
BIO-AJAX: An Extensible Framework for Biological Data Cleaning

Katherine G. Herbert
�

Narain H. Gehani
�

William H. Piel
�

Jason T. L. Wang
�

Cathy H. Wu
�

Abstract

As databases become more pervasive through the biological
sciences, various data quality issues regarding data legacy, data
uniformity and data duplication arise. Due to the nature of this
data, each of these problems is non-trivial. For biological data
to be corrected and standardized, new methods and frameworks
must be developed. This paper proposes one such framework,
called BIO-AJAX, which uses principles from data cleaning
to improve data quality in biological information systems,
specifically in TreeBASE.

1 Introduction

Due to advances in biological research, information in
biological data repositories has grown substantially. As
with any database, these data repositories now must cope
with a number of data quality issues that are inherent to
very large databases. These data quality issues include
synonymy, polysemy and data redundancy, to name a
few. However, due to the complex and diverse nature
of the data, the problem of improving the data quality
is non-trivial. If the data quality is not maintained or
improved, then for data extracted from the repositories by
a third party or for data mining purposes, the applications
and knowledge based on the inconsistent data will either
fail or be skewed.

Data repositories are also expanding their functional-
ities, requiring more interactions among the data, thus
creating more data quality problems. Currently, most
data repositories are interrelating with each other, creat-
ing a number of integration problems such as reconciling

�
Department of Computer Science, New Jersey Institute of

Technology, University Heights, Newark, NJ 07102, USA.�
Department of Computer Science, New Jersey Institute of

Technology, University Heights, Newark, NJ 07102, USA.�
Department of Biological Sciences, 608 Cooke Hall, State

University of New York at Buffalo, Buffalo, NY 14260, USA.�
To whom correspondence should be addressed: College of

Computing Sciences, New Jersey Institute of Technology, University
Heights, Newark, NJ 07102, USA. Tel: (973) 596-3396, Fax: (973)
596-5777, Email: wangj@njit.edu.	

Department of Biochemistry and Molecular Biology, George-
town University Medical Center, 3900 Reservoir Road, NW, Box
571455, Washington, DC 20057-1455, USA.

both data and schemas. With biological research chang-
ing rapidly, creating more detailed information about bi-
ological processes, repositories must address the issue of
how to integrate complex submission data with legacy
data that follow different data models [10]. Many data
repositories endeavor to reduce redundancy within their
databases in favor of giving the user highly annotated
consensus data. For example, the Protein Information
Resource [17] strives to provide users with highly an-
notated information about the proteins stored within its
databases. To provide this, its curators must manage
the data through both manual and automated techniques.
Data cleaning can offer methods for making the process
more automated. Finally, the discoveries in biology affect
not only the scientific community, but also other com-
munities such as the business and finance communities.
Therefore, there is a need for simple interfaces that give
results in a concise, easy to understand style. All of the
challenges can be interpreted as data quality problems
and addressed through data cleaning and exploratory data
mining [3].

The aim of this paper is to propose an extensible
toolkit to address data quality issues through data clean-
ing within biological data repositories. This toolkit, BIO-
AJAX, is an extensible framework with various opera-
tions that allows a repository to extend concepts within
the framework to cater to a repository’s needs. The op-
erations can be interpreted as needed by the repository to
perform various data quality and data cleaning activities.

As an example, we will show in the paper how BIO-
AJAX is applied to solving the nomenclature problem in
TreeBASE. TreeBASE is a phylogenetic and evolution-
ary information system, available at www.treebase.
org [11] and accessible from GenBank. The system con-
tains citation and experimental data for evolutionary stud-
ies. It can display the experimental data through den-
drograms on the website. The user can then navigate
these dendrograms, finding other dendrograms with sim-
ilar taxa.

The nomenclature problem in TreeBASE is mainly
concerned with the fact that nomenclature for evolution-
ary units is not entirely standardized. While Linnaean



nomenclature (e.g. “Homo sapiens” or “Canis famil-
iaris”) is used pervasively within scientific communities,
non-scientific communities use general vernacular terms
such as “human” or “dog”. This creates a number of
limitations for evolutionary databases. First, it limits
the community of users only to those familiar with the
nomenclature. Second, it creates challenges concerning
integration with other evolutionary biology resources. Fi-
nally, it creates inconsistencies in analyzing the data if
there are non-standard interpretations of the nomencla-
ture within the database.

In general, due to the type of data stored in Tree-
BASE, TreeBASE is unable to control the inconsistency
problems within the database concerning the nomencla-
ture. Ideally, all of the nomenclature should conform
to a specific set of nomenclature, such as the Linnaean
nomenclature, which TreeBASE strongly recommends
within its submission guidelines. However, there are
cases where the nomenclature needs to be slightly mod-
ified so that an experiment is properly modeled. For ex-
ample, in an evolutionary study among organisms of the
same species, each organism needs to be differentiated.
Therefore, one common practice is to amend the taxon
name, putting a suffix at the end of the taxon name unique
to the organism. While this modification has great mean-
ing to the study, it does create inconsistent data concern-
ing the nomenclature and makes it difficult to have com-
plete studies about all occurrences of a species within the
database. We propose in the paper a technique, imple-
mented and incorporated in BIO-AJAX, for solving these
inconsistency and incompleteness problems concerning
the nomenclature in TreeBASE.

The benefits of this research can greatly improve
many components of biological databases in general,
and TreeBASE in particular. First, it can enhance
information retrieval and knowledge discovery results
within these databases. Any data mining performed on
the database will reflect the content of the database rather
than the inconsistencies within the database. Integration
with other repositories can be conducted more efficiently.
Finally, the groups of users viewing the data can be
expanded since the scientific data can be mapped onto
an uncomplicated and easy-to-understand representation
of the data.

2 BIO-AJAX

BIO-AJAX is a data cleaning toolkit for biological infor-
mation systems that is designed to improve data quality
at both data level and schema level. It adopts and modi-
fies the conceptual operations originally developed in the
declarative framework AJAX [7] so that they specially
meet biological data needs. Previously, most data clean-
ing methodologies were specific to the domain or greatly
tied into the physical layers of the database. Their heuris-
tics were highly incorporated into the implementation of

Schema &
DataMATCH CLUSTER

MERGE CLASSIFY

Clean

MAP VIEW

Dirty
Schema &
Data

Figure 1: The BIO-AJAX framework.

the data cleaning tool. AJAX, however, offered a way
to encapsulate the primary operations of data cleaning to
speak of the data cleaning techniques in an abstract man-
ner. This gives flexibility to the system since the concep-
tual operations can be preserved while the instantiations
of the operations can change as needed.

Figure 1 shows the BIO-AJAX framework consisting
of six interrelated operators. These operators each have
specific individual purposes but can, and in some cases
need, to work with the results from other operations.
These operators are:

� MAP: translates the data from one schema to another
schema.

� VIEW: extracts portions of data for cleaning pur-
poses.

� MATCH: detects duplicate or similar records within
the database.

� MERGE: combines duplicate records or similar records
into one record within the database.

� CLUSTER: identifies sets of relations within the data
and organizes the data into those relations.

� CLASSIFY: analyzes a given data point, categorizing
it according to various domain rules.

In general, there can be multiple extensions and im-
plementations of these operators. For example, there are
a number of algorithms that can perform matching in
any data set, including phylogenetic trees. The opera-
tor CLASSIFY uses various classification algorithms to
perform many tasks such as classifying a protein or help-
ing to standardize metadata. CLUSTER also performs
operations associated with outlier detection in the data.

Implementing BIO-AJAX upon a data set first requires
studying and detecting errors within the data set. This
can involve using data mining algorithms catered to the
data set to detect dirty data as well as discussions with
curators and experts in the fields to understand observed
problems. The next step is to identify algorithms that
can effectively detect and clean the dirty data. These
algorithms are tested on a small set of the database to
gauge their effectiveness. If the algorithms are effective,



Homo sapiens y

man 1

man 2

man 3

T1

T2

T3

human A

human B

human C

Homo sapiens x

Homo sapiens z

Figure 2: Example illustrating the nomenclature prob-
lem.

they are then implemented onto the entire database and
integrated into the cleaning tool. The tool then runs
automatically, without any more curator interaction.

3 BIO-AJAX and TreeBASE
One of the data quality problems concerning phyloge-
netic data in general, and TreeBASE specifically, is the
nomenclature problem. In evolutionary biology research,
various nomenclature issues can arise. See the NCBI
TaxBrowser Website where there are resources entirely
dedicated to updating users on nomenclature changes [5].
While the curators at TreeBASE specify directions for
nomenclature, many submissions do not follow these di-
rections.

Figure 2 illustrates this problem. In this example we
have three trees, all of which model evolutionary rela-
tionships among the species “Homo sapiens”. In the case
of these trees, each tree studies evolutionary relationships
between specific organisms within the species.

���
shows

the evolutionary relationships among three taxa “Homo
sapiens x”, “Homo sapiens y”, and “Homo sapiens z”.���

illustrates the relationships among three taxa “human
A”, “human B”, and “human C”.

���
shows the evolution-

ary relationships among three taxa “man 1”, “man 2”,
and “man 3”. Now, consider tree

� �
. The letters after

the taxon name “Homo sapiens” indicate that a specific
organism within the species or some other specificity is
involved concerning the taxa within the tree. Therefore,
this tree may not be generally about “Homo sapiens” but
about a specific set of Homo sapiens organisms. In simi-
lar instances in TreeBASE, if we query for “Homo sapi-
ens”, most likely we will not get these three trees since
the taxon “Homo sapiens” is not explicitly and exactly
specified in the trees. (Only querying for “Homo sapi-
ens x”, for example, will allow us to get

���
.) Similarly,

if we query for “human” or “man”, we will not get the
three trees even though all the three trees are related to
“human”, “man”, or “Homo sapiens”.

Thus, because of the inconsistency among the taxon
names, we are unable to get a complete set of trees
about the species “Homo sapiens”. To solve the inconsis-
tency and incompleteness problems, BIO-AJAX cleans
the taxon names by implementing a layer between the
user and the original database while not modifying the
experimental data. Keeping the data intact is necessary
since TreeBASE is an archival data repository where the
original experimental data needs to be preserved.

Specifically, the operators of BIO-AJAX are instanti-
ated to clean the nomenclature in the following manner
(MAP and CLASSIFY are not relevant here and are omit-
ted):

� VIEW: generates a list of prefixes for all taxa con-
tained within TreeBASE.

� MATCH: compares the list of prefixes with the
taxonomy entries in NCBI Taxonomy database. If
an entry is found, obtain all nomenclature associated
with the entry and index the names.

� MERGE: indexes the nomenclature so that any one of
the prefixes, original nomenclature or nomenclature
found in NCBI Taxonomy database can be used to
query and obtain related trees.

� CLUSTER: uses hashing methods to group nomen-
clature and prefixes together that would refer to the
same data within TreeBASE.

These cleaning tasks can be specified by high-level
data cleaning scripts such as those used in [7]. For ex-
ample, the VIEW operator can be specified as follows:

CREATE VIEW PhyloPrefixes
FROM DirtyTaxonData d
WHERE d �	� null

SELECT prefixGen(d.TaxonName)
AS prefix INTO PhyloPrefixes �

Here, the prefixes are created from the table DirtyTaxon-
Data that contains the extracted data from TreeBASE.
The function prefixGen produces the prefixes from
DirtyTaxonData. Other operator specifications follow
similarly.

This cleaning architecture offers some advantages
over traditional methods such as record-based methods.
Foremost, it allows for comparison of the nomencla-
ture against a reliable resource (e.g. NCBI Taxonomy
database) that is dynamically adjusted to the recognized
state of the art within phylogenetics. Other methods
for cleaning this data, such as record based comparison
cleaning, would not be able to exploit such updates.

3.1 Implementation
BIO-AJAX is implemented using Perl, JAVA, JSP, HTML,
and placed over TreeBASE as middleware to preserve



Figure 3: The BIO-AJAX interface implemented for TreeBASE.

data integrity. Figure 3 shows the interface of the system.
Due to the sensitive nature of biological data, specifically
in this case phylogenetic trees, BIO-AJAX has been de-
signed to never alter original submission data, but rather
to interact with the original data and provide facilities
to clean the interactions with the data. This is neces-
sary, especially in an archival biological database clean-
ing since the data is associated with publications by the
researchers.

To perform the nomenclature cleaning, first, all of
the taxa are extracted from TreeBASE. The taxa are
extracted with the name of the experimental study file
that contains them. Once the taxa are extracted, they are
organized lexicographically according to taxon names.
The extraction file then goes through a rudimentary
cleaning phase. This cleaning phase removes characters
that could not possibly be a part of the taxon names as
well as formats the extraction file for interaction. These
characters, such as a forward slash before a taxon name,
were determined to be extraneous characters during the
analysis phase in the BIO-AJAX implementation for
TreeBASE. Next, the file is formatted to become input

for a prefix generation tool.
The prefixes are generated by producing all possible

prefixes containing the first word of the nomenclature.
(Most nomenclature consists of more than one word
and the first word is an identifying term of a species.)
For example, given the taxon “Homo sapiens x”, the
following prefixes would be generated: “Homo”, “Homo
s”, “Homo sa”, “Homo sap”, “Homo sapi”, “Homo
sapie”, “Homo sapien”, “Homo sapiens”, “Homo sapiens
x”. If the taxon name is one word long, then the
prefix containing only that one word is created for that
taxon ensuring every taxon in TreeBASE will be tested.
Once the prefix list has been created, this list is then
automatically used as input for the NCBI TaxBrowser
query tool [1, 5, 15].

The NCBI Taxonomy database [1, 5, 15] is a repos-
itory of phylogenetic and taxonomic data about various
species. The NCBI Taxonomy database provides tools to
search and browse phylogenetic data about most species.
Moreover, it conglomerates data from multiple resources
about taxa and species. This data is dynamically updated
as the Taxonomy database is updated, representing a con-



cise representation of peer reviewed phylogenetic data.
Therefore, it provides an ideal resource for solving the
nomenclature problem in TreeBASE.

The list of prefixes is queried against the NCBI
Taxonomy database’s search tool TaxBrowser. This tool
offers the user a number of options for searching for taxa.
For BIO-AJAX’s purposes, the following four types of
searches are used: Complete Name search, Wild Card
search, Token Set search and Phonetic Name search.
The search for each prefix yields one of three possible
results. First, the prefix is exactly found within the NCBI
taxonomy database. If this is the case, the tool has
found a “data page” about the prefix. The prefix and
all other nomenclature NCBI associates with that entry
are indexed. The results from each of these searches are
then combined together. For example, consider again� �

in Figure 2 where “Homo sapiens” is a prefix of
“Homo sapiens x”. When sending this prefix to the
NCBI taxonomy database, we will get “human”, “man”
and “Homo sapiens” returned, and therefore all the three
taxon names are linked with

� �
. Similarly, when sending

the prefix “human” (“man”, respectively) of “human A”
(“man 1”, respectively) in

� �
(
� �

, respectively) to the
NCBI taxonomy database, we will also get “human”,
“man”, and “Homo sapiens” returned. Thus, the three
taxon names will be linked to all the three trees

���
,
���

and
���

.

In the second case where the prefix does not return
any match, then the prefix is discarded. Finally, if the
prefix returns a hierarchical listing of possible matches,
then an exact phrase search is performed within the list.
If the exact prefix is found in the list, then that link is
explored and treated as a data page. Only the exact match
is used since, if each result in the list were used, then
many taxa that are not related significantly enough to
the original TreeBASE taxon would be included. For
example, if the original TreeBASE taxon is “Homo
sapiens”, the prefix “Homo” would be generated from
that taxon. The query “Homo” on TaxBrowser results
in a list containing the taxa “Homo”, “Homo sapiens”,
and “Homo sapiens neanderthalensis”. Only the taxon
“Homo” will be explored. “Homo” represents a genus
that Homo sapiens belong to. Therefore, data about this
group may be of interest to a user. If all of the list were
explored, “Homo sapiens neanderthalensis” would have
also been included as a possible association to “Homo
sapiens”. Since these are two distinct species, this is a
relationship that should be eliminated when creating the
associations.

Once the list is obtained from NCBI, it is indexed
using hash tables. These tables allow for the exploitation
of both the original data from TreeBASE and the
data obtained from the prefix generation and querying.
One index is comprised of the original taxa obtained
from TreeBASE. The other index is comprised of the

prefixes and other nomenclature obtained during the
NCBI Taxonomy verification stage.

Now consider again the BIO-AJAX interface shown in
Figure 3. This interface has been modeled similarly to the
TreeBASE interface. The user can enter a nomenclature
query in the top frame. This query is then formatted for
interaction with the index. The query is checked against
both indices described above. If a match is found in the
index reflecting the original TreeBASE taxa, this match
is considered an “Exact” match and any data linked to
this match is highlighted as an exact match. If a match
is found in the index that contains the nomenclature
obtained from NCBI and the prefixes, then these matches
are treated as “Related” matches. With each index, the
matrix accession for its related studies is also housed
with it. Once the matches are found, the data is then
extracted from the TreeBASE database through using the
matrix accession numbers of the studies. The results are
then formatted, with the exact matches listed first, and
displayed to the user similarly as to how the results are
displayed on the TreeBASE website.

When searching, if the user wants to search for the
taxon with exact matches in TreeBASE, he or she clicks
on the ”Exact” button. If the user wishes to search for any
related matches to the taxon, he or she would click on the
button ”Related”. The results of the search appear in the
text box in the top frame. From there, the user can select
one to all studies to be displayed. Once the studies are
selected, they can be displayed in the bottom left frame.
Data from these studies, including the phylogenetic trees,
can be displayed in the bottom right frame.

For example, consider again the three trees in Figure
2. When the query is “Homo sapiens x” and the “Exact”
button is clicked,

� �
will be returned. On the other

hand, when the query is “Homo sapiens” and the “Exact”
button is clicked, none of the three trees will be returned.
However, if we click on the “Related” button when
submitting the query “Homo sapiens”, all the three trees
will be returned.

3.2 Experiments and Results
To see how the proposed technique helps to gather a
more complete set of trees related to a species, we
conducted the following experiments. We extracted all
of the taxon names from TreeBASE and used these
taxon names as queries against NCBI TaxBrowser. This
would reflect how well the TreeBASE nomenclature was
compared with standard nomenclature. Moreover, the
NCBI Taxonomy database also links to the TreeBASE
database to provide users with more data about a given
taxon. This experiment would reflect how well the taxa
in the TreeBASE archive were recognized by the NCBI
Taxonomy database.

For each taxon that is in a study or tree housed in the
TreeBASE archive, it was used as a query for the NCBI
TaxBrowser. If any data page was returned to the user, it



Search option TreeBASE taxa With prefixes

Complete Name 13,076 (49%) 23,493 (88%)
Wild Card 13,079 (49%) 23,493 (88%)
Token Set 13,172 (49%) 23,801 (89%)

Phonetic Name 14,025 (52%) 24,633 (92%)

Table 1: Results of taxa searches in NCBI TaxBrowser
with TreeBASE nomenclature.

was considered a match. This data page could be one of
two types of page. First, it could be a terminal page for
a specific taxon’s phylogenetic information. Second, it
could be a hierarchical listing of possible matches. Of the
26,737 taxa obtained from TreeBASE, four experiments
were performed with the different types of search (i.e.
Complete Name, Wild Card, Token Set and Phonetic
Name) available on TaxBrowser.

In addition, the prefix lists were tested. 290,118
prefixes were generated for the 26,737 taxa. If any one of
the prefixes for a given taxon resulted in a match within
the NCBI Taxonomy database, the taxon was considered
as matched. The results are shown in Table 1. Thus,
for example, in the table, for the Complete Name search
option, 13,076 taxa out of the 26,737 taxa, which were
about 49% of the taxa obtained from TreeBASE, resulted
in a match within the NCBI Taxonomy database. On
the other hand, for the same search option and with the
prefix generation technique, 23,493 taxa out of the 26,737
taxa, which were about 88% of the taxa obtained from
TreeBASE, were considered as matched.

The results in Table 1 reflected how BIO-AJAX found
a number of taxa related to the TreeBASE taxa that
were not previously detected. This has a number of
implications for the cleaning method as well as Tree-
BASE. First, within the studies archived in TreeBASE,
while efforts have been made to minimize the nomen-
clature problems, only approximately 50% of the taxa in
TreeBASE are recognizable by the standards within the
phylogenetic community stored in the NCBI Taxonomy
database. Moreover, since many data repositories link to
TreeBASE, such as the NCBI Taxonomy database, this
has implications for them as well. Second, with the pre-
fix generation technique, the recognition of the taxa can
be improved to approximately 88%. This helps to solve
the inconsistency and incompleteness problems concern-
ing the nomenclature in TreeBASE as well as any other
tool that links to TreeBASE.

4 Conclusion and Future Work

This paper presents BIO-AJAX, a cleaning framework
for biological data. The toolkit has been implemented
and placed, as middleware, over the phylogenetic infor-
mation system TreeBASE. A prefix generation technique
for instantiating the operators in BIO-AJAX has been de-

veloped, which helps to clean the nomenclature in Tree-
BASE. In contrast to existing work for cleaning rela-
tional records or genome sequences (see, for example,
[6, 9]), the techniques presented here are focused on evo-
lutionary trees and hence are different from those existing
data cleaning methods.

Future work concerning this framework includes cre-
ating more data analysis tools such as viewing the statis-
tical distributions of taxa or co-occurrence of taxa [12].
Another direction is to extend BIO-AJAX to other data
repositories. This involves the implementation of an
API (application programming interface) for wrapping
the taxonomy source such that other taxonomy (say, en-
zyme classification, gene ontology, etc.) can also be used
so long as they adhere to the required interface. There
may exist inconsistencies among the different taxonomy
sources and how to resolve them remains to be a chal-
lenge research problem, both in phylogenetics and in data
engineering.

We also plan to study other data types including those
in the Protein Information Resource (PIR). PIR is an in-
tegrated public resource of protein informatics to support
genomic and proteomic research and scientific discovery
[17]. Through the development of PIR databases, a num-
ber of problems have been observed that could benefit
from the BIO-AJAX data cleaning architecture. For ex-
ample, in [16], two types of cleaning issues are identified:
protein classification and functional annotation.

Protein classification is a complex area with a number
of problems. First, there is no standard way to compare
proteins. Therefore, different methods turn out different
results. Another problem is that many of the protein
classification issues have arisen from the data integration
phase of eliminating redundancy from the repository.
For example, it has been noted that there are numerous
errors found in genome annotation [2, 4]. Moreover,
with current genome annotation standards, many proteins
are defined only to have one function. This can limit
the ability to classify the proteins properly since most
proteins are multifunctional. This leads to the concerns
facing the functional annotation. A possible method
for addressing this problem could be adopting feature
extraction for proteins [13, 14] and using extracted
features to categorize the proteins.

Functional annotation itself is used in many aspects of
protein data repository management. For example, it can
help to classify unknown protein sequences. However,
current functional annotation has many problems. Be-
sides the aforementioned problem, a major issue of func-
tional annotation is concerned with protein name ontol-
ogy [8]. Such an ontology is important, as the protein
name is the form in which a protein object is referred
to and communicated in the scientific literature and bi-
ological databases. As with the nomenclature problem
in TreeBASE, there is also a long-standing problem of



nomenclature for proteins. Scientists may name a newly
discovered or characterized protein based on its function,
sequence features, cellular location, molecular weight, or
other properties, as well as their combinations or abbre-
viations. A protein name ontology provides a basis for
consistent database annotation where functional conser-
vation is curated with a common language.

BIO-AJAX offers possible improvements and solu-
tions to these basic problems. BIO-AJAX allows for the
extension of multiple algorithms for classifying proteins
as well as creates environments for these algorithms to
interact with each other. It also affords the opportunity
to implement and extend new algorithms and methods.
This allows for BIO-AJAX to examine how well the algo-
rithms perform classification and interact with the older
methods. We plan to extend BIO-AJAX to clean data in
protein repositories, specifically in PIR.

Acknowledgment
We thank the anonymous reviewers for their constructive
suggestions, which helped to improve the paper.

References
[1] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J.,

Ostell, J., Rapp, B.A., and Wheeler, D.L. “Gen-
Bank.” Nuc. Acids Res., 28(1):15-18, 2000.

[2] Brenner, S.E. “Errors in Genome Annotation.”
Trends in Gen., 15:132-133, 1999.

[3] Dasu, T. and Johnson, T. Exploratory Data Mining
and Data Cleaning. John Wiley & Sons, 2003.

[4] Devos, D. and Valencia, A. “Intrinsic Errors in
Genome Annotation.” Trends in Gen., 17:429-431,
2001.

[5] Federhen, S., Harrison, I., Hotton, C., Leipe, D.,
Soussov, V., Sternberg, R., and Turner, S. NCBI
Taxonomy Homepage. http://www.ncbi.
nlm.nih.gov/Taxonomy/taxonomyhome.
html/.

[6] Gajer, P., Schatz, M., and Salzberg, S.L. “Auto-
mated Correction of Genome Sequence Errors.”
Nuc. Acids Res., 32:562-569, 2004.

[7] Galahardas, H., Florescu, D., Shasha, D., Simon,
E., and Saita, C.A. “Declarative Data Cleaning:
Language, Model and Algorithms.” In Proc. of the
27th International Conference on Very Large Data
Bases, 2001, pp. 371-380.

[8] Hirschman, L., Park, J.C., Tsujii, J., Wong, L.,
and Wu, C.H. “Accomplishments and Challenges
in Literature Data Mining for Biology.” Bioinfor-
matics, 18(12):1553-1561, 2002.

[9] Low, W.L., Lee, M.L., and Ling, T.W. “A
Knowledge-Based Approach for Duplicate Elim-
ination in Data Cleaning.” Information Systems,
26(8):585-606, 2001.

[10] Ludäscher, B., Gupta, A., and Martone, M.E. “A
Model Based Mediator System for Scientific Data
Management.” Eds. Z. Lacroix and T. Critchlow,
Bioinformatics: Managing Scientific Data, Mor-
gan Kaufmann Publishers, 2003, pp. 335-370.

[11] Piel, W.H., Sanderson, M.J., and Donoghue, M.
“The Small-world Dynamics of Tree Networks
and Data Mining in Phyloinformatics.” Bioinfor-
matics, 19(9):1162-1168, 2003.

[12] Shasha, D., Wang, J.T.L., and Zhang, S. “Un-
ordered Tree Mining with Applications to Phy-
logeny.” In Proc. of the 20th International Confer-
ence on Data Engineering, 2004.

[13] Wang, J.T.L., Ma, Q., Shasha, D., and Wu, C.H.
“New Techniques for Extracting Features from
Protein Sequences.” IBM Systems Journal, Special
Issue on Deep Computing for the Life Sciences,
40(2):426-441, 2001.

[14] Wang, J.T.L., Marr, T.G., Shasha, D., Shapiro,
B.A., Chirn, G.W., and Lee, T.Y. “Complementary
Classification Approaches for Protein Sequences.”
Protein Engineering, 9(5):381-386, 1996.

[15] Wheeler, D.L., Chappey, C., Lash, A.E., Leipe,
D.D., Madden, T.L., Schuler, G.D., Tatusova,
T.A., and Rapp, B.A. “Database Resources of the
National Center for Biotechnology Information.”
Nuc. Acids Res., 28(1):10-14, 2000.

[16] Wu, C.H., Huang, H., Yeh, L.S.L., and Barker,
W.C. “Protein Family Classification and Func-
tional Annotation.” Computational Biology and
Chemistry, 27:37-47, 2003.

[17] Wu, C.H., Yeh, L.-S., Huang, H., Arminski, L.,
Castro-Alvear, J., Chen, Y., Hu, Z., Kourtesis, P.,
Ledley, R. S., Suzek, B.E., Vinayaka, C.R., Zhang,
J., and Barker, W.C. “The Protein Information
Resource.” Nuc. Acids Res., 31(1):345-347, 2003.


