In this experiment, we compared TSInet with four closely
related machine learning algorithms including linear regres-
sion (LR), Gaussian process regression (GPR) (Senanayake,
O’Callaghan, and Ramos 2016; Al-Shedivat et al. 2017),
random forest (RF), and support vector regression (SVR).
Figures 3(v) and 3(vi) present the RMSE results for the five
methods on the TCTE and NRLTSI2 datasets respectively.
The figures show that TSInet achieves the best performance
among the five methods in terms of RMSE. The CORR re-
sults are similar and omitted here.

To assess whether the results obtained by our TSInet
agree with entries in the testing datasets, we performed the
Wilcoxon signed-rank test (Pratt 1959). According to the
test, the difference between the TSInet results and entries
in TCTE (NRLTSI2, SATIRE-S respectively) is not statisti-
cally significant with p = 0.01552 < 0.05 (0.0001 < 0.05,
0.0001 < 0.05 respectively).

Reconstruction of TSI on the SATIRE-M Dataset
SATIRE-M contains decennial averages and is comprised of
solar irradiance over the last 9,000 years. Each entry in the
SATIRE-M dataset represents an average of 10 years. How-
ever, our TSInet reconstructs daily TSI. To reconstruct solar
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Figure 3: (i) RMSE and CORR values obtained by TSInet for k-step, k = 1, 2, . . . , 10, reconstruction of TSI on the TCTE
dataset. (ii) Runtime needed by TSInet for k-step, k = 1, 2, . . . , 10, reconstruction of TSI on the TCTE dataset. (iii) Comparison
of RMSE values of TSInet, CNN and LSTM on the TCTE dataset. (iv) Comparison of CORR values of TSInet, CNN and LSTM
on the TCTE dataset. (v) Comparison of RMSE values of five TSI reconstruction methods on the TCTE dataset. (vi) Comparison
of RMSE values of five TSI reconstruction methods on the NRLTSI2 dataset. Results from the SATIRE-S dataset are similar
and omitted.

irradiance on the SATIRE-M dataset, we employ the follow-
ing technique. Recall that the SATIRE-S dataset provides
daily reconstruction of solar irradiance in the period of 1974
– 2013. We first use TSInet to reconstruct total solar irra-
diance beyond 1974 on SATIRE-S. Then we take 10-year
averages on the reconstructed TSI values.

Figure 4 compares the 10-year averages obtained by
TSInet with the entries in SATIRE-M. TSInet’s results
agree mostly with entries in SATIRE-M. According to the
Wilcoxon signed-rank test (Pratt 1959), the difference be-
tween TSInet’s results and SATIRE-M entries is not statisti-
cally significant (p = 0.000297 < 0.05). Figure 4 also shows
that our TSInet model is capable of reconstructing total solar
irradiance beyond 9,000 years. We reconstructed total solar
irradiance for additional 1,000 years beyond the SATIRE-M
data.

Conclusions
The Earth’s primary source of energy is the radiant energy
from the Sun. This energy is known as solar irradiance, or
total solar irradiance (TSI) when all of the radiation is mea-
sured. The changes in solar irradiance have a significant im-
pact on Earths’ atmosphere and climate. Therefore, study-

Figure 4: SATIRE-M reconstruction using TSInet plus re-
construction of solar irradiance for additional1,000 years.

ing and reconstructing solar irradiance is crucial in solar
physics. Existing methods for solar irradiance reconstruction
are all based on physics-based models (Wu et al. 2018a).
In this paper, we presented the first deep learning method
(TSInet) for reconstructing total solar irradiance (TSI). Ex-
perimental results showed that results from our TSInet agree



well with those from the physics-based models. When com-
pared to closely related machine learning methods, TSInet
achieves the best performance among the methods. TSInet
does not depend on physics properties such as proxies, and
hence it can be extended back at times when proxies were
not available. We demonstrated here that TSInet is able to
reconstruct TSI for more than 9 millennia.
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