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Abstract—We study a new data mining problem concerning the discovery of frequent agreement subtrees (FASTs) from a set of

phylogenetic trees. A phylogenetic tree, or phylogeny, is an unordered tree in which the order among siblings is unimportant.

Furthermore, each leaf in the tree has a label representing a taxon (species or organism) name, whereas internal nodes are unlabeled.

The tree may have a root, representing the common ancestor of all species in the tree, or may be unrooted. An unrooted phylogeny

arises due to the lack of sufficient evidence to infer a common ancestor of the taxa in the tree. The FAST problem addressed here is a

natural extension of the maximum agreement subtree (MAST) problem widely studied in the computational phylogenetics community.

The paper establishes a framework for tackling the FAST problem for both rooted and unrooted phylogenetic trees using data mining

techniques. We first develop a novel canonical form for rooted trees together with a phylogeny-aware tree expansion scheme for

generating candidate subtrees level by level. Then, we present an efficient algorithm to find all FASTs in a given set of rooted trees,

through an Apriori-like approach. We show the correctness and completeness of the proposed method. Finally, we discuss the

extensions of the techniques to unrooted trees. Experimental results demonstrate that the proposed methods work well, and are

capable of finding interesting patterns in both synthetic data and real phylogenetic trees.

Index Terms—Data mining, evolutionary bioinformatics, computational phylogenetics, algorithmic design, pattern discovery.
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1 INTRODUCTION

SCIENTISTS model phylogenetic relations using unordered
leaf-labeled trees and develop methods for constructing

these trees [27]. Different theories concerning the evolu-
tionary history of the same set of species often result in
different phylogenetic trees. Even the same phylogenetic
theory may yield different trees for different orthologous
genes. This leads to a fundamental research problem in
phylogenetics: how to determine what two different
hypothetical phylogenetic trees regarding the same set of
taxa have in common. This problem can be partially
answered by computing a maximum agreement subtree
(MAST) of the two phylogenetic trees. An agreement
subtree between two trees t1 and t2 is a substructure that
occurs in both trees [2], [10], [11], [12]. A MAST between t1
and t2 is an agreement subtree of t1 and t2; furthermore,
there is no other agreement subtree of t1 and t2 that has
more leaves than the MAST.

The MAST problem was first studied by Finden and
Gordon [11]. The authors developed a heuristic algorithm
for finding the MAST of two binary rooted trees, which
runs in time Oðn5Þ, where n is the number of nodes in the
trees. Ganeshkumar and Warnow [12] later gave an
Oðn2Þ algorithm, and Farach et al. [10] presented an
Oðn1:5lognÞ algorithm with different constraint assumptions

on tree topologies. When the MAST problem is generalized
from two trees to multiple trees, the problem was shown to
be polynomial-time solvable for trees with bounded degrees
[2], [10]. For trees with unbounded degrees, this problem is
NP-hard [2]. More recently, Berry and Nicolas [5] devel-
oped a linear-time parameterized algorithm to solve the
MAST problem. An observation is that a MAST of multiple
trees is usually of small size and thus uninformative,
especially when a large number of phylogenetic trees are
under consideration [12]. Furthermore, if there is an
incorrectly inferred phylogeny in the trees, the MAST
would provide wrong information too.

For example, a study S497 [17] in TreeBASE [23] shows
that biologists built a set of five rooted phylogenetic trees
for six Hamamelis-related species. Each of the five trees
depicts a hypothesis about the evolutionary history of the
six species. The five phylogenetic trees are shown in the first
two rows in Fig. 1. Three subtree patterns st1, st2, and st3
are shown in the last row in Fig. 1. Here, st1 and st2 are
MASTs of the five trees, since they are subtrees of all the
five trees, and no other subtrees occurring in all the five
trees have more leaves than st1 and st2. The pattern st3 is a
subtree of three trees only, namely, t1, t3, and t5 and
therefore not a MAST of the five trees. Nevertheless, in
phylogenetics, st3 is not necessarily less informative than
st1 or st2 for two reasons: 1) The number of leaves of st3 is
prominently greater than that of the two MAST patterns st1
and st2, and 2) st3 occurs in a majority of the trees.
Motivated by this observation, we develop a new tree
mining algorithm, called Phylominer [36], to find all
frequent agreement subtrees (FASTs) from a given set of
rooted phylogenetic trees, that is, our algorithm will find
not only st1 and st2 but also st3 when applied to the above
example.
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From a biological viewpoint, the FASTs indicate which

species are evolutionarily related according to the majority

of phylogenies under analysis where the phylogenies could

be inferred from different phylogenetic tree reconstruction

algorithms. For example, consider Fig. 1 again. Based on the

majority of the five different phylogenies in the figure,

Fothergilla_major (species 5) is more closely related to

Hamamelis_mollis (species 6) than Hamamelis_japonica

(species 4), as suggested in [17]. This information is

revealed in the FAST pattern st3 but not in the MAST

patterns st1 and st2, suggesting that FAST patterns are more

important than MAST patterns in phylogenetics.

1.1 Related Work

Ordered tree mining problems have been studied by several

researchers. Asai et al. [3] proposed a rightmost expansion

algorithm to find induced subtrees in rooted ordered trees.

Contemporarily, Zaki [34] developed similar techniques

capable of finding frequent embedded subtrees in a forest of

rooted ordered trees. Yang et al. [33] studied the ordered

tree mining problem in the context of XML management by

adapting the rightmost expansion scheme to solving a

frequent XML query pattern discovery problem. Wang et al.

[28] presented a dynamic programming algorithm for

finding the consensus of two general ordered trees, which

was applied to motif finding in RNA secondary structures.
In the area of unordered tree mining, Xiao et al. [31]

proposed an efficient frequent subtree discovery algorithm

through path joining operations. Asai et al. [4] and Nijssen

and Kok [21] independently discussed an essentially

identical tree enumeration technique for unordered tree

mining. More recently, Chi et al. [7], [8] presented a suite of

algorithms to find frequent induced subtrees in both rooted

and unrooted unordered trees. Shasha et al. [25] developed

methods to find cousin pairs in unordered trees with

applications to phylogeny. For a comprehensive survey of
tree mining methods and applications, please refer to [6].

In parallel with the tree mining research, graph mining is
a closely related field that also has been intensely studied
during the past decade. Kuramochi and Karypis [16]
extended traditional frequent itemset algorithms to find
frequent patterns in graph data. Yan and Han [32] proposed
a novel canonical graph form to find closed frequent
subgraphs. Huan et al. [15] devised a different canonical
form to efficiently discover frequent subgraphs in the
presence of graph isomorphism. For the readers who are
interested in the state of the art of graph mining, please
refer to [30]. Chi et al. [6], [8] also gave an excellent survey
on acyclic graph mining.

Here, we present a new algorithm to tackle the FAST
problem arising in data mining and computational phylo-
genetics. Our work differs from the above approaches in
two ways. First, in contrast to the general trees studied by
previous researchers [3], [7], [8], [21], [34], we focus on leaf-
labeled phylogenetic trees, which are commonly used to
model evolutionary histories of related species. Second, our
work was directly motivated by the MAST problem studied
in computational phylogenetics. This makes our algorithms
unique, because the subtrees we mine for are application
oriented and different from the patterns found in all the
previous tree mining papers. Specifically, Chi et al.’s [7]
work is a recent breakthrough in unordered tree mining;
however, their algorithms find induced subtrees from
unordered trees defined in the general tree context, rather
than embedded subtrees from leaf-labeled trees considered
here. Zaki’s [34] Treeminer is a powerful algorithm to mine
for embedded subtrees from ordered trees, but his
embedded subtree definition is rather tolerant. By contrast,
an agreement subtree in the phylogenetics context is
unordered and demands strict topological restrictions on
valid embeddings. The problem tackled here requires that
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Fig. 1. Five rooted trees for six Hamamelis-related species are shown in the first two rows. Three subtrees are displayed in the last row, where st1
and st2 are MASTs, but st3 is not. The names of the six species are Hamamelis_virginiana, Hamamelis_vernalis, Hamamelis_mexicana,

Hamamelis_japonica, Fothergilla_major, and Hamamelis_mollis, respectively, which are represented by node labels 1, 2, 3, 4, 5, and 6, respectively,

in the trees.



the agreement subtrees to be mined for should be both

unordered and embedded. This makes the problem

drastically different from the tree mining problems pub-

lished in the literature. Neither [34] nor [7] can find exactly

the FASTs in multiple phylogenies as our algorithms do.

Furthermore, there is no straightforward way to efficiently

adapt the previous methods to the problem addressed here,

which the proposed Phylominer is designed for. Our tree

mining method thus joins the many others already

developed [3], [4], [7], [8], [21], [25], [28], [31], [33], [34].
In [35], we formalized the FAST problem for rooted

phylogenetic trees, sketched the ideas behind Phylominer,

and reported its implementation status [36]. Here, we

extend the work in [35], [36] by 1) presenting the

algorithmic details and theoretical foundation of Phylomi-

ner, analyzing its correctness and complexity, 2) extending

the techniques of Phylominer to handle unrooted phyloge-

netic trees, and 3) conducting a complete experimental

study to evaluate the performance of the tree mining

algorithms for both rooted and unrooted phylogenies.
The rest of the paper is organized as follows: Section 2

presents basic concepts and terminologies. Section 3 de-

scribes in detail the Phylominer algorithm for rooted trees

and shows the correctness and completeness of the

algorithm. We also extend the techniques of Phylominer to

handle unrooted trees. Section 4 presents experimental

results. Section 5 concludes the paper.

2 PRELIMINARIES

Let L denote a set of labels, with each label representing

an evolutionary unit. An evolutionary unit can be a

taxon, organism, species, protein, gene, etc. Let the

cardinality of L, denoted by jLj, be k. Without loss of

generality, L can be considered as a set of k positive

integers fn1; n2; . . . ; nk�1; nkg.
Phylogenetic tree. A phylogenetic tree, or phylogeny, t

on L is a rooted leaf-labeled unordered tree in which

1) there are jLj leaves, and each leaf is associated with a

distinct unique label drawn from L, 2) all internal nodes

have no labels, and 3) a special node, denoted rðtÞ, is

designated as the root of the tree. Furthermore, the fanout,

that is, the number of children, of each internal node in t is

at least 2. (A phylogeny differs from general trees, in which

internal nodes may have labels, and the fanout of an

internal node can be 1.) The depth of the phylogeny is the

number of edges in the longest root-to-leaf path. The size of

the phylogeny is the number of its leaves, which equals the

cardinality of L. For convenience, a phylogeny with k leaves

is called a k-leaf tree; a node label will be used to represent

the corresponding node, and vice versa, when the context is

clear.
Subtree. Let Nt (Nst, respectively) represent the set of

nodes in tree t (tree st, respectively). We say st is a subtree

of t, if there exists a mapping f from the nodes in Nst to the

nodes in Nt such that the mapping is an injective function f :

Nst ! Nt, satisfying the following properties for all nodes u,

v 2 Nst:

. labelðfðuÞÞ ¼ labelðuÞ, where labelðuÞ represents the
label of u if u is a leaf or is undefined if u is an
internal node (label preservation).

. fðuÞ 2 descðfðvÞÞ if and only if u 2 descðvÞ, where
descðvÞ is the set of descendants of node v (ancestor-
descendant preservation).

. LCAðfðuÞ; fðvÞÞ ¼ fðLCAðu; vÞÞ, where LCAðu; vÞ is
the least common ancestor of u, v (least common
ancestor preservation).

A phylogeny st on SL is a subtree of phylogeny t on L, if
SL � L, st is a subtree of t, and st can be obtained by
restricting t to the leaf set SL through pruning all leaves
l 2 L� SL. This definition is represented by st � tjSL,
where tjSL denotes the operation of restricting t to SL

through leaf pruning, and � denotes the isomorphism
relationship between two unordered trees. Notice that
pruning a leaf from a phylogenetic tree may trigger an
edge contraction [29] in meeting the requirement that the
fanout of any internal node must be at least 2. Specifically,
the edge contraction works as follows: After a leaf l is
pruned or removed, l’s parent p may have a single child c

only. Thus, p is removed, making c become a child of
p’s parent. In general, multiple edge contractions can be
triggered if multiple leaves are pruned.

Fig. 2 shows two different injective mappings from two
subtrees to tree t. From the mapping lines, it can be seen
that st1 is an induced subtree of tree t [7], whereas st2 is an
embedded subtree of t [34] due to the edge contraction
triggered by pruning the leaf labeled 3. Both the embedded
subtree and the induced subtree, which is a special case of
the embedded subtree without causing edge contractions in
leaf-labeled unordered phylogenetic trees can be handled
by our Phylominer algorithm. By contrast, Chi et al.’s [7]
work deals with only induced subtrees in general un-
ordered trees, whereas Zaki’s [34] Treeminer deals with
embedded subtrees in general ordered trees (in which the
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Fig. 2. The subtree st1 is an induced subtree of tree t with no edge

contraction, and the subtree st2 is an embedded subtree of t with an

edge contraction. Shaded nodes are internal nodes that do not have

labels; only leaf nodes have labels.



order among siblings is important). The embedded subtrees
considered by Zaki in [34] are more tolerant than the
subtrees tackled here, which can be considered as strictly
embedded subtrees, in that the leaves of the embedded
subtrees in [34] can be internal nodes of the original trees,
and the fanout of an internal node in the embedded
subtrees in [34] can be 1. By contrast, the leaves of the
subtrees here must be leaves of the original phylogenetic
trees, and the fanout of each internal node in the subtrees
here must be at least 2. The embedded subtree definition in
[34] allows patterns that would be invalid in phylogenetic
applications.

Total agreement subtree. Let DT ¼ ft1; t2; . . . ; tmg be a
set of phylogenies on the leaf set L, and let SL be a subset of
L. A phylogeny st on SL is a total agreement subtree (or AST)
for DT , if st is a subtree of every tree in DT , that is,
st � t1jSL � t2jSL . . . � tmjSL.

MAST. If st has the maximum number of leaves among
all ASTs for DT , then st is a MAST for DT . In Fig. 1, both st1
and st2 are MASTs of the five phylogenetic trees in the
figure.

FAST. A subtree or pattern p is said to be supported by a
phylogeny t, or p occurs in t, if p is a subtree of t. We define
suppp;i to be 1 if ti 2 DT supports p; otherwise, suppp;i is 0.
The support of the subtree st ¼ p with respect to DT is
defined as ð

P
1�i�m suppp;i=jDT jÞ � 100 percent. A phylo-

geny is a FAST for DT if its support is greater than or equal
to a user-specified minimum support value, minsup. Our
goal is to find all FASTs in a given set of rooted phylogenies
where the support of the subtrees is greater than or equal to
minsup.

Maximum FAST (MFAST). If st has the maximum
number of leaves among all FASTs for DT , then st is an
MFAST for DT . Obviously, an MFAST might have more
leaves than a MAST. In Fig. 1, st3 is a MFAST of the five
phylogenetic trees in the figure when minsup is set to
60 percent.

It should be pointed out that the set of FAST patterns is a
superset of the set of MAST patterns. The algorithm for the
FAST problem can find FASTs occurring in a small portion
of a given data set (for example, with minsup ¼ 10 percent),
whereas the algorithm for the MAST problem always finds
the MASTs occurring in all trees in the data set.

3 PHYLOGENETIC TREE MINING

The same rooted leaf-labeled unordered tree can be present
in different ordered representations. This is the so-called
tree isomorphism problem, which is generally believed to
make pattern mining in unordered trees more sophisticated
than that in ordered trees. To solve this problem, we
propose a new canonical form for rooted phylogenetic trees.
This canonical form will allow us to represent each
phylogenetic tree by using one unique ordered tree. We
then introduce the concept of equivalence classes, based on
which our efficient candidate subtree generation strategy is
developed.

3.1 Canonical Form

The proposed canonical form for rooted phylogenetic trees is
a total ordering scheme among leaf labels in L, which

conforms to the integer comparison property, that is, the
ordering of L is 1 < 2 < . . . < n < nþ 1 < . . . . Based on this
leaf label ordering scheme, the canonical form of a rooted
phylogenetic tree t requires the assignment of virtual labels
to all originally unlabeled internal nodes in t. Specifically,
the virtual label of an internal node in t is the smallest integer
label among all the integer labels of t’s child nodes. Once the
virtual labels are assigned to all internal nodes of t, we define
the canonical form of t to be a specially designed ordered
tree, in which all sibling nodes (including both leaf nodes
and internal nodes) are arranged such that for every sibling
pair ðv; uÞ in t, node v always appears before node u in the
depth-first traversal (DFT) order of t if labelðvÞ < labelðuÞ.

Fig. 3 shows an example of three different ordered
representations of the same unordered tree. It can be seen
that t3 is in canonical form, whereas t1 and t2 are not.
However, the isomorphism between the three rooted trees
becomes obvious once t1 and t2 are transformed to their
canonical forms.

According to the definition in Section 2, it is not difficult
to see that any rooted phylogenetic tree can be transformed
to its canonical form by a straightforward algorithm, which
visits every node of the tree in a bottom-up manner, and
during the visit of each internal node, the algorithm
reorders all its child nodes. This procedure to transform a
tree t to its canonical form is referred to as canonicalizing the
tree t.

Lemma 3.1. Canonicalizing a tree t takes OðkÞ time, where k is
the number of leaves in t.

Proof. Let I represent the set of internal nodes in t. Let gðiÞ,
i 2 I, denote the number of children of the internal
node i in t. To canonicalize the subtree rooted at each
internal node i requires sorting all its gðiÞ children, which
can be done in OðgðiÞÞ time by using the count sort
algorithm. To canonicalize t, the above sorting operation
is performed at all internal nodes and, hence, the time
complexity for canonicalizing t is Oð

P
i gðiÞÞ = OðkÞ. tu

Property 1. A direct pruning of the last leaf, based on the DFT
order, of a rooted phylogenetic tree in canonical form results in
a subtree that is still in canonical form.

Property 2. A direct pruning of the second last leaf, based on the
DFT order, of a rooted phylogenetic tree in canonical form
results in a subtree that is still in canonical form.

Here, a direct pruning means pruning a leaf without
further canonicalizing the resulting tree. In Section 3.5, we
will show that the direct pruning properties suggest an
efficient joining scheme regarding how to arrange the last
leaves of two k-leaf trees to obtain ðkþ 1Þ-leaf trees in
their canonical forms without going through further
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Fig. 3. Three ordered representations of the same unordered tree.



canonicalization. We next introduce some terms needed
in explaining our Phylominer algorithm.

Weight scheme. After all internal nodes are labeled,
each leaf i can be associated with a weight, denoted wðiÞ,
which is an ordered label list obtained by concatenating
the labels of all nodes along the path from the root to the
leaf i. For example, the weights of the leaves of tree t3 in
Fig. 3 are the following: wð1Þ is “1, 1, 1,” wð5Þ is “1, 1, 5,”
wð4Þ is “1, 3, 4,” and so on. The weights of leaf nodes can
be compared from the most significant (leftmost) element
down to the least significant (rightmost) element. For
example, the weight order of the leaves in tree t3 in Fig. 3
is wð4Þ > wð6Þ > wð3Þ > wð5Þ > wð2Þ > wð1Þ. We introduce
the weight scheme here to facilitate the discussion of
canonicalization of unordered phylogenetic trees. It is also
necessary for understanding the concept of the heaviest
leaf defined below.

Heaviest leaf. The heaviest leaf, denoted lh, of a rooted
phylogenetic tree t is the leaf with the heaviest weight
among all leaves of t. If t is in canonical form, then lh is
always the last leaf of t according to its DFT order, that is, lh
is the rightmost leaf of t.
ðk� 1Þ-prefix tree. Given any k-leaf tree t in canonical

form, we define its ðk� 1Þ-prefix tree to be the ðk� 1Þ-leaf
tree obtained by pruning the rightmost leaf, that is, the
heaviest leaf, from t. We use thlp to represent the ðk�
1Þ-prefix tree of t.

3.2 Equivalence Class

For two different k-leaf trees t and t0 in their canonical
forms, respectively, we say they are in the same equivalence
class, if their respective ðk� 1Þ-prefix trees are isomorphic
to each other, that is, t and t0 share the same ðk� 1Þ-prefix
tree, which is called the core of the equivalence class. (In
determining whether a tree is isomorphic to another tree,
we take into account not only their topologies but also node
labels in them.) The relation “sharing the same ðk� 1Þ-prefix
tree with each other” for a set of k-leaf trees is an
equivalence relation, because the relation on these trees is
reflective, symmetric, and transitive. The equivalence
relation partitions the set of k-leaf trees into disjoint

equivalence classes, where each equivalence class is
uniquely identified by a core ðk� 1Þ-prefix tree.

Consider, for example, the trees in Fig. 4. Trees t1 and t2
are in an equivalence class, because they share the same
ðk� 1Þ-prefix tree, denoted by core1; t3 and t4 are in another
equivalence class, since they share the same ðk� 1Þ-prefix
tree, denoted by core2. Note that in tree t1, after pruning the
rightmost leaf labeled 4, the parent, p, of this leaf has a
single child labeled 3, violating the property that each
internal node must have at least two children. Hence, p is
removed, entailing an edge contraction and yield core1.
Similarly, in tree t2, after pruning the rightmost leaf
labeled 8, the root has a single child, violating the property
that each internal node must have at least two children.
Hence, the root is removed too, yielding the subtree in the
dashed circle, which is core1.

Heaviest subtree. Given a rooted phylogenetic tree t, the
heaviest subtree of t, denoted sthl, is defined as the subtree
rooted at the parent of the heaviest leaf of t. The remaining
part of the tree t after sthl is taken away is called the
complementary tree of sthl, denoted by cthl. For example, in
Fig. 5, the leaf labeled 4 is the heaviest leaf, lh, in t, and sthl
is the heaviest subtree of t, whereas cthl is the complemen-
tary tree of the heaviest subtree sthl. The heaviest subtree
will be used to describe our candidate generation method,
where our main concern is how to join two heaviest
subtrees. Notice that when two trees are in the same
equivalence class, their differences must be locally re-
stricted to their heaviest subtrees; otherwise, they would
not be in the same equivalence class.

3.3 Newick Notation

Phylominer uses Newick notation to represent input trees,
intermediate candidate subtrees, and final output trees.
Newick notation (http://evolution.genetics.washington.
edu/phylip/newicktree.html), widely used in computa-
tional phylogenetics [23], represents a tree by a very
compact parenthesized string form. The tree (or string)
ends with a semicolon. An internal node n is represented by
a pair of parentheses, enclosing n’s immediate descendants,
separated by commas. For example, the Newick formats for
trees t1 and t2 in Fig. 1 are “(4, (((3, 2), 1), (6, 5)));” and “((4,
(3, 2, 1), 6), 5);”, respectively. Obviously, the Newick format
for a tree is equivalent to, but more succinct than, the in-
memory linked-list representation of the tree. It requires
only linear time to convert an in-memory linked-list tree
into its Newick string, and vice versa. Therefore, most tree
manipulating operations used by Phylominer are performed
directly on Newick strings to achieve high efficiency.
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Fig. 4. Four trees are grouped into two equivalence classes. Trees t1
and t2 are in the same equivalence class, whereas trees t3 and t4 are in

another equivalence class.

Fig. 5. A tree can be divided into a heaviest subtree and its

complementary subtree.



The Newick string of a tree in canonical form will be
called the canonical Newick string of the tree. For example,
the canonical Newick string of the unordered tree in Fig. 3 is
“((1,2,5),((3,6),4));”. An operation that would require the in-
memory linked-list representation of a tree is the canonical
labeling scheme described in Section 3.1. However, such
operations are actually never performed, because the
canonical form of any candidate subtree is automatically
obtained through the joining procedure, as we will explain
in Section 3.5. Throughout the paper, Newick notation will
be used, whenever appropriate, to illustrate the details of
the joining procedure.

3.4 Algorithmic Framework

Phylominer is an Apriori-like data mining method [1],
which progressively enumerates all candidate subtrees in a
set of rooted phylogenetic trees and checks the occurrence
frequency of these candidate subtrees. Its algorithm is
summarized in Fig. 6. Initially, Phylominer enumerates
jLj 1-leaf trees and all jLj�jL�1j

2 2-leaf trees, which can be
obtained by combinatorially assigning two different labels
from L to the unlabeled 2-leaf tree skeleton. These 1-leaf
and 2-leaf trees must occur in all rooted phylogenetic trees
in the input set DT and hence are frequent, that is, their
support values are 100 percent and are greater than or equal
to minsup. The reason is that all trees in the input set DT
have exactly the same leaves from L. Consequently, every
leaf occurs in every input tree and, hence, every 1-leaf tree
has a support value of 100 percent. Now, consider a 2-leaf
tree st with two leaves l1 and l2 and an input tree t in DT .
After pruning all leaves, except l1 and l2, from t, the
remaining tree t0 is isomorphic to st. Thus, st is a subtree of
t, that is, st occurs in t. Since all input trees in DT have the
same leaves, st is a subtree of all the input trees and hence
has a support value of 100 percent too.

Let Fk represent the set of FASTs with k leaves, and let
ECk represent the set of equivalence classes of the subtrees
in Fk. During each iteration of the while loop in Phylominer,
the algorithm calls the subroutine Grow_Subtrees (line 9 in

Fig. 6) to find the set of frequent agreement ðkþ 1Þ-leaf trees,
that is, Fkþ1, from Fk. The subroutine, to be explained in
detail in Section 3.5, will also return the set of equivalence
classes of the frequent agreement ðkþ 1Þ-leaf trees, that is,
ECkþ1. Notice that when jFkj < kþ 1 (line 7 in Fig. 6), we
cannot produce any frequent agreement ðkþ 1Þ-leaf tree and
hence exit the while loop.

3.5 Candidate Generation

Our candidate generation method adopts a pairwise joining
scheme. In order for two frequent agreement k-leaf trees to
be eligible for joining, the two trees must be in the same
equivalence class and must be on different leaf sets. (Recall
that each phylogenetic tree has uniquely labeled leaves. We
do not join two frequent agreement k-leaf trees if they are on
the same leaf set, as the join cannot produce any ðkþ 1Þ-leaf
tree.) Due to the nature of equivalence classes, we adopt a
rightmost joining approach to expand pattern trees (remi-
niscent of the rightmost extension schemes in [3], [34]).
Thus, the focus of joining two frequent agreement k-leaf
trees would be on how to form a new ðkþ 1Þ-leaf tree by
correctly gluing the rightmost leaves of the two k-leaf trees
to the isomorphic part of the two trees. The isomorphic part
of the two k-leaf trees is the ðk� 1Þ-prefix tree shared by
them. Details and case analyses of joining two frequent
agreement k-leaf trees can be found in the Appendix.

The Grow_Subtrees algorithm in Fig. 7 generates all
frequent agreement ðkþ 1Þ-leaf trees from frequent agree-
ment k-leaf trees. For each pair of frequent agreement k-leaf
trees x, y that are in the same equivalence class and are not
on the same leaf set, the subroutine Phylo_Join joins x, y to
generate candidate ðkþ 1Þ-leaf trees based on the case
analyses presented in the Appendix. For each candidate
ðkþ 1Þ-leaf tree ckþ1 produced by Phylo_Join, we apply the
Downward_Closure_Checking procedure [34] to it. This
procedure returns a true value if all of the ðkþ 1Þ k-leaf
subtrees of ckþ1 are frequent, for which case, we invoke
Frequency_Count to calculate the support value of ckþ1. If
the Downward_Closure_Checking procedure returns a false
value, ckþ1 would not be a qualified pattern and is therefore
safely discarded.

As an example, consider a candidate 3-leaf tree st with
three leaves l1, l2, and l3. It has three 2-leaf subtrees st1, st2,
and st3, where st1 contains leaves l1, l2, st2 contains leaves
l1, l3, and st3 contains leaves l2, l3. The Downward_Closure
_Checking procedure checks the frequency of st1, st2, and
st3, respectively. If any one of the 2-leaf subtrees, say, st3, is
infrequent, st would not be frequent. Hence, the Down-
ward_Closure_Checking procedure returns a false value,
indicating st can be safely discarded, and we do not need to
calculate its support value.

Notice that when a new ckþ1 is generated, there is no need
to check whether or not ckþ1 is already generated previously,
since each particular ckþ1 can be generated only once based
on the equivalence class design. If the support value of the
candidate ðkþ 1Þ-leaf tree ckþ1 is greater than or equal to
minsup, ckþ1 is a frequent agreement ðkþ 1Þ-leaf tree and
hence added to Fkþ1. Let chlp represent the tree ckþ1 with the
heaviest leaf pruned. That is, chlp is the k-prefix tree of ckþ1

and will be the core of some equivalence class in ECkþ1 (cf.,
Fig. 4). If chlp’s equivalence class is not already in ECkþ1, add
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the core chlp as a new equivalence class to ECkþ1 (recalling
that each equivalence class is uniquely identified by a core
k-leaf tree in ECkþ1). We also add ckþ1 to chlp’s equivalence
class. Finally, Grow_Subtrees outputs both Fkþ1 and ECkþ1.

3.6 Frequency Counting

Once a candidate ðkþ 1Þ-leaf tree ckþ1 passes the Down-
ward_Closure_Checking test, Phylominer invokes the Fre-
quency_Count procedure to compute the support value of
ckþ1 by checking its occurrences in the input trees. Given a
candidate subtree st on SL and a rooted phylogenetic tree
t 2 DT on L, tjSL can be obtained by pruning all leaves
l 2 L� SL from t. The candidate pattern st is a subtree of t
if and only if st is isomorphic to tjSL. The isomorphism
between two trees can be verified by calculating their
partition metric value [27]. The partition metric treats each
phylogenetic tree as an unrooted tree and analyzes the
partitions of taxa resulting from removing one edge at a
time from the tree. By removing one edge from a tree, we
are able to partition that tree. The metric value between two
trees is defined as the number of edges in a tree for which
there is no equivalent (in the sense of creating the same
partitions) edge in the other tree [27]. Specifically, two trees
are isomorphic to each other if and only if the partition
metric value of the two trees is 0. The most efficient
algorithm for calculating the partition metric of rooted
phylogenetic trees has linear time complexity [9], which is
the algorithm we adopt for pattern verification in the
Frequency_Count procedure.

To further optimize the Phylominer algorithm, a support-
ing tree ID (STID) list [32], [34] is used to accelerate the
process for verifying the presence of a subtree in input trees.
Each subtree is associated with an STID list, which is a
vector recording a list of identifiers of input trees that
support the subtree. Before the frequency of a candidate
subtree ckþ1 is computed, the intersection set J of the STID
lists of ckþ1’s frequent agreement k-leaf subtrees is com-

puted first. If the cardinality of J is less than minsup� jDT j,
ckþ1 would not be a qualified pattern and is therefore safely

discarded. Otherwise, we check the occurrences of ckþ1 in

the trees in J . In fact, there is no need to perform expansion

on two frequent agreement k-leaf trees if the cardinality of

the interaction set of their STIDs is already less than

minsup� jDT j. As an example, consider again the candi-

date 3-leaf tree st with three leaves l1, l2, and l3 described

above. It has three 2-leaf subtrees st1, st2, and st3, where st1
contains leaves l1, l2, st2 contains leaves l1, l3, and st3
contains leaves l2, l3; st1 and st2 are frequent, whereas st3 is

infrequent. Suppose the STID list of st1 is ft1; t2; t3; t4g, the

STID list of st2 is ft1; t2; t5; t6g, where tis are identifiers of

input trees in DT . That is, st1 occurs in t1, t2, t3, t4, and st2
occurs in t1, t2, t5, and t6. The intersection set J would be

ft1; t2g. The candidate 3-leaf tree st would occur in at most

the two trees in J . If the cardinality of J is already less than

minsup� jDT j, we do not even need to generate st.

3.7 Correctness and Complexity Analysis

We present in this section a series of lemmas and theorems

concerning the proposed Phylominer algorithm.

Lemma 3.2. Phylominer is correct. That is, any subtree output

from Phylominer is a FAST in the given set of rooted

phylogenies DT .

Proof. In order for a candidate subtree st to qualify as a

FAST in DT , it has to pass the Frequency_Count test. The

Frequency_Count procedure checks if a rooted phyloge-

netic tree in DT supports the subtree st based on the

partition metric, whose correctness is obvious and,

hence, the lemma is proved. tu
Lemma 3.3. Phylominer is complete. That is, it does not miss

any FAST in the given set of rooted phylogenies DT .

Proof. We prove this lemma by mathematical induction.
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Base step. Clearly, Phylominer finds all frequent
agreement 1-leaf and 2-leaf trees, because it generates
all such trees using a brute force enumeration method.

Hypothesis step. Assume the lemma holds for FASTs
with k leaves, that is, all such trees can be found by
Phylominer.

Induction step. We want to show that Phylominer does
not miss any FAST with kþ 1 leaves. It suffices to prove
that any frequent agreement ðkþ 1Þ-leaf tree can always
be generated by two frequent agreement k-leaf trees in
some equivalence class.

Suppose a tree cnt of kþ 1 leaves is a FAST in
canonical form. (We can canonicalize 2-leaf trees, and
any ðkþ 1Þ-leaf tree, k � 2, generated from the canonical
2-leaf trees is in canonical form.) We will show that cnt
cannot be missed by the candidate generation step in
Phylominer. Let cnthlp and cntshlp be k-leaf trees obtained
by pruning the heaviest leaf and the second heaviest leaf
from cnt, respectively. Obviously, both cnthlp and cntshlp
are in their canonical forms according to Properties 1 and
2 in Section 3.1. From the downward closure theory [34],
if cnt is frequent, cnthlp and cntshlp must be frequent. By
the induction hypothesis, Phylominer can find both cnthlp
and cntshlp. Thus, the two trees are in Fk. Furthermore,
these two trees are in the same equivalence class in ECk.
Based on the logic of Phylominer, the two trees cnthlp and
cntshlp must be joined together by the Phylo_Join
procedure. Since this procedure exhaustively considers
all possible expansions of trees, cnt must be in the
candidate set obtained by joining cnthlp and cntshlp. This
completes the proof. tu

Theorem 1. Phylominer correctly finds all FASTs in the given
set of rooted phylogenies DT .

Proof. From Lemma 3.2 and Lemma 3.3 and the fact that
Phylominer is based on a candidate generation and
verification scheme, the theorem is proved. tu

Theorem 2. The time complexity of Phylominer is OðjF j2MNÞ,
where jF j is the cardinality of the FAST set, M is the number
of rooted phylogenetic trees in DT , and N is the cardinality of
the leaf label set L.

Proof. Let “a pair of joining” represent the joining two
frequent agreement k-leaf trees to obtain candidate ðkþ
1Þ-leaf trees and then calculating the support values of
these ðkþ 1Þ-leaf trees. From Lemma 1.1 in the Appendix,
we know that it takes OðkÞ time to join two frequent
agreement k-leaf trees to form a ðkþ 1Þ-leaf tree. We can
generate at most four candidate ðkþ 1Þ-leaf trees from the
two k-leaf trees based on the case analyses in the
Appendix. Checking if a candidate ðkþ 1Þ-leaf tree occurs
in a phylogenetic tree in DT takes OðNÞ time. Thus,
calculating the support value of the candidate ðkþ 1Þ-leaf
tree takes OðMNÞ time. Therefore, the time involved in a
pair of joining is OðkþMNÞ � OðN þMNÞ ¼ OðMNÞ.
There are at most jF j2 valid pairs of joinings and, hence,
the total time complexity of Phylominer is OðjF j2MNÞ. tu

Notice that this is a very pessimistic upper bound for two
reasons. First, the actual number of rooted phylogenetic
trees involved in the verification and frequency counting

phase for each candidate subtree is much less than M. With
the pattern size growing, the number of rooted phyloge-
netic trees that need to be checked against each pattern
drops quickly. Second, the pairwise joining operation
occurs only in the same equivalence class. Consequently,
jF j2 is a very loose upper bound for the number of joining
operations. Notice also that this is a pseudopolynomial time
algorithm, since jF j is not an input parameter but a value
derived from the output (jF j is the total number of FASTs
discovered from DT ). To be more precise, the time
complexity of Phylominer is dependent on the number of
qualified patterns, which, in the worst case, is exponential
with respect to N , the size of the label set L. Therefore, the
algorithm requires exponential time in the worst case. In
practice, however, the number of qualified patterns is much
less, leading to a dramatically low time complexity.

3.8 Extension to Unrooted Tree Mining

Some phylogeny reconstruction algorithms such as most
parsimony and maximum likelihood methods [22], [25]
produce unrooted trees, which are also known as undir-
ected acyclic graphs [29]. In this section, we extend our
rooted tree mining method to handle unrooted trees. The
definitions of FASTs and MASTs for unrooted phylogenetic
trees are similar to those for rooted phylogenetic trees given
in Section 2. Our unrooted tree mining algorithm, called
UPhylominer, works as follows: Given an unrooted tree ut,
UPhylominer transforms ut to a rooted tree utr by adding a
new root to the edge connecting ut’s leaf with the smallest
label and its neighboring node. (As in rooted phylogenetic
trees, the leaves of unrooted phylogenies are labeled with
integers that can be sorted.) This procedure of transforming
an unrooted phylogenetic tree to a rooted phylogenetic tree
is known as rooting a phylogeny (see [22] for additional
techniques of rooting phylogenetic trees). Fig. 8 shows how
an unrooted phylogenetic tree ut, after receiving a new root
ur, is transformed to its corresponding rooted phylogeny
utr in canonical form.

As in Phylominer, UPhylominer adopts a candidate
generation and verification scheme for unrooted tree
mining. Given two unrooted k-leaf trees, UPhylominer first
transforms them to their rooted canonical forms and then
uses the Phylo_Join procedure described in Section 3.5 to
join the two rooted canonical forms (k-leaf trees) to obtain
rooted ðkþ 1Þ-leaf trees. For each rooted ðkþ 1Þ-leaf tree t,
UPhylominer transforms it back to an unrooted ðkþ 1Þ-leaf
tree as follows: If t’s root has two children, the root is
removed, and the two children are connected by an edge. If
t’s root has more than two children, the root becomes an
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internal node, and all the children of the root become the
neighbors of the internal node. This procedure is known as
unrooting a phylogeny [22]. To check whether an unrooted
ðkþ 1Þ-leaf tree occurs in a given unrooted phylogenetic
tree, UPhylominer calculates the partition metric value
between them, as described in Section 3.6.

Recall that in the rooted tree case, the initial set of FASTs
consists of all 1-leaf and 2-leaf trees, which are obtained
through a brute-force enumeration method. Here, in addi-
tion to the enumerated 1-leaf and 2-leaf trees, UPhylominer
enumerates all 3-leaf trees by combinatorially assigning
three different labels from the leaf label set L to the
unlabeled 3-leaf tree skeleton and includes these 3-leaf trees
in the initial set. All 3-leaf trees have the same, fixed
topology, namely, a star; all of these 3-leaf trees have a
support value of 100 percent and must be FASTs in the given
set of unrooted phylogenies DT . The reason is that all trees
in DT have exactly the same leaves from L. Consider an
unrooted 3-leaf tree st with three leaves l1, l2, and l3 and an
unrooted input tree t in DT . After pruning all leaves, except
l1, l2, and l3 from t, the remaining tree t0 is isomorphic to st.
Thus, st is a subtree of t, that is, st occurs in t. Since all input
trees in DT have the same leaves, st is a subtree of all the
input trees and hence has a support value of 100 percent.

With the unrooted 1-leaf, 2-leaf, and 3-leaf trees gener-
ated, UPhylominer then produces unrooted k-leaf trees,
k � 4, based on the candidate generation and verification
scheme, as described above. As in the rooted tree case, when
a new unrooted candidate subtree ut is generated, there is no
need to check whether or not ut is already generated
previously, since each particular candidate subtree can be
generated only once.

Theorem 3. UPhylominer correctly finds all FASTs in the given
set of unrooted phylogenies DT .

Proof. It is clear that any unrooted subtree discovered by
UPhylominer is a FAST in DT . We prove the complete-
ness of UPhylominer by mathematical induction.

Base step. Clearly, UPhylominer finds all FASTs with
p leaves, p � 3, since it uses a brute force method to
enumerate all these subtrees.

Hypothesis step. Assume UPhylominer does not miss
any FAST with k leaves.

Induction step. We want to show that UPhylominer does
not miss any FAST with kþ 1 leaves. Assume, for
contradiction, that an unrooted subtree ut with
kþ 1 leaves is missed. Consider the rooted canonical
form of ut; call it utr. Let uthlp (utshlp, respectively) be the
unrooted k-leaf tree obtained by pruning the heaviest leaf
(the second heaviest leaf, respectively) of utr from ut.
Since ut is a FAST, both uthlp and utshlp must be FASTs. By

the induction hypothesis, UPhylominer can find both uthlp
and utshlp. In generating candidate ðkþ 1Þ-leaf subtrees,
UPhylominer transforms uthlp and utshlp to their rooted
canonical forms (k-leaf trees) and uses the Phylo_Join
procedure described in Section 3.5 to join these rooted
trees. Since the Phylo_Join procedure exhaustively con-
siders all cases of joining rooted k-leaf trees, it can
generate the rooted ðkþ 1Þ-leaf tree utr. Hence, UPhylo-
miner can find ut, which contradicts the assumption. This
completes the proof. tu

Theorem 4. The time complexity of UPhylominer is
OðjF j2MNÞ, where jF j is the cardinality of the FAST set,
M is the number of unrooted phylogenetic trees in DT , and N
is the size of the label set L.

Proof. The theorem follows immediately by observing that
rooting and unrooting a phylogeny take OðNÞ time, and
UPhylominer uses the same Phylo_Join and Frequency_
Count procedures as Phylominer. tu

4 EXPERIMENTS AND RESULTS

4.1 Experimental Results on Synthetic Data

We conducted a series of experiments to evaluate the
performance of the proposed algorithms. The experiments
were performed on a machine with an AMD Athlon(tm) 64
� 2 Dual Core Processor 4200+ (2.20 GHz and 2.00 Gbytes
of RAM) with Physical Address Extension running on the
Linux operating system (Sabayon Linux distribution). The
algorithms were implemented in C++ and compiled by g++
with the -O3 option on the Linux operating system. We also
implemented an unordered tree generator in C++, which is
similar to, but more powerful than, the one used in Page’s
COMPONENT tool [22]. COMPONENT generates binary
leaf-labeled trees only, whereas our tree generator is able to
produce leaf-labeled trees of various degrees by general-
izing the algorithm described in [14]. The generated trees
are rooted and can be treated as or transformed to unrooted
trees through the procedure of unrooting phylogenetic trees
described in Section 3.8. Table 1 lists the parameters and
their default values used in the experiments, where the
fanout of a node is the number of children of that node. We
also varied these parameter values in the experiments to
evaluate their impact on the proposed algorithms.

Fig. 9 shows how changing the data set size affects the
runtime of Phylominer. The 10 data sets generated for this
experiment contained different numbers of trees ranging
from 100 to 1,000. The other parameters used in the

ZHANG AND WANG: DISCOVERING FREQUENT AGREEMENT SUBTREES FROM PHYLOGENETIC DATA 9

TABLE 1
Parameters and Default Values Used in the Experiments

Fig. 9. Effect of the data set size on the runtime of Phylominer.



experiment had values, as shown in Table 1. It can be seen
in Fig. 9 that the runtime of Phylominer scales up linearly
with respect to the data set size. This happens because the
more trees a data set has, the more time is needed for
frequency counting in the data set. The dashed line in Fig. 9
shows that the time spent on the initialization phase of
Phylominer also scales up linearly with respect to the data
set size. The initialization phase essentially comprises two
steps. One is to enumerate all 1-leaf and 2-leaf trees, where
the number of these trees is related to the size of the leaf
label set only, regardless of how many trees a data set has.
The other step is to prepare the STID lists. The more trees a
data set has, the more time is needed in preparing these
STID lists. This is the reason why the initialization time of
Phylominer scales up linearly with respect to the data set
size.

Fig. 10 shows the numbers of FASTs obtained from the
same experiment for different data set sizes and different
cardinalities of the leaf label sets of trees. It can be seen from
the figure that with the increasing number of trees in a data
set, the number of qualified patterns decreases and even-
tually reaches a stable value. In general, the more trees a data
set has, the less consensus information the data set contains
and, hence, the fewer FASTs the data set has. On the other
hand, although the number of FASTs with a large number of
leaves could drop dramatically to zero due to the increasing

number of trees in the data set, the initialization phase
guarantees that the output of Phylominer contains at least all
1-leaf and 2-leaf trees, the number of which is a fixed value.
This explains why the number of qualified patterns reaches a
stable value. Notice that the number of qualified patterns can
be exponential with respect to the cardinality of the leaf label
set of input trees.

Fig. 11 shows how changing minsup affects the number
of FASTs discovered by Phylominer for varying jLj values.
The other parameters had the values, as shown in Table 1. It
can be seen from the figure that as minsup increases, the
number of qualified patterns drops quickly. This happens
because when minsup increases, the number of qualified
patterns with k-leaves, k � 3, decreases. Consequently, the
number of qualified patterns with kþ 1 leaves decreases.
This effect is cascadingly propagated from smaller subtrees
to larger ones. Thus, the total number of qualified patterns
decreases. It is observed that once the minsup value reaches
a certain point, 80 percent in this case, the number of
qualified patterns reaches a stable value. This happens
because the number of 1-leaf and 2-leaf trees contained in
the input trees is always the same, regardless of what the
minsup values are, and the support values of these 1-leaf
and 2-leaf trees are always 100 percent.

Fig. 12 shows how changing minsup affects the runtime
of Phylominer on the same data sets used in this experiment.
The figure shows that as minsup increases, the runtime of
Phylominer drops quickly. This happens because the
number of qualified patterns decreases with the increasing
of minsup. Consequently, fewer valid pairwise joinings in
each equivalence class are performed.

Similar performance results were obtained for UPhylomi-

ner and are omitted here. Table 2 compares the mining
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Fig. 10. Effect of the data set size on the number of FASTs discovered

by Phylominer for varying jLj.

Fig. 11. Effect of minsup on the number of FASTs discovered by

Phylominer for varying jLj.

Fig. 12. Effect of minsup on the runtime of Phylominer for varying jLj.

TABLE 2
Comparison of Mining Results between Rooted Trees and

Unrooted Trees for the Same Set of Phylogenies



results obtained from the same data set DT with trees in DT
being treated as rooted and unrooted, respectively. In the
table, “r” represents the rooted tree case, whereas “u”
represents the unrooted tree case. The data set DT was
generated using the default settings in Table 1; the minsup
values were set to 30 percent, 50 percent, and 70 percent,
respectively. Table 2 shows that with respect to the same
minsup value, fewer qualified patterns are found when the
phylogenetic trees are treated as rooted ones. This happens
because when the trees are rooted, a candidate k-leaf tree
may match fewer phylogenetic trees in the data set due to the
fact that more constraints are imposed in matching rooted
trees. This situation is best illustrated by the following
example in which the pattern size k is 3, and the leaf label set
is L ¼ fl1; l2; l3g. There is only one unrooted 3-leaf tree st on
L. The topology of st is a star. On the other hand, there are
four rooted 3-leaf trees st1, st2, st3, and st4 on the same leaf
label set L. Suppose two unrooted phylogenetic trees t1 and
t2 in DT support st. Now, consider two rooted 3-leaf trees,
say, st1 and st2. The tree t1, when treated as a rooted tree,
supports st1 but not st2. The tree t2, when treated as a rooted
tree, supports st2 but not st1. Thus, the support of st is larger
than the support of either st1 or st2. In general, with a large
minsup (for example, minsup � 50 percent), the number of
qualified patterns in unrooted trees is greater than that in
rooted trees for the same set of phylogenies.

Fig. 13 compares the runtimes of Phylominer and
UPhylominer on the data set DT for different minsup values
with trees in DT being treated as rooted and unrooted,
respectively. It can be seen from the figure that UPhylominer

requires more time than Phylominer in pattern discovery as
minsup increases. This result is consistent with those in
Table 2—when minsup is large, with respect to the same
minsup value, UPhylominer finds more qualified patterns
and hence has a higher time complexity than Phylominer;
cf., Theorems 2 and 4. We have run Phylominer and
UPhylominer on different data sets with different trees
and minsup values, and the qualitative conclusion is the
same.

4.2 Experimental Results on TreeBASE Data

TreeBASE [23] is a relational database of phylogenetic
information, storing phylogenetic trees and the data

matrices used to generate the trees taken from published
research articles. We applied Phylominer to the 12 rooted
phylogenetic trees obtained from the study S324 [19] stored
in TreeBASE. The 12 trees are constructed by biologists
based on 21 species, namely, Gonioctena_viminalis, Gonioc-
tena_holdausi, Gonioctena_occidentalis, Gonioctena_ru-
fipes, Gonioctena_linnaeana, Gonioctena_kamikawai,
Gonioctena_tredecimmaculata, Gonioctena_rubripennis,
Gonioctena_olivacea, Gonioctena_variabilis, Gonioctena_in-
terposita_1, Gonioctena_interposita_2, Gonioctena_palli-
da_1, Gonioctena_pallida_2, Gonioctena_intermedia,
Gonioctena_quinquepunctata, Gonioctena_fornicata_a, Go-
nioctena_fornicata_b, Gonioctena_nigroplagiata, Oreina_ca-
caliae, and Chrysomela_tremula. The 12 trees have exactly
the same leaves, namely, the 21 species; each of the 12 trees
depicts a hypothesis about the evolutionary history of the
21 species. It is worth noting that two of the 12 trees are
identical, indicating that two different tree reconstruction
methods in fact infer the same phylogeny for the 21 species.
To adapt this data to our discovery framework, we used
integer numbers, ranging from 1 to 21, to represent the
21 species and assigned a unique identification number to
each of the 12 trees. In TreeBASE, this is one of the large
families of phylogenetic trees that have the same leaves.

Table 3 summarizes the experimental result. From the
table, it can be seen that with minsup decreasing, the
runtime of Phylominer increases, and the total number of
qualified patterns increases as well. This result is consistent
with the results obtained from the synthetic data described
in Section 4.1. The distribution of numbers of qualified
patterns follows the combinatorial mathematics calculation
of the power set of a set. For example, when minsup is
80 percent, there are a total of 34,987 FASTs; the number of
these subtrees, with size being 1 to 12, is 21, 210, 987, 2,821,
5,514, 7,725, 7,871, 5,775, 2,931, 950, 170, and 12, respec-
tively. By comparing Table 3 with Figs. 11 and 12, we see
that the number of FASTs in the real phylogenetic trees is
much larger than that in the synthetic data. For the real
phylogenetic trees in the same family, many of the trees
agree with each other and, hence, the size of their MFASTs
tends to be large. Consequently, the number of smaller
patterns tends to grow exponentially. In contrast, randomly
generated trees tend to differ from each other significantly.
The size of their MFASTs is smal, and, therefore, few
patterns are generated, requiring much less time than the
real phylogenetic trees.

Since mining for FASTs is a natural extension of the
MAST problem studied in computational phylogenetics, it is
interesting to compare the MFASTs found by Phylominer
with those calculated by the MAST algorithms [2], [5], [10],
[12]. In this data set, Phylominer finds 36 MFAST/MAST
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Fig. 13. Comparison of the runtimes of Phylominer and UPhylominer on

the same set of phylogenies with respect to different minsup values.

TABLE 3
Data Mining Results on the 12 Rooted Phylogenetic Trees

Obtained from the Study S324 in TreeBASE



patterns (an MFAST is a MAST when minsup is set to
100 percent), each having 10 leaves. We compared the results
with those obtained from the MAST program developed in
[5]. To our knowledge, this is the best program for solving
the MAST problem. The results from both Phylominer and
the MAST program are exactly the same in terms of the 36
MFAST/MAST patterns. Phylominer is practically faster
than the MAST program when minsup is set to 100 percent
for this data set (13 sec. versus 24 sec.). One reason is that the
MAST program is implemented in Perl and deals with string
labels directly, whereas Phylominer is implemented in
highly efficient C++ and encodes string labels (species
names) using integer values.

The space complexity of the MAST program is OðKNÞ,
where K is the total number of MAST patterns, and N is the
cardinality of the leaf label set L. The space complexity of
Phylominer is OðjF jMNÞ, where jF j is the cardinality of the
FAST set, and M is the number of input phylogenetic trees.
This complexity is obtained based on the observation that a
FAST has at most N labels, and its STID list contains at most
M trees.

Notice that the 36 MFAST/MAST patterns are only a
small portion of the 10,459 FAST patterns found by
Phylominer when minsup is set to 100 percent. When
minsup is set to 60 percent, Phylominer finds 114,715 FAST
patterns, among which there are 46 MFAST patterns with
13 leaves. These 46 MFAST patterns reveal many evolu-
tionary relationships between the 21 species that are
suggested in the literature [19] but not revealed by the
36 MAST patterns. These results are consistent with those
from the example in Fig. 1. This finding indicates once again
that the FAST patterns discovered by our data mining-
based approach, Phylominer, are more important than the
patterns detected by the nondata mining-based MAST
algorithms [2], [5], [10], [12].

The proposed algorithms require that the user input a
support value minsup. In practice, it is suggested that the
user set the support threshold to a reasonably large value
(for example, minsup ¼ 50 percent), assuming that the data
trees under analysis tend to be congruent with each other.
Then, use a strategy similar to “divide and conquer” or
“binary search” to try different threshold values depending
on the number of patterns found in a data set. For example,
if there are too many patterns, try a support value of
75 percent; if there are too few patterns, try a support value
of 25 percent. The discovered patterns could be used for
phylogeny clustering, for example, to construct phyloge-
netic islands, which is useful in tree surfing [23].

5 CONCLUSION

We presented Phylominer and UPhylominer for discovering

FASTs from rooted and unrooted phylogenies, respectively.

To our knowledge, these algorithms are the first data mining

techniques for finding interesting and important patterns in

multiple phylogenetic trees. The algorithms find many

applications in computational phylogenetics. For example,

when minsup is set to 100 percent, the MFAST patterns

found by our algorithms are exactly MAST patterns. There-

fore, withminsup ¼ 100 percent, our algorithms can be used

to verify other nondata mining-based MAST algorithms. The

proposed algorithms can be easily modified to include other

user-specified parameters. For example, one can incorporate

a parametermaxsize into the algorithms, which specifies the

maximum size of patterns of interest. With maxsize ¼ 4,

UPhylominer is able to find all frequent agreement quartets,

which can be used to define the quartet metric between

unrooted phylogenetic trees [22], [27]. One can also include

another parameter maxnumber, which indicates the max-

imum number of patterns of interest. Our programs will

terminate when detecting the number of patterns found so

far equals maxnumber.
Our algorithms are an upward extension of the MAST

algorithms [2], [5], [10], [12], which assume that all
phylogenetic trees in a data set are on the same leaf label
set. We can relax this assumption by replacing the brute
force enumeration method in the initialization phase of
Phylominer and UPhylominer with an inverted list techni-
que. For example, when a data set contains unrooted trees
of different sizes with different leaf labels, a 3-leaf star tree
may no longer be a FAST in the data set. Under this
circumstance, we need to modify UPhylominer to obtain
frequent agreement 1-leaf trees, 2-leaf trees, and 3-leaf trees
through intersecting their inverted lists. These modified tree
mining algorithms would be useful in building supertrees
of phylogenies [22], [27]. The FAST patterns found by the
proposed algorithms could also be used to build phyloge-
netic islands [18].

The difficulty of the FAST problem, compared with other
structured data mining problems such as mining frequent
patterns in rooted ordered trees surveyed in Section 1.1, is
that the agreement subtrees to be mined for must satisfy
properties related to phylogeny. From the tree mining
viewpoint, the agreement subtrees in leaf-labeled phyloge-
netic trees are strictly embedded unordered subtrees, which,
to our knowledge, cannot be effectively discovered by the
already known algorithms for general trees [7], [34]. One
could modify the existing methods by preprocessing and
postprocessing pattern trees and apply the modified
methods to the FAST problem. However, that would
increase inaccuracy and inefficiency in the whole mining
process.

The proposed algorithms are based on the Apriori
method for frequent pattern mining. It is well known that
Apriori is inefficient with large databases because of
repeated database scanning. Recent work on FP-trees and
FP-growth [13], [26] is intended to avoid redundant
database scanning. These methods either avoid candidate
generation or generate a limited number of candidate
patterns by employing new data structures in the mining
process. To apply the FP-growth method to the FAST
problem would require new schemes for encoding phylo-
genetic trees using strings, as well as new data structures
such as look-up tables based on hashing functions for
guiding the candidate generation process.

In the future, we plan to

1. apply Phylominer and UPhylominer to multiple
phylogenies built from different species and study
the biological significance of discovered patterns,

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 1, JANUARY 2008



2. apply the tree mining methods to tree classification
[23], supertree inference [24], and phylogenetic
island construction [12],

3. explore alternative strategies (for example, the FP-
growth method) for phylogenetic tree mining, and

4. extend the techniques to find frequent substructures
in phylogenetic networks [20].

We expect the proposed algorithms to be useful in not only
computational phylogenetics but also other domains where
data can be modeled as unordered trees.

APPENDIX

CASE ANALYSES OF JOINING FREQUENT

AGREEMENT SUBTREES

In this Appendix, we present details concerning how to join
FASTs. Joining two frequent agreement k-leaf trees is
actually implemented by joining their heaviest subtrees.
Although the two k-leaf trees must be in the same
equivalence class (cf., line 4 in Fig. 7), their heaviest
subtrees may have different sizes and hence may not be
in the same equivalence class. (Trees in the same equiva-
lence class must have the same size.) In joining the two
k-leaf trees, we need to separate the heaviest subtrees from
the two k-leaf trees, respectively. Then, join the two heaviest
subtrees to obtain a larger subtree t. Finally, glue t back to
the smaller one of the complementary trees of the two
heaviest subtrees to obtain a new candidate ðkþ 1Þ-leaf tree.

Depending on what kind of topological relationships the
heaviest subtrees of the two k-leaf trees have, there are two
cases in which the joining operations are performed
differently. In each case, joining two k-leaf trees can
produce at most four different candidate ðkþ 1Þ-leaf trees.

. Case 1. When the heaviest subtrees of the two k-leaf
trees have the same topology, there are two
subcases.

Case 1.1. When both heaviest subtrees of the
two k-leaf trees are binary trees, four potential
candidates can be generated. In Newick notation,
we can use st1 ¼ ðlt; hl1Þ and st2 ¼ ðlt; hl2Þ to
represent the heaviest subtrees of the two k-leaf
trees, respectively, where hl1 and hl2 are the
heaviest leaves of the two k-leaf trees, respec-
tively. lt denotes the left subtree in each of the
two heaviest subtrees (the left subtree lt in st1
must be equivalent to the left subtree lt in st2).
Obviously, in the expanded candidate subtree, hl1
and hl2 could be siblings. Two possible candi-
dates having hl1 and hl2 as siblings are denoted
by j½1	 ¼ ðlt; ðsmallerðhl1; hl2Þ; greaterðhl1; hl2ÞÞÞ and
j½2	 ¼ ðlt; smallerðhl1; hl2Þ; greaterðhl1; hl2ÞÞ, respec-
tively. Here, greaterðhl1; hl2Þ and smallerðhl1; hl2Þ
return whichever is greater and smaller, respec-
tively, between the two integer labels representing
the heaviest leaves in the two k-leaf trees. (Each
leaf has an integer label and, hence, we can
compare two leaves by comparing the corre-
sponding integers.) Notice that we order the
return values of the smaller and greater functions
to assure that the newly generated candidate

subtree is automatically present in its canonical
form. Examples of j½1	 and j½2	 are illustrated by
the 4-leaf trees j4�1 and j4�2, respectively, in
Fig. 14. Notice that in tree j½1	 (that is, j4�1),
putting hl1 and hl2 as siblings introduces a new
internal node in j½1	.

Another way to perform the joining operation on
two k-leaf trees is to take one tree as the skeleton,
which will then be expanded by adding the
heaviest leaf of the other tree to get a ðkþ 1Þ-leaf
tree. From Section 2, we know that pruning a leaf
from a tree may introduce an edge contraction. It is
easy to see that, as the reverse operation of the edge
contraction, adding a new leaf to a tree may
introduce an additional internal node. Thus, two
additional candidates that can be generated are
j½3	 ¼ ððlt; hl1Þ; hl2Þ and j½4	 ¼ ððlt; hl2Þ; hl1Þ. Exam-
ples of j½3	 and j½4	 are illustrated by the two 4-leaf
trees j4�3 and j4�4, respectively, in Fig. 14.

Case 1.2. When both the heaviest subtrees of the
two k-leaf trees are multiforked trees, two potential
candidates can be generated. Suppose that
ðst1; . . . ; stm; hl1Þ and ðst1; . . . ; stm; hl2Þ are the hea-
viest subtrees of the two k-leaf trees, respectively,
where st1; . . . stm are the m sibling subtrees of hl1
and hl2, respectively, (m � 2 since the two heaviest
subtrees are multiforked). The expanded candidates
can be in either the form of

j½1	 ¼
ðst1; . . . ; stm; ðsmallerðhl1; hl2Þ; greaterðhl1; hl2ÞÞÞ

or the form of

j½2	 ¼ ðst1; . . . ; stm; smallerðhl1; hl2Þ; greaterðhl2; hl1ÞÞ:
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Fig. 14. An example for Case 1.1, which shows that joining t3�1 and t3�2

can produce at most four candidates j4�1, j4�2, j4�3, and j4�4.



Examples of j½1	 and j½2	 are illustrated by the two
4-leaf trees j4�1 and j4�2, respectively, in Fig. 15.

It should be pointed out that the two expansions
in Case 1.2 are similar to the first two expansions in
Case 1.1. However, the latter two expansions in
Case 1.1 are no longer applicable in Case 1.2.
Assume that the third expansion considered in
Case 1.1 would also be applicable in Case 1.2. Thus,
for example, referring to Fig. 15, the expanded
subtree would be ((1, 2, 3), 8), which would support
(1, 2, 3) but not (1, 2, 8). This is because by pruning 3
from the imaginary tree ((1, 2, 3), 8), the resulting
subtree would be ((1, 2), 8), not (1, 2, 8). Thus, the
third expansion is impossible. A similar argument
prohibits the fourth expansion in Case 1.1 from
being considered in Case 1.2.

. Case 2. When the heaviest subtrees of the two
k-leaf trees have different topologies, only one
candidate ðkþ 1Þ-leaf tree can be generated. Since
the two heaviest subtrees are different from each
other, one of them is identified as the larger tree,
and the other one as the smaller tree. Formally, let
hðtÞ and sðtÞ denote the depth and the size of a
tree t, respectively. Given two heaviest subtrees t1
and t2, t1 is said to be larger than t2, if either of
the following rules hold.

Rule 1. hðt1Þ > hðt2Þ. This means the depth of t1 is
greater than that of t2.

Rule 2. sðt1Þ > sðt2Þ. This case can happen only
when hðt1Þ ¼ hðt2Þ. Note that, in this case, the fanout
of the root of t2 must be 2.

Let t1 and t2 be denoted by ðt1hlp; hl1Þ and
ðt2hlp; hl2Þ, respectively. When t1 is larger than t2,
hl1 will be the heaviest leaf in the expanded subtree.
There must exist a subtree lst in t1hlp that is
isomorphic to t2hlp. We replace lst by t2. This joining
operation can be easily understood if the larger tree
t1 is taken as an umbrella under which a part of t1 is
replaced by the entire smaller tree t2. Figs. 16 and 17
show examples for Rule 1 and Rule 2, respectively.

It is clear that with the two k-leaf trees being in their
canonical forms, the newly generated ðkþ 1Þ-leaf tree must
be in canonical form. This automatic canonicalization
property is a main factor contributing to the efficiency of
the proposed Phylominer algorithm.

Lemma 1.1. The time complexity of joining two k-leaf trees to
form a ðkþ 1Þ-leaf tree is OðkÞ.

Proof. The joining operation is performed on the Newick
strings of the two k-leaf trees with OðkÞ length. In joining
the two k-leaf trees, we need to separate the heaviest
subtrees from the two k-leaf trees, respectively. Then, join
the two heaviest subtrees to obtain a larger subtree t.
Finally, glue t back to the smaller one, ct, of the
complementary trees of the two heaviest subtrees to
obtain a new candidate ðkþ 1Þ-leaf tree. Separating the
heaviest subtree from a k-leaf tree takes OðkÞ time, since
the operation is to extract a substring from a Newick
string, which can be done in linear time. Gluing t to ct
takes linear time, as it can be accomplished by a substring
replacement operation. Thus, the operations used in the
joining procedure are string parsing, string extraction,
string concatenation, and string replacement, all of which
can be done in OðkÞ time. The lemma is thus proved. tu
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Fig. 15. An example for Case 1.2, which shows that joining t3�1 and t3�2

can produce at most two candidates j4�1 and j4�2.

Fig. 16. An example for Rule 1 of Case 2, which shows that joining t3�1

and t3�2 can produce only one candidate j4�1.

Fig. 17. An example for Rule 2 of Case 2, which shows that joining t3�1

and t3�2 can produce only one candidate j4�1.
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