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MetricMap: An Embedding Technique for Processing
Distance-Based Queries in Metric Spaces
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Abstract—In this paper, we present an embedding technique,
called MetricMap, which is capable of estimating distances in a
pseudometric space. Given a database of objects and a distance
function for the objects, which is a pseudometric, we map the
objects to vectors in a pseudo-Euclidean space with a reasonably
low dimension while preserving the distance between two objects
approximately. Such an embedding technique can be used as an
approximate oracle to process a broad class of distance-based
queries. It is also adaptable to data mining applications such as
data clustering and classification. We present the theory under-
lying MetricMap and conduct experiments to compare MetricMap
with other methods including MVP-tree and M-tree in processing
the distance-based queries. Experimental results on both protein
and RNA data show the good performance and the superiority of
MetricMap over the other methods.

Index Terms—Bioinformatics, data mining, embedding method,
metric space, nearest neighbors, similarity search.

I. INTRODUCTION

ONE common operation in information retrieval (IR), data
mining (DM), and pattern recognition (PR) is similarity

search [1], [2]. Given a database of objects and a query object
, the problem of similarity search is to find the objects in that

are similar to . The “similarity” here is measured by a distance
function . In the past, two types of similarity search (or dis-
tance-based queries) have been studied: 1) the nearest-neighbor
query, which is to locate the objects in that are most similar
(or closest) to and 2) the -range query, which is to locate
the objects in whose distances to are less than or equal
to a user-determined number, . When the distance function
is simply a metric, several methods, including MVP-tree [3]
and M-tree [4], have been proposed to accelerate the searching.
In this paper, we collectively refer to these methods as dis-
tance-based data structures.

The two types of distance-based queries described above are
useful in many applications. For example, one widely studied
DM application is data clustering. In the agglomerative, hierar-
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chical clustering method, one treats each object as a cluster, and
merges those clusters that are close to each other to form larger
clusters [2]. In measuring the distance between two clusters, one
considers and weighs the distances among the component ob-
jects in the clusters. Calculating the distance between two com-
ponent objects (e.g., RNA secondary structures) is time con-
suming and often quadratic in the size of the objects in new-gen-
eration database systems designed for multimedia and scien-
tific domains [5], rendering online distance calculations pro-
hibitive. The distance-based data structures including MVP-tree
and M-tree can be used as a tool to speed up the clustering in
these applications.

A. The FastMap Algorithm

Another approach for speeding up the clustering is to embed
objects in a high-dimensional space (Euclidean or pseudo-Eu-
clidean), , into a low-dimensional target space, ,
in which distance calculations are cheap and then cluster the
objects in that low-dimensional space. Such an embedding tech-
nique with applications to similarity search and data mining was
first proposed by Faloutsos and Lin [6] and their technique was
called FastMap. The basic idea of FastMap is to project objects
on a line in , where the line is formed by two pivot
objects , which are chosen as follows. First, arbitrarily
choose one object and let it be the second pivot object . Let

be the object that is farthest apart from . Then, update
to be the object that is farthest apart from . The two resulting
objects are pivots.

Consider an object and the triangle formed by , and
(Fig. 1). From the cosine law, one obtains

(1)

Thus, the first coordinate of object with respect to the line
is

(2)

FastMap extends the above projection method to embed ob-
jects (data points) of into the target space as follows.
Consider a -dimensional hyperplane that is perpen-
dicular to the line , where and are two pivot ob-
jects. The FastMap algorithm then projects all objects in a given
database onto this hyperplane. Let be two objects and let

be their projections on the hyperplane . It can be shown
[6] that the dissimilarity between ,
is

(3)

1083-4419/$20.00 © 2005 IEEE



974 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005

Fig. 1. Illustration of the projection method used in FastMap.

where is the number of objects in the database. Being able
to compute allows one to project on a second line, lying
on the hyperplane , and therefore orthogonal to the first line

. The FastMap algorithm repeats the above steps recur-
sively, times, thus mapping all objects in to points in

.
Previously we introduced MetricMap [7] and compared

the performance of FastMap and MetricMap in data mining
and clustering applications [8], [9]. The major difference be-
tween FastMap and MetricMap lies in the target space they
choose—the former uses Euclidean space while the latter
uses pseudo-Euclidean space. Although both FastMap and
MetricMap employ the cosine law, this major difference leads
to a new embedding method adopted by MetricMap, which is
totally different from that used in FastMap.

In this paper, we extend the work in [7] by providing de-
tailed proofs, examples and illustrations to explain the theo-
rems given in [7]. Furthermore, we present new results by ap-
plying MetricMap to processing the nearest-neighbor query and
-range query, and comparing MetricMap with related distance-

based data structures including MVP-tree [3] and M-Tree [4].
To accelerate query processing, we generalize a previously pro-
posed VA-file technique [10] to the pseudo-Euclidean space for
pruning the search space. These new results provide insights to
the behavior and applications of MetricMap, which were not re-
ported in [7].

II. RELATED WORK

A. Distance-Based Data Structures

Distance-based data structures have been studied by several
researchers [1], [3], [4], [11]. In [12], Yianilos proposed the van-
tage-point tree (VP-tree), which partitions the search space ac-
cording to the relative distances between the data objects and a
specific object, called the vantage point. By considering the rel-
ative distances as opposed to the absolute coordinates of the ob-
jects, VP-tree avoids the dimensional curse problem [10]. Each
node in a VP-tree is connected to a vantage point and a distance
value. In the binary tree case, after picking up a vantage point

, the median distance is calculated, so that the number of
data objects within distance of is the same as the number of
data objects outside distance of . This way, the data objects
are partitioned into two halves. A node is created, which is
connected to and . Two vantage points and are then
chosen in the two halves, and the median distances and
are calculated, respectively. The nodes connected to and

, respectively, become the children of . This process is
applied recursively until a certain number of vantage points are
obtained. To process the -range query, starting at the root, one

calculates the distances between the query object and the van-
tage points and prunes the search space by using the triangle in-
equality. The search descends the branches of the VP-tree until
no further pruning is possible. One then calculates the distances
between and the remaining data objects to find those that are
within distance of .

In a subsequent paper, Chiueh [11] applied VP-tree to con-
tent based image retrieval in multimedia databases. Bozkaya and
Ozsoyoglu [3] extended the approach to include multiple van-
tage points, ending up with MVP-tree. An MVP-tree has two
vantage points in each node and utilizes the pre-computed dis-
tances between the vantage points and data objects in processing
the -range query. These distances are calculated during the con-
struction of the MVP-tree.

Ciaccia et al. [4] introduced another closely related data struc-
ture, called M-tree, which stores subsets of the data objects into
fixed-size leaf nodes. Each internal node of an M-tree has a
routing object , a covering radius for every child node

, and a pointer to that child node . The basic property
of the covering radius is that for every object in the subtree
rooted at . Thus, the M-tree algorithm
basically partitions the data objects into a set of possibly over-
lapping “balls”. Going up the tree, the balls become larger and
larger until the root, whose subtrees cover the whole database.
In processing the -range query, the M-tree algorithm prunes the
search space using the triangle inequality in a way similar to the
VP-tree algorithm.

In [13], Hjaltason and Samet described a general, incremental
nearest-neighbor algorithm that is applicable to a large class of
hierarchical spatial data structures. The authors proved infor-
mally that, at any step in the execution, the incremental nearest-
neighbor algorithm is optimal with respect to the spatial data
structure employed. Though not directly related to our tech-
niques, the authors presented a useful search framework with
applications in spatial and geographic information systems.

B. Embedding Methods

Another line of works related to our work are embedding
techniques. Roweis and Saul [14] introduced an embedding ap-
proach, called locally linear embedding, to reduce the dimen-
sionality of high dimensional data. In [15], Donoho and Grimes
extended the idea of Roweis and Saul to a significantly broader
class of applications. Another algorithm that used weights and
regression mapping was presented in [16], which attempts to
reduce the squared error introduced by embeddings. Belkin and
Niyogi [17] proposed an approach that utilizes the Laplacian
operator in an attempt to capture the intrinsic geometric struc-
ture of the space under consideration. Their algorithm solves a
sparse eigenvalue problem. It is efficient due to its simplicity.
A problem associated with using eigenvalues in non-Euclidean
vector spaces is that some eigenvalues may be negative. Roth et
al. [18] introduced a framework in which they adjust the pair-
wise distances of the vectors in consideration so that the neg-
ative eigenvalues can be avoided and the resulting vectors ap-
proximate the original vectors satisfactorily.

In [19], Agrafiotis proposed a stochastic process to fine
tune an embedding. Courrieu [20] presented a method that
uses multidimensional scaling to embed a metric or nonmetric
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topological space into a Euclidean space. The algorithm con-
structs a monotonic embedding. Another approach that extends
multidimensional scaling was proposed in [21]. This algorithm
differs from the aforementioned locally linear embedding in
that the discrepancy in distributional information is used to
guide embedding. In [22], Athitsos et al. employed a ma-
chine learning approach for embedding. Their approach first
constructs one-dimensional (1-D) classifiers and uses them to
compose a multidimensional classifier. The 1-D classifiers are
built in a similar way as FastMap calculates the first coordinate
of objects described in Section I.A. A training algorithm is
then used to choose classifiers that better complement each
other to build the multidimensional classifier. In [23], Dubnov
and co-authors proposed an algorithm that employs a two-step
transformation on a proximity matrix to build a hierarchical
cluster. The first step of the transformation represents each data
point by its relation to all other data points. The second step
re-estimates the pairwise distances between the data points
using a statistically motivated proximity measure on these
representations. It is worth noting that none of the embedding
techniques considers pseudo-Euclidean spaces, as adopted
in MetricMap. Furthermore, while many of these embedding
techniques are useful for data mining applications, they are not
designed for processing distance-based queries as addressed in
this paper.

The rest of the paper is organized as follows. Section III
presents the theory underlying MetricMap. Like the distance-
based data structures surveyed in Section II-A, the MetricMap
algorithm proceeds in two phases. In the first phase, which is
the embedding phase, the algorithm maps database objects to
vectors in a target space. As shown in [9], this phase requires

time where is the number of objects in the database
and is the dimensionality of the target space. In the second
phase, which is the on-line search phase, the query object is
given and the algorithm finds the near(est) neighbors of from
the database. Section IV describes our techniques for finding
the near(est) neighbors of using MetricMap and a modified
VA-file technique [10]. Section V compares the cost of Met-
ricMap, MVP-tree, and M-tree occurring in the on-line search
phase. Section VI concludes the paper.

III. THE THEORY UNDERLYING MetricMap

In this section, we present the theory underlying MetricMap.
This theory is important in understanding: 1) how database ob-
jects are mapped to a target space; 2) how the dimensionality of
the target space is reduced; and 3) how to deal with embeddable
and unembeddable objects in both the embedding phase and the
on-line search phase. This theory also helps to understand how
the subsequent query processing algorithms described in Sec-
tion IV work in a low dimensional target space.

Section III-A presents notation and some basic definitions. In
Section III-B, we consider a database of objects, a dis-
tance function , which is a pseudometric, where ,
or simply , represents the distance between and , for
all . Thus, is a pseudometric space
[24]. We choose a sample of , objects from
the database and embed the objects into a -dimensional

pseudo-Euclidean space, . Section III-C establishes an or-
thogonal basis for . Section III-D considers a lower dimen-
sional space , by ignoring those dimensions
where after embedding all the objects of into , the differ-
ences among the th components of the corresponding vectors
are small. To further reduce the dimensionality, Section III-E
considers an orthonormal basis and Section III-F establishes an

-dimensional pseudo-Euclidean space . The ob-
jects corresponding to the dimensions of are chosen as ref-
erence objects.

Once the target space is established, the MetricMap al-
gorithm maps each object in the database to a point (vector)

in the target space by comparing the object with the ref-
erence objects. (We refer to the point as the image of the
object .) The coordinate of is calculated through matrix
multiplication. An object may or may not be embeddable in the
target space. Section III-G deals with the projection of an em-
beddable object onto the target space, and Section III-H handles
the projection of an unembeddable object. In the beginning of
the on-line search phase, the query object will also be com-
pared with the reference objects, so that the calculated distances
can be used for projecting onto the target space .

A. Notation and Basic Definitions

Our notation is mainly based on [25] and [26]. Let
be a base vector in the pseudo-Euclidean space . We

use , or simply when the context is clear, to rep-
resent . Use to represent
the coordinate of with regard to the basis . Let ’s
be real numbers. The matrix containing these numbers is

...

Let be real numbers. The matrix containing these numbers
is

...
...

A diagonal matrix is represented as

...
...

B. Pseudo-Euclidean Space

We define a mapping from the sample of the database
mentioned in the beginning of this section to as follows:
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Fig. 2. The mapping �.

such that

Intuitively, we map to the origin and map the other sampling
objects to vectors (points) in so that each of the
sampling objects corresponds to a base vector in (see Fig. 2).

Let

where

(4)

We define another mapping as follows:

such that

where is the transpose of vector . Notice that
. is a symmetric bilinear form of . is the

matrix of with regard to the basis . The vector
space equipped with the symmetric bilinear form is called
a pseudo-Euclidean space [27]. For any two vectors,

is called the inner product of and , and
is called the squared distance between

and .
Note that the inner product that we define here is an exten-

sion of the inner product of two vectors in a Euclidean space.
Referring to Fig. 3, according to the cosine law, we have

Thus

Fig. 3. Illustration of the inner product of two vectors.

By definition, the left-hand side is the inner product of
and . The right-hand side is exactly the as given in
(4).

A pseudo-Euclidean space differs from a Euclidean space
in that the inner product is indefinite and the number

can be positive, negative or zero, depending on the
vector . A vector is called space-like, if ;
time-like, if ; a light-vector, if . The
light-cone is the set of all light-vectors.

Notice that we map any two database objects to two
orthonormal unit vectors without considering the distance

. This mapping may cause severe deformations of the target
space. In Section III-C, we will introduce a series of transforma-
tions to straighten the target space so that the target space gets
closer to a Euclidean space as much as possible.

C. -Orthogonal Basis

Since the matrix is real symmetric, there is an or-
thogonal matrix = and a diagonal matrix

such that

(5)

where is the transpose of are eigenvalues of
arranged in some order, and columns of are the corresponding
eigenvectors [25]. Let or equiv-
alently

(6)

Then is another basis of ; cf. Fig. 4. Note that the
coordinate of with regard to is the th column of
matrix , and the coordinate of with regard to is
the th row of .

Example 1: Suppose the sample we choose has seven ob-
jects and the distance matrix
for this sample is
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Fig. 4. Basis transformation in R .

Then is as shown in the equation at the bottom of the
page. The orthogonal matrix for the above is

and the diagonal matrix for the above is

The coordinate of with regard to the orthogonal basis
is

, the coordinate of is
, and so on. On the other hand,

the coordinate of with regard to is
, the coordinate

of is , and so
forth.

Since there will often be three different bases of a space in our
discussion, we introduce a new notation, which is not common,
but convenient. Let be a vector and
be a basis of . The coordinate of with regard to is

denoted by . Using this notation, the relation
between and may be written as

where is the coordinate of with regard to ,
and is the coordinate of with regard to . Let

be a vector in . Then

(7)

Therefore, the matrix of the bilinear form with regard to
is

That is, the basis is -orthogonal. Let be two
vectors in . Then

(8)

In particular, we have

Remark 1: If the matrix has negative eigenvalues,
the squared distance between two vectors in the pseudo-Eu-
clidean space may be negative. That is why we never say the
“distance” between vectors in a pseudo-Euclidean space. Fur-
thermore, the fact that the squared distance between two vec-
tors vanishes does not imply that these two vectors are the same.
These situations cannot happen in a Euclidean space.

Notice that, based on the definition of the squared distance
in (8), if an eigenvalue is zero or very small, the differ-
ence between coordinates along this dimension does not con-
tribute much to the squared distance between two vectors. In
Sections III-D, III-E, and III-F, we will reduce the dimension-
ality of the target space by excluding those dimensions with zero
or very small eigenvalue values, so as to reduce the total number
of distance calculations during the on-line search phase. This
idea is similar to principal component analysis [28], though the
techniques employed are different.
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Fig. 5. Projecting R onto R .

D. Pseudo-Euclidean Space

Assume that the eigenvalues of the matrix are or-
dered as follows: first positive eigenvalues, then negative
ones and finally zeroes; . Then

where denotes the direct sum of two subspaces:
is the subspace generated by , and is

the subspace generated by [26]. Let .
Then is a nondegenerate bilinear form over . The set
of vectors is a -orthogonal basis of subspace .

Let be a vector in . We define the -orthogonal projec-
tion

such that

Let denote ; cf. Fig. 5. Let be the matrix
consisting of the first columns of the orthogonal matrix ,
namely . Then, from the definition
of and (6), we have

(9)

i.e., the coordinate of with regard to includes the
first elements of the th row of the matrix , namely

.
All the discussions about the inner product can now be sum-

marized as follows:

Thus, the vector representation of the pseudometric space
is the mapping

satisfying

and

Definition 1: A vector representation of the pseudometric
space is an isometric representation if for any

.
From the above discussions, we have the following.
Theorem 1: The mapping is an isometric representation of

the pseudometric space in the pseudo-Euclidean space
. That is, for any pair of indices

.
Proof: The result follows immediately by observing that

Theorem 1 describes the relation between the distance in
the pseudometric space and the squared distance in the corre-
sponding pseudo-Euclidean space, stating the fact that the map-
ping preserves .

E. -Orthonormal Basis

Define to be

Let and , where

Let . Then
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This means that the first columns of the matrix are -or-
thonormal vectors. Let

or equivalently

(10)

Then, the set of vectors is a -orthonormal basis of
.

From (6) and (10), we have

(11)

From (9) and (10), we have

(12)

where is the th leading principal submatrix of the
matrix , i.e., . The coordinate of

with regard to the basis includes the first
elements of the th row of the matrix , i.e.,

. Let be two vectors in
. Then

Example 2: Refer to Example 1. Since all eigenvalues
are nonzero numbers, we have , and

in our case. Thus, , where is projected
onto . The coordinate of with regard to
is

. Similarly, the coordinate of with regard to
is , and so on.

F. Pseudo-Euclidean Space

In practice, the number of objects in the sample , i.e., ,
may be large. Consequently, the dimension of could still be
large. From (8), we know that the eigenvalues represent the ex-
tensions of variances of the objects in in the corresponding
dimensions. To avoid dealing with a space of very high dimen-
sionality, we ignore the dimensions along which the eigenvalues
are small. Specifically, suppose the eigenvalues are sorted in de-
scending order by their absolute values. Let be the
first eigenvalues, , and

. The mapping

is the projection of the isometric vector representation onto the
subspace spanned by the first vectors in the -orthonormal
basis. The first elements of the th row of the corresponding

would give the coordinates of for the reduced vector
representation, i.e.,

Let be two vectors in . Then

is the approximate representation of for the corre-
sponding vectors in , and

(13)

is the approximate representation of . Note that

Let be projected onto , i.e.,
. We have

This equation provides a way to estimate the error incurred by
the approximation introduced above.

Theorem 2: Let .
Then .

Proof: The result follows by observing that

Example 3: Refer to Example 2. After the eigenvalues are
sorted according to their absolute values, we have

Since , and are very small in comparison with ,
and , we ignore those three dimensions corresponding to

, and . Thus, in our case. According to
Theorem 2, we have .

Notice that the first mapping maps one of the objects in the
sampling set to the origin and each of the other sampling objects
to a basis vector of ; each sampling object thus corresponds
to one dimension of . After the first transformation through
which we found an orthogonal basis, we removed dimen-
sions whose eigenvalues are small. We also removed the objects
that correspond to those dimensions. The remaining
objects are reference objects, denoted .

In general, the database is sizable and the number of the
reference objects is relatively small. After the target space
is established, all the database objects need to be mapped to vec-
tors in the target space. When a query object is submitted, which
may not exist in the database, the query object also needs to be
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mapped to a vector in the target space. These objects may or
may not be embeddable in the target space. In the following two
subsections, we discuss how to embed an object into the target
space in cases where the object is embeddable and unembed-
dable, respectively.

G. Projection of Embeddable Objects

We can map each object in the database to a point (vector)
in the target space based on the distances between

and the reference objects . To begin with, add
into . Let the distances between and be given as:

Assume that the object is isometrically represented by a
vector , i.e.,

or equivalently

(14)

. Let be the matrix consisting of
the first columns of the matrix , namely

. Let be the th leading principal
submatrix of the matrix , i.e., . Then
from (9) and (12),

(15)

Let be the -orthogonal projection of onto . can
be represented as a linear combination of the set of vectors

. Taking the inner product of
and , we obtain .
Owing to the -orthogonality,

. Hence

(16)

Let the Gram matrix
. Then (16) can be re-written as

. Since is nonsingular,
i.e., its determinant is not zero, .

Note that this equation gives the coordinate of with regard
to the basis . To obtain the coordinate with regard
to or , we need the matrices of coordinate transforma-
tion. Let be the th leading principal submatrix of the
orthogonal matrix . Then from (15)

(17)

So

(18)

where .
These equations can be simplified. From (17), we know that

the coordinate of with regard to is the th row
of , i.e., . According to the for-
mula for the inner product,

. Therefore,
. Substituting this into (18)

Thus

(19)

Note that, after computing eigenvalues and eigenvectors,
one obtains the matrices and . However, in gen-
eral we do not know how large is. What we know
is . Thus, we
have to use as an approximate value for to
compute . In other words, the formula we use in practice are

(20)

where . Following the way to simplify
, (20) can be rewritten as

(21)

Notice that, is the matrix of the linear transformation that
gives us the orthogonal basis . With respect to this basis,
the coordinates contribute differently to the overall distance be-
tween two objects. The differences between the coordinates are
weighted by the eigenvalues. is the matrix of the linear trans-
formation that finds the orthonormal basis . The motivation
of performing this transformation is to show the connection be-
tween pseudo-Euclidean space and Euclidean space. After this
transformation, the squared distance becomes the sum of the
squares of the differences between the coordinates, which is
similar to the distance in a Euclidean space. The only differ-
ence now lies in the matrix . In the case of a Euclidean space,

is a matrix of all 1’s along the diagonal line. In the case of a
pseudo-Euclidean space, however, may have some ’s along
the diagonal line.
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Example 4: Refer to Example 3. After transforming
to is

Suppose we have an object , whose distances to the reference
objects , and are 38.44, 44.12, 37.49, and 31.80,
respectively. Then and

.
One may ask how well this works. The following three theo-

rems estimate the error between and when
is used in place of . All these theorems are based on
the assumption that there is an object in the database that
is very close to . That is, if ,
then there exists a small positive real number such that

(22)

Theorem 3: Let denote the Euclidean norm of a vector
or matrix [25]. Let be the vector representations (or
images) of and , respectively, and let be the nonzero
eigenvalue with the smallest absolute value in . Then

, where

Proof: Since can be isometrically embedded into
, or equivalently

(23)

Let where
. Then (23) can be written as .

Thus, . From (5) and (7),
. Since

, can take any values. Let , where

We choose those , that satisfy .
Thus, . Similarly, . Thus,

. Evaluating these
norms, we get

Omitting the infinitesimal of higher order and substituting in-
equality (22), we get .
Hence, .

Theorem 4: For each
.

Proof: Let . Since
[cf. (9)] and is the projection of onto

, we obtain

where .
The first term on the right-hand side is easy to estimate. Since
is orthogonal, . Thus

Similarly

By Theorem 3

Hence, .
Theorem 5:

Proof: Subtracting (19) from (21),

. Hence

(24)
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Evaluating these norms, we get

. By Theorem 4

Substituting these into inequality (24), we get

.
From these theorems, it can be seen that the error between

and is negligible whenever is not large and
is small enough. The error estimation in these theorems assumes
that is an arbitrary object. If is one of the reference ob-
jects , the bound would be tighter as described in Theorem 6
below.

Theorem 6: If are the coordinates calculated
based on the formula (20), then

.
Proof: By replacing with , in (19)

and (21), we get

, where and
. Observe that

Thus,

.
Note that the upper bound described in Theorem 6 is just

one term of the upper bound for in Theorem 5, which is
reasonable, since in this case.

H. Projection of Unembeddable Objects

In the previous subsection, we gave the projection formula
for objects that are embeddable to the target space. Such objects
include those that were used in the sampling set. In many cases,
however, an object may not be isometrically embedded into .
For these objects, we still can derive a projection formula that is
basically the same as (20). The problem with an unembeddable
object is that (14) in Section III-G does not hold. As a conse-
quence, the projection formula of (18) can not be established.
To address this problem, we construct a -dimensional
space with the object as the th dimension. Then we
project all the objects (i.e., the sampling objects in

, plus the object ) onto . The projection of the th
object establishes the formula for the object . We then intro-
duce a new mapping to connect with , thus resulting
in a formula very similar to the previous one for an embeddable
object.

To begin with, let us first establish a -dimensional
space. Let and , such

that: 1) ; 2)
; and 3)

. Next, we define a symmetric bilinear form over
, such that (i)

, and (ii)
. Then define the matrix of the

bilinear form with regard to
. Comparing the definition of with

that of in Section III-B, one can see that for each pair of sub-
scripts . Moreover,
the matrix is simply the th leading principal subma-
trix of .

Analogously to how we dealt with in Sections III-C
through III-F, we can compute the eigenvectors of the ma-
trix to obtain a -orthonormal basis, say

, of . To derive a formula similar to (18)
for an embeddable object, we need another -orthonormal
basis in . We define a mapping such that

, where is the
coordinate of a vector in with respect to some basis of it.

Consider the subspace of defined in Section III-D.
The mapping associates with a subspace, say , in

. The space can be represented as the direct sum of
and its -orthogonal complement [26]. It follows that the

union of a -orthogonal basis of and a -orthogonal basis
of its -orthogonal complement will become a -orthogonal
basis of . The subspace is spanned by .
Theorem 7 specifies that the set of vectors spans

. Theorem 8 guarantees that if is -orthonormal
then is -orthonormal.

Theorem 7: Let be vectors in and let
be real numbers. If , then .

Proof: Let . We have
. Let

and . By the definition of
, and .

Thus, . Namely, .
Theorem 8: Let and be two vectors in . Then

.
Proof: By the definition of

where . Thus
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Therefore, there is a -orthonormal basis of which
includes as a subset. The coordinate of a vector
in with respect to the basis mentioned above may be ob-
tained from its coordinate with regard to , through
multiplying the latter one by a certain nonsingular matrix (i.e.,
through coordinate transformation).

Note that . According to Theorem 8
and (11)

Therefore the coordinate of the projection of with regard
to is simply the coordinate of with regard to

. In parallel with the introduction of the subspace ,
we can introduce a subspace of from in , and
then consider the projection of the object onto . Let be
the -orthogonal projection of onto . Then
is the -orthogonal projection of onto . Since the set of
projections spans , according to Theorem 7, the
set of projections spans . Furthermore, from
(17)

According to Theorem 6, the Gram matrix of is simply
the Gram matrix of . Summarizing these results, we know
that the coordinate of projecting onto with regard to

can be computed using the equation

where the matrices , and are the
same as those in (20), and .
Again, we do not know how large is. What
we can do is to replace it by , thus obtaining

(25)

where . By comparing (20) with
(25), we conclude that no matter whether or not an object is
embeddable in , one can always use the same formula to cal-
culate the projection of the object, though the resulting coordi-
nates are with respect to the same basis represented in different
dimensional spaces (more precisely, with respect to
and , respectively).

IV. QUERY PROCESSING ALGORITHMS

After all the database objects are embedded in the pseudo-
Euclidean space , we can conduct a search in that space.
Following Weber’s approach [10], we allocate bits to encode
the th dimension of . Thus, the th dimension is divided
into partitions. The borders of these partitions are marked by

, where is the minimum value
and is the maximum value along the th dimension.
Let be an object in the database and let be the
vector representation (image) of . Let the coordinate of be

Fig. 6. The value of l and u , respectively.

and let the partition into which falls be
numbered , i.e., . Then can
be encoded as a bit string , where has
bits.

Now, in the on-line search phase, given the query object ,
we calculate the distances between and the reference objects

, and then embed into based on these
distances. Let be the vector representation (image)
of and let the coordinate of be . Let the
partition into which falls be numbered , i.e.,

. Thus, can also be encoded as a bit string
, where has bits. We can derive a

lower bound and an upper bound for the squared distance
between and as follows:

(26)

(27)

where and are defined in Fig. 6.
Theorem 9 (Theorem 10, respectively) shows the ( , re-

spectively) described above is indeed a lower (upper, respec-
tively) bound of the squared distance between and .

Theorem 9: Let be as in (26). Then .
Proof: Since , it suffices

to prove that for each . There are six
cases to examine.

i) and . Thus, . Since
; see Fig. 7.

Therefore, .
ii) and . In this case, we still have

. Since .
But now , and therefore .

iii) and . Thus, . Obviously,
.

iv) and . Since

. Therefore, and
.

v) and . Thus, . Since
. Therefore,

.
vi) and . In this case, we still have

. Since
. Therefore, .
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Fig. 7. Illustration of the case in which t < t and � > 0. Dashed lines
represent the boundaries of partitions and solid lines represent the projecting
lines of p and q , respectively.

Theorem 10: Let be as in (27). Then .
Proof: Since , it suffices

to prove that for each . Again, there
are six cases to examine.

i) and . Thus, . Since
. Thus,

.
ii) and . In this case, we still have

. Since
. But now , and therefore

.
iii) and . Since and

. Thus, and therefore
.

iv) and . Thus, . Obviously,
.

v) and . Thus, . Since
. Thus,

.
vi) and . In this case, we still have

. Since .
Thus, .

Since and are the images of and , respectively,
in the vector space approximates the real dis-
tance , or simply , between and . Assuming

, we develop algorithms to process the dis-
tance-based queries mentioned in Section I. Specifically, for the
-range query [6], whose goal is to find those objects that are

within distance of the query object , our algorithm works as
follows. We prune those objects ’s in all the partitions that
satisfy because these objects are farther away from the
query object . To see this, notice that

. For the remaining objects ’s, we verify them by testing
whether .1 On the other hand, for the nearest-
neighbor query (also called the best-match query) [29], we want

1Based on the assumption kq � p k = d , our algorithm would achieve
a recall of 100%. In practice, due to the accumulating errors arising in dis-
tance estimation and object embedding (cf. Theorems 2–6), the recall is actually
slightly less than 100%, as our experimental results show later. This holds for
the nearest-neighbor search as well.

Fig. 8. Algorithm for finding the nearest neighbors of the query object Q.

to find those objects that are closest to . Fig. 8 presents the al-
gorithm, whose correctness is shown in Theorem 11.

Theorem 11: Based on the assumption , algo-
rithm Find Nearest Neighbors correctly finds all the nearest
neighbors of the query object .

Proof: Notice that the algorithm maintains a set FOUND
containing currently found nearest neighbors with the same dis-
tance dist to the query object . Whenever a closer object
of is found, the set is updated to contain only the object
and dist is reset as the real distance between and .
In the meantime, the remaining partitions in PART are pruned
based on the lower bound . According to Theorem 9, every
image (object) in a pruned partition has the same , and

. Thus, only those objects that are farther
away from the current nearest neighbors are pruned. This com-
pletes the proof.

V. PERFORMANCE EVALUATION

A. Data and Parameters

We have conducted a series of experiments to compare the
proposed query processing algorithms with MVP-tree and
M-tree. The algorithms and data structures were implemented
in the C programming language under Unix running on a Sun
Sparc 20. The data tested included 230 protein sequences and
200 RNA secondary structures. The lengths of the protein
sequences ranged from 21 to 2594 amino acids. The distance
metric used for the protein sequences was the edit distance for
strings [5]. The RNA secondary structures were created by first
choosing two phylogenetically related mRNA sequences, rhino
14 and cox5, from GenBank pertaining to the human rhinovirus
and coxsackievirus. The noncoding region of each sequence
was folded and 100 secondary structures of that sequence were
collected. The structures were then transformed into trees and
their pairwise distances were calculated as described in [30].
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The trees had between 70 and 180 nodes. The distance metrics
used here satisfy the triangle inequality, but are not Euclidean.

As in [3], we evaluated the performance of the studied
techniques by considering distance calculations occurring in
the on-line search phase. Specifically, the cost measure used
was the average percentage of distance calculations. In each
run, a different object was chosen as the query object and the
number of distance calculations was divided by the number of
objects in a dataset and then multiplied by 100%. The average
percentage was calculated over all runs.

We studied two types of similarity search: the -range query
and nearest-neighbor query. To make the range more mean-
ingful and the two datasets more comparable, we scaled the dis-
tances by dividing or multiplying them by a constant. For the
protein sequences whose distances ranged from 1 to 2573, we
divided the distances by 10. For the RNA secondary structures
whose distances ranged from 1 to 89, we multiplied the dis-
tances by 10.

We tuned the parameter values to get the best results for each
technique. We first considered the 230 protein sequences. It was
observed that M-tree achieved the best results when the node
size was 10. For MVP-tree, the results were best when the size
of the leaf nodes was 10. Since MetricMap needs to embed the
query object into the target space, there is always an initial cost,
which is equal to the number of dimensions of the target space.
When the dimensionality is low, this initial cost is low. However,
that may cause the distances to be underestimated and may yield
a large number of false positives, which have to be verified later
on.2 On the other hand, a higher dimensionality causes a higher
initial cost while reducing the number of false positives. The
best results of MetricMap occurred when the dimensionality of
the target space was between 15 and 25. Thus, we set the di-
mensionality of the target space to 20. We set the size of the
sampling set used in the MetricMap algorithm to be the number
of vantage points in MVP-tree.

B. Performance on Query Processing

We first present the results for the -range query. Fig. 9 graphs
the performance of the three studied techniques for the pro-
tein sequences. In the figure, -axis represents the values,
and -axis represents the average percentages of on-line dis-
tance calculations needed to answer the -range query. From the
figure, we see that MVP-tree consistently outperforms M-tree,
while MetricMap beats both of them. Since MetricMap is an ap-
proximate model, it does not guarantee a 100% recall. Fig. 10
illustrates the recall as a function of values for MetricMap. We
can see that MetricMap achieves a recall of over 96%. Speeding
up a search may be more important than achieving a 100% recall
in some applications, a philosophy adopted in many of today’s
search engines. This philosophy holds particular force for simi-
larity search since a distance measure itself embodies the notion
of approximation.

Using the same parameter settings, we conducted experi-
ments on another group of 400 protein sequences pertaining to

2False hits (false positives) occur when an object, which should not be in
the result of a query, is included by a search algorithm. False dismissals (false
negatives) occur when an object, which should be in the result of a query, is
excluded by the search algorithm.

Fig. 9. Distance calculations as a function of the � values for the 230 protein
sequences.

Fig. 10. Recall of MetricMap as a function of the � values for the 230 protein
sequences.

Fig. 11. Distance calculations as a function of the � values for the 400 protein
sequences pertaining to the human immunodeficiency virus.

the human immunodeficiency virus obtained from the database
maintained at the National Center for Biotechnology Informa-
tion. Figs. 11 and 12 show the results. Since the algorithms for
all the three studied techniques conduct distance verification
when getting the result of a query (cf. Steps 12 and 14 in Fig. 8),
their precisions are all 100%.

Next, we considered the 200 RNA secondary structures for
the -range query. The parameter values used for each of the
three studied techniques were as before. That is, the node size
for M-tree was 10, the size of the leaf nodes of MVP-tree was
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Fig. 12. Recall of MetricMap as a function of the � values for the 400 protein
sequences pertaining to the human immunodeficiency virus.

Fig. 13. Distance calculations as a function of the � values for the 200 RNA
secondary structures.

10, and the dimensionality of the target space of MetricMap was
20. Fig. 13 shows the results. Because of the distance distri-
bution of the RNA data, all the three studied techniques have
improved performance. Again, MVP-tree and MetricMap out-
perform M-tree consistently. When is small, e.g., 5 and 10,
MVP-tree performs almost as well as MetricMap. Notice that
the performance of MVP-tree degrades more quickly than Met-
ricMap as the value increases. When , MetricMap out-
performs MVP-tree. Fig. 14 depicts the recall of MetricMap as a
function of the values for the RNA secondary structures. From
the figure, we see that the recall of MetricMap is over 98%.

We also compared the performance of the studied techniques
in processing the nearest-neighbor query. Table I shows the re-
sults. It is interesting to observe that M-tree beats MVP-tree in
nearest-neighbor search, while MVP-tree outperforms M-tree in
-range search.

Remark 2: The experimental results presented here showing
MetricMap can not achieve a recall of 100% are consistent with
the arguments made in [28]. With sampling and dimensionality
reduction, Hjaltason and Samet [28] showed that MetricMap is
not contractive. (An embedding is contractive if the distances
in the target space lower-bound the corresponding distances in
the original database.) Consequently, its recall is not 100%, as
confirmed by our experimental results. However, without sam-
pling, MetricMap is contractive in a Euclidean space for the

Fig. 14. Recall of MetricMap as a function of the � values for the 200 RNA
secondary structures.

TABLE I
DISTANCE CALCULATIONS (%) NEEDED BY THE TECHNIQUES

reference objects and objects that are embeddable to the target
space. In other words, if the objects are points in ,
and the distance function is Euclidean, then MetricMap guar-
antees a lower bound on inter-object distances. That is,

where and are images of and ,
respectively. To see this, notice that in a Euclidean space, the
bilinear form is positive definite, because for any nonzero
vector is positive [31]. This implies that all the
nonzero eigenvalues are positive. When projecting the points
from onto , the images have fewer coordinates. From
(13), we conclude that the dissimilarity between two images is
less than or equal to the distance between the corresponding ob-
jects. This is true for both the reference objects and objects that
are embeddable to the target space.

VI. CONCLUSION

We have presented algorithms for processing two types of dis-
tance-based queries, namely the nearest neighbor query and the
-range query, using MetricMap and VA-file techniques. In our

previous work [7]–[9], we briefly introduced MetricMap and
compared it with FastMap [6] in data mining and clustering
applications. The new results presented in this paper include:
1) the theoretical foundation for MetricMap; 2) the algorithms
for processing the distance-based queries in metric spaces; and
3) an empirical study to compare MetricMap with MVP-tree
and M-tree on both protein and RNA data. Our experimental re-
sults indicated that MetricMap is an effective technique, which
is competitive and sometimes better than the distance-based data
structures, so may be a worthwhile component of any data-
base and data mining system for metric spaces. We have im-
plemented MetricMap into a software package, which is acces-
sible at http://www.cis.njit.edu/~jason/metricmap.html and can
be obtained from the authors.
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