
1

Mining, Indexing, and Similarity Search
in Graphs and Complex Structures

Jiawei Han Xifeng Yan
Department of Computer Science

University of Illinois at Urbana-Champaign

Philip S. Yu
IBM T. J. Watson Research Center

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Outline
� Scalable pattern mining in graph data sets

� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining software systems: bug isolation & performance tuning

� Conclusions and future work

2

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Why Graph Mining and Searching?
� Graphs are ubiquitous

� Chemical compounds (Cheminformatics)
� Protein structures, biological pathways/networks (Bioinformactics)
� Program control flow, traffic flow, and workflow analysis
� XML databases, Web, and social network analysis

� Graph is a general model
� Trees, lattices, sequences, and items are degenerated graphs

� Diversity of graphs
� Directed vs. undirected, labeled vs. unlabeled (edges & vertices),

weighted, with angles & geometry (topological vs. 2-D/3-D)

� Complexity of algorithms: many problems are of high complexity

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Graph, Graph, Everywhere

��� � � � � ! " # $ %'& () % " * +,* + % " (# - % *) +.+ " % /0) (1
2 345
6 78 94:
;9< =
> ? =
< @39
ABB C
ABD EFF
BG

H I JK� J I L) M # N % O) (+ " % /0) (1

3

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Graph Pattern Mining

� Frequent subgraphs
� A (sub)graph is frequent if its support (occurrence frequency) in

a given dataset is no less than a minimum support threshold

� Applications of graph pattern mining
� Mining biochemical structures
� Program control flow analysis
� Mining XML structures or Web communities
� Building blocks for graph classification, clustering, compression,

comparison, and correlation analysis

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Example: Frequent Subgraphs

(a) caffeine (b) diurobromine (c) viagra

CHEMICAL COMPOUNDS

FREQUENT SUBGRAPH

…

4

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Example (II)

1

3

4

5

2

1:
makepat

2:
 esc

3:
 addstr

4:
 getccl

5:
 dodash

6: in_set_2

7:
 stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2)
 (3)

1

3

4

5

2

(1)

3

4

5

2

(2)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

Graph Mining Algorithms

� Incomplete beam search – Greedy (Subdue)
� Inductive logic programming (WARMR)
� Graph theory based approaches

� Apriori-based approach
� Pattern-growth approach

5

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � �

SUBDUE (Holder et al. KDD’94)

� Start with single vertices
� Expand best substructures with a new edge
� Limit the number of best substructures

� Substructures are evaluated based on their ability to compress

input graphs
� Using minimum description length (DL)
� Best substructure S in graph G minimizes: DL(S) + DL(G\S)

� Terminate until no new substructure is discovered

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

WARMR (Dehaspe et al. KDD’98)

� Graphs are represented by Datalog facts
� atomel(C, A1, c), bond (C, A1, A2, BT), atomel(C, A2, c) : a

carbon atom bound to a carbon atom with bond type BT

� WARMR: the first general purpose ILP system
� Level-wise search
� Simulate Apriori for frequent pattern discovery

6

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Frequent Subgraph Mining Approaches
� Apriori-based approach

� AGM/AcGM: Inokuchi, et al. (PKDD’00)
� FSG: Kuramochi and Karypis (ICDM’01)
� PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)
� FFSM: Huan, et al. (ICDM’03)

� Pattern growth approach
� MoFa, Borgelt and Berthold (ICDM’02)
� gSpan: Yan and Han (ICDM’02)
� Gaston: Nijssen and Kok (KDD’04)

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Properties of Graph Mining Algorithms

� Search order
� breadth vs. depth

� Generation of candidate subgraphs
� apriori vs. pattern growth

� Elimination of duplicate subgraphs
� passive vs. active

� Support calculation
� embedding store or not

� Discover order of patterns
� path

�
tree

�
graph

7

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Apriori-Based Approach

�

�
���
���

���

 "! #"$&%&#(' &)+*-,.! #"$&%&#

��/

��/ /
0-132"4

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � 5

Apriori-Based, Breadth-First Search

6 AGM (Inokuchi, et al. PKDD’00) 7 generates new graphs with one more node

+

6 Methodology: breadth-search, joining two graphs

6 FSG (Kuramochi and Karypis ICDM’01)7 generates new graphs with one more edge

+

8

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

PATH (Vanetik and Gudes ICDM’02, ’04)

� Apriori-based approach
� Building blocks: edge-disjoint path

����� � � "!$# % '&'() � (*)+# , - .�# / %
� � % ,

021 35476 8 9 :+1 8"; 9 <+=>:+<54+8"?+@+8 A76
021 35476 8 9 :+1 8"; 9 <+=>:+<54+8CB>9 @D?DA76FEHG 8 A
I <7JDBD<7K J>G 6 L 35G 4+8'?+@78 A76

021 35476 8 9 :+1 8"B>9 @5?DA76FEHG 8 ANM+OFP
<+JDBD<DK J>G 6 L 35G 4+8'?7@+8 AD6F; 9 3>Q
B>9 @5?DA76FEHG 8 ANMH<+J7B5<7K JRG 6 L 3>G 4+8
?+@+8 A76

0S9 <D?7<+@+8

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � T

FFSM (Huan, et al. ICDM’03)

� Represent graphs using canonical adjacency matrix
(CAM)

� Join two CAMs or extend a CAM to generate a new
graph

� Store the embeddings of CAMs
U All of the embeddings of a pattern in the database
U Can derive the embeddings of newly generated CAMs

9

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Pattern Growth Method

������� � �!�"�$#&% ' (�*)+� � ,

�-)+.0/$(�1�$#0% ' (�*)�� ��,

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � 2

MoFa (Borgelt and Berthold ICDM’02)

3 Extend graphs by adding a new edge
3 Store embeddings of discovered frequent graphs

4 Fast support calculation
4 Also used in other later developed algorithms such as

FFSM and GASTON
4 Expensive Memory usage

3 Local structural pruning

10

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Duplicate Graphs

� ��� ����� �

! � ����� �

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � " #

Free Extension

$%$'&)(+*-,/. 02123)4

5 �6�6��� �

7

89� �6�:� �

11

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Right-Most Extension

depth-first search

������� �"! #%$%&�'

(*),+.-/) 0

right-most path
1 2 354 2 6/7,8

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

GSPAN (Yan and Han ICDM’02)

9;: �"&=<,>5?A@%'B<DCFE=< �%��'�: @G�

H"&��=@G! �%I�J=K;L*MON"P Q%R,Q;S�Q%TFT

H"&��UC=�GVGIW�G! #�<.: @G�W@=XZY[! #%$%&�'
V�'�: ����9;: �"&=<,>.IW@�'/<DCFE=<,�%��'�: @G�\: '

]G^ ?`_"a�CFH;C

12

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Sequentialization
����������� !��"�" ��#%$�" � �'&)(*+(-, $�.0/2143!56 7�'8+� �'&

&+9 ��:�;<$'8�&�$=(7$'>+?�$��' 7$
@4�'��" (�/BA�C+���D*6:�9 $%E � F=�%E2�= 7��������� !��"�" ��#%$�"�� (G 7���'����� 7��"

HIC�E ��" " �%JK9 � &+;%,4.=�'(7,B$DF�, $���(!� �+�

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � L

DFS Coding & Labelling

M-N%O P�QRM P�O S�QRM S�O NDQRM S�O T+QRM TIO NDQUM S�O V'Q

DFS coding: flatten a graph into a sequence based
on depth-first search

8�$�:D, ;WE � 9 (-,4(7$'��9 D;

X
Y
Z
[]\

X
Y
Z
[\

13

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

DFS Lexicographic Order

� Let Z be the set of DFS codes of all graphs. Two DFS
codes a and b have the relation a<=b (DFS
Lexicographic Order in Z) if and only if one of the
following conditions is true. Let

a = (x0, x1, …, xn) and
b = (y0, y1, …, yn),

xk=yk for all k, s.t. 0<= k<= m and m <= n.(ii)

if there exists t, 0<= t <= min(m,n), xk=yk for all
k, s.t. k<t, and xt < yt

(i)

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

DFS Code Extension

� Let a be the minimum DFS code of a graph G and b be
a non-minimum DFS code of G. For any DFS code d
generated from b by one right-most extension,

min_dfs(d) is either less than a or can be extended from a.(iii)

min_dfs(d) cannot be extended from b, and(ii)

d is not a minimum DFS code,(i)

����� �"!#�%$
&('*),+�-/.10 2*34)52*687:9%; 74< '")*= >)4?@34)*316 ; 2%AB7
CD2 ?4E A"F ?4F A:GDAH+�- .10 2*34),F I:C%J8&LKNM C%M K�O�K

14

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

GASTON (Nijssen and Kok KDD’04)

� Extend graphs directly
� Store embeddings
� Separate the discovery of different types of graphs

� path
�

tree
�

graph
� Simple structures are easier to mine and duplication detection is

much simpler

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Pattern Explosion Problem

� If a graph is frequent, all of its subgraphs are frequent �

the Apriori property

� An n-edge frequent graph may have 2n subgraphs

� Among 423 chemical compounds which are confirmed to

be active in an AIDS antiviral screen dataset, there are

around 1,000,000 frequent graph patterns if the

minimum support is 5%

15

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Closed Frequent Graphs

� Motivation: Handling graph pattern explosion problem

� Closed frequent graph
� A frequent graph G is closed if there exists no supergraph of G

that carries the same support as G

� If some of G’s subgraphs have the same support, it is

unnecessary to output these subgraphs (nonclosed

graphs)

� Lossless compression: still ensures that the mining result

is complete

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

CLOSEGRAPH (Yan & Han, KDD’03)

�

A Pattern-Growth Approach

�

���

�!

�#"

$&% '&(*)+'

, $*-/.&0 % ' (1)1'
2/354�6878359*:<;8=<> 3 > :<;8?@917A;#4CB
D 3 :<E D B@7AF 9+6<> ;8G�3 6@BA> F/9H6A> I =<F B<;

> J BAJ ? B87@F I K!3 B@F L�> ;8783 > :<;AM

N O<PRQ+S*T#P<U&QHV WXO V W*Y@Z*W+S*[\@P^] _`Q
_ Z+a*b@V Q+cHdfe+OAP<U gCN O > ;!7A;8K#EH7<F 3
:@h/3 68B#G<F 7AE@6i> ;!3 68B#=@7@3 7 D B@3
4#6@BAF B�j^:A9*9+kAF D ?@j`l+7AI D :
:@9*9+kAF D \8[d*W+SXm`W!S*W*W1T#S1e1[Ab8V e1m
P<\@_] S*n WCS1eHS*WXe1O<P<U _`n&dH] o T8V W+SXmp] o o
a*WXn&o e+_ W1TCW1q&n WHc*[<[d1e+_ WXe1O/P<U g

16

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Handling Tricky Exception Cases

(graph 1)

a

c

b

d

(pattern 2)

(pattern 1)

(graph 2)

a

c

b

d

a b

a

c
d

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Experimental Result
� The AIDS antiviral screen compound dataset

from NCI/NIH
� The dataset contains 43,905 chemical

compounds
� Among these 43,905 compounds, 423 of them

belong to CA, 1081 are of CM, and the

remainings are in class CI

17

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Discovered Patterns

N

N

S

OH

S

HO
O

O

N

N

O

O

OHO

N

N+

NH

N

O

N

HO
OH

ON

O

N

20% 10%

5%

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Performance (1): Run Time

��� ��� �����! "��#$#&%�' (*)+� �-,/.

0 1
23
4 5
67
6 87
933
6 8
2

: 5
;6<
=

18

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Performance (2): Memory Usage

��� ��� �����! "��#$#&%�' (*)+� ��,.-

/ 0
12
34
567
80
9 :
;<

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � =

Number of Patterns: Frequent vs. Closed

CA

>@? A$B@C�A&D

>@? A$B@C�A"E

>@? A$B@C�A@F

>@? A$B@C�A&G

>@? A$B@C�A"H

A&? AIGJA&? A&HKA&? A&LMAI? A@NOAI? >

P Q RTS"UVR@W+X$Y&Q Z\[\]T^_+` a ^bRVcdP Q RVS"UVR@WeX$Y"Q Z\[\]V^

��� ��� �����! &��#$#&%�' (

f 5
1g 0
32
h i7
jj 0
3k
6

19

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Runtime: Frequent vs. Closed

CA

�

���

�����

�������

���������

��� �! "��� ��#$�!� �!%"�!� ��&'��� �

(�)�*
*,+�-/.�0
1�2 3 +�4/*65 .�-87

9;: <=: >@?A>CB,?ED=DGFAHJI

K L
M
NO
PQ
R SQ
TU

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � V

Outline
W Scalable pattern mining in graph data sets
X Frequent subgraph pattern mining
X Constraint-based graph pattern miningX Graph clustering, classification, and compression

W Searching graph databases
X Graph indexing methods
X Similarity search in graph databases

W Application and exploration with graph mining
X Biological and social network analysis
X Mining computer systems: bug isolation & performance tuning

W Conclusions and future work

20

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Constrained Patterns
� Density
� Diameter
� Connectivity
� Degree
� Min, Max, Avg

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Constraint-Based Graph Pattern Mining
� Highly connected subgraphs in a large graph

usually are not artifacts (group, functionality)

� Recurrent patterns discovered in multiple graphs
are more robust than the patterns mined from a
single graph

21

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

No Downward Closure Property

Given two graphs G and G’, if G is a

subgraph of G’, it does not imply that the

connectivity of G is less than that of G’, and

vice versa.

G G’

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Minimum Degree Constraint

Let G be a frequent graph and X be the set
of edges which can be added to G such that
G U e (e � X) is connected and frequent.
Graph G U X is the maximal graph that can be
Extended (one step) from the vertices belong to G

G G U X

22

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Pattern-Growth Approach
� Find a small frequent candidate graph

� Remove vertices (shadow graph) whose degree is
less than the connectivity

� Decompose it to extract the subgraphs satisfying the
connectivity constraint

� Stop decomposing when the subgraph has been
checked before

� Extend this candidate graph by adding new vertices and
edges

� Repeat

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Pattern-Reduction Approach

� Decompose the relational graphs according to the
connectivity constraint

23

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Pattern-Reduction Approach (cont.)

� Intersect them and decompose the resulting
subgraphs

intersect

inters
ect

� � ������� "!$#�� %

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � &

Outline
' Scalable pattern mining in graph data sets

(Frequent subgraph pattern mining
(Constraint-based graph pattern mining
(Graph clustering, classification, and compression

' Searching graph databases
(Graph indexing methods
(Similarity search in graph databases

' Application and exploration with graph mining
(Biological and social network analysis
(Mining computer systems: bug isolation & performance tuning

' Conclusions and future work

24

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Clustering
� Graph similarity measure

� Feature-based similarity measure
� Each graph is represented as a feature vector
� The similarity is defined by the distance of their corresponding

vectors
� Frequent subgraphs can be used as features

� Structure-based similarity measure
� Maximal common subgraph
� Graph edit distance: insertion, deletion, and relabel
� Graph alignment distance

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Classification
� Local structure based approach

� Local structures in a graph, e.g., neighbors surrounding a
vertex, paths with fixed length

� Graph pattern based approach
� Subgraph patterns from domain knowledge
� Subgraph patterns from data mining

� Kernel-based approach
� Random walk (Gärtner ’02, Kashima et al. ’02, ICML’03, Mahé

et al. ICML’04)
� Optimal local assignment (Fröhlich et al. ICML’05)

� Boosting (Kudo et al. NIPS’04)

25

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Pattern Based Classification

� Subgraph patterns from domain knowledge
� Molecular descriptors

� Subgraph patterns from data mining
� General idea

� Each graph is represented as a feature vector x = {x1, x2, …, xn},
where xi is the frequency of the i-th pattern in that graph

� Each vector is associated with a class label
� Classify these vectors in a vector space

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Subgraph Patterns from Data Mining

� Sequence patterns (De Raedt and Kramer IJCAI
�
01)

� Frequent subgraphs (Deshpande et al, ICDM’03)
� Coherent frequent subgraphs (Huan et al. RECOMB’04)

� A graph G is coherent if the mutual information between G and
each of its own subgraphs is above some threshold

� Closed frequent subgraphs (Liu et al. SDM
�
05)

26

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Kernel-based Classification

� Random walk
� Marginalized Kernels (Gärtner ’02, Kashima et al. ’02,

ICML’03, Mahé et al. ICML’04)

� and are paths in graphs and
� and are probability distributions on paths
� is a kernel between paths, e.g.,

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Kernel-based Classification

� Optimal local assignment (Fröhlich et al. ICML’05)

���! #"%$&$%'%($� %)!$%)*(+#, %-%. /0)!$# %$!, 132!"0+�4 20+0+%)5, %6 +�4 78�%(, +3
$39 1:9 ;

< 2%$!4 $=- +�/!.)5"%$&�! ?>A@�BDC E $�4 %$�.D(+578$%�!F /!4 $&(2%$
F , 7G, . �!4 , (HG+06I 0$!, 132!"%+34 2%+!+0)�FJ+06:K%$!4 (, - $0FL�! %)M;

, FJ�&)!��7GN!, %1?N%��4 ��78$%($!4 9

27

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Boosting in Graph Classification
� Decision stumps

� Simple classifiers in which the final decision is made by
single features. A rule is a tuple . If a molecule
contains substructure , it is classified as .

� Gain

� Applying boosting

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Compression

� Extract common subgraphs and simplify graphs by
condensing these subgraphs into nodes

28

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Outline
� Scalable pattern mining in graph data sets

� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining computer systems: bug isolation & performance tuning

� Conclusions and future work

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Graph Search

� Querying graph databases:
� Given a graph database and a query graph, find all

graphs containing this query graph

NN

OH

ON

O

N

OHO

N

N+

NH

N

O

N

HO

N

N

S

OH

S

HO
O

O

N

N

O

O

query graph graph database

29

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Scalability Issue

� Sequential scan
� Disk I/Os
� Subgraph isomorphism testing

� An indexing mechanism is needed
� DayLight: Daylight.com (commercial)
� GraphGrep: Dennis Shasha, et al. PODS'02
� Grace: Srinath Srinivasa, et al. ICDE'03

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query
graph Q, G should contain
any substructure of Q

Remarks
� Index substructures of a query graph to prune

graphs that do not contain these substructures

30

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Indexing Framework

� Two steps in processing graph queries
Step 1. Index Construction

� Enumerate structures in the graph database, build
an inverted index between structures and graphs

Step 2. Query Processing
� Enumerate structures in the query graph
� Calculate the candidate graphs containing these

structures
� Prune the false positive answers by performing

subgraph isomorphism test

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Cost Analysis

QUERY RESPONSE TIME

()testingmisomorphisioqindex TTCT _+×+

REMARK: make |Cq| as small as possible

� ���! #"%$ &(')��* &,+,-%./�)021/�3 54)&('6$ ')4�� �/7

31

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Path-based Approach

OHO

N

N+

NH

N

O

N

HO

ON

O

N N

N

S

OH

S

HO
O

O

N

N

O

O

���������! "�$#%��&'�)("*

PATHS

0-length: C, O, N, S
1-length: C-C, C-O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � +

Path-based Approach (cont.)

NN

QUERY GRAPH

0-edge: SC={a, b, c}, SN={a, b, c}
1-edge: SC-C={a, b, c}, SC-N={a, b, c}
2-edge: SC-N-C = {a, b}, …
…

Intersect these sets, we obtain the candidate
answers - graph (a) and graph (b) - which may
contain this query graph.

32

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Problems: Path-based Approach

GRAPH DATABASE

(a) (b) (c)

QUERY GRAPH

Only graph (c) contains this query
graph. However, if we only index
paths: C, C-C, C-C-C, C-C-C-C, we
cannot prune graph (a) and (b).

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

gIndex: Indexing Graphs by Data Mining

� Our methodology on graph index:

� Identify frequent structures in the database, the

frequent structures are subgraphs that appear quite

often in the graph database

� Prune redundant frequent structures to maintain a small

set of discriminative structures

� Create an inverted index between discriminative

frequent structures and graphs in the database

33

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

IDEAS: Indexing with Two Constraints

��������� �!�"�$#&% ')(+*!, -

. �$#0/1��#320�54 687 9$: ;

<1= �>�?� = @A= 2�B0� = C #&4 687 9ED ;

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Why Discriminative Subgraphs?

F All graphs contain structures: C, C-C, C-C-C
F Why bother indexing these redundant frequent

structures?
G Only index structures that provide more information

than existing structures

OHO

N

N+

NH

N

O

N

HO

ON

O

N N

N

S

OH

S

HO
O

O

N

N

O

O

Sample database

(a) (b) (c)

34

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Discriminative Structures

� Pinpoint the most useful frequent structures
� Given a set of sturctures and a new structure ,

we measure the extra indexing power provided by ,

When is small enough, is a discriminative structure and
should be included in the index

� Index discriminative frequent structures only
� Reduce the index size by an order of magnitude

() .,,, 21 xffffxP in ⊂�

xnfff �,, 21

x

xP

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Why Frequent Structures?

� We cannot index (or even search) all of
substructures� Large structures will likely be indexed well by their
substructures� Size-increasing support threshold

��� "!
$
%%&
'() � *+�)-,.)� ,0/./21+3 454

6
3 !7�

6
1
8 9

35

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Experimental Setting

� The AIDS antiviral screen compound dataset from

NCI/NIH, containing 43,905 chemical compounds
� Query graphs are randomly extracted from the

dataset.
� GraphGrep: maximum length (edges) of paths is

set at 10
� gIndex: maximum size (edges) of structures is set

at 10

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Experiments: Index Size

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1k 2k 4k 8k 16k

Path
Frequent Structure
Discriminative Frequent Structure

DATABASE SIZE

O

F
 F

E
A

T
U

R
E

S

36

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Experiments: Answer Set Size

0
20

40

60
80

100

120

140

4 8 12 16 20 24

GraphGrep

gIndex

Actual Match

QUERY SIZE

O

F
 C

A
N

D
ID

A
T

E
S

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Experiments: Incremental Maintenance

20

30

40

50

60

70

80

2K 4K 6k 8k 10k
From scratch Incremental

Frequent structures are stable to database updating
Index can be built based on a small portion of a graph
database, but being used for the whole database

37

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Outline

� Scalable pattern mining in graph data sets
� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining software systems: bug isolation & performance tuning

� Conclusions and future work

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Structure Similarity Search

(a) caffeine (b) diurobromine (c) viagra

• CHEMICAL COMPOUNDS

• QUERY GRAPH

38

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Some “Straightforward” Methods

� Method1: Directly compute the similarity between the

graphs in the DB and the query graph
� Sequential scan

� Subgraph similarity computation

� Method 2: Form a set of subgraph queries from the

original query graph and use the exact subgraph

search
� Costly: If we allow 3 edges to be missed in a 20-edge query

graph, it may generate 1,140 subgraphs

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Index: Precise vs. Approximate Search
� Precise Search

� Use frequent patterns as indexing features
� Select features in the database space based on their selectivity
� Build the index

� Approximate Search
� Hard to build indices covering similar subgraphs� explosive

number of subgraphs in databases
� Idea: (1) keep the index structure

(2) select features in the query space

39

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Substructure Similarity Measure
� Query relaxation measure
� The number of edges that can be relabeled or missed;

but the position of these edges are not fixed

�������! #"$�&%�')(

*

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � +

Substructure Similarity Measure
� Feature-based similarity measure
, Each graph is represented as a feature vector X = {x1,

x2, …, xn}
, The similarity is defined by the distance of their

corresponding vectors
, Advantages
- Easy to index
- Fast
- Rough measure

40

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Intuition: Feature-Based Similarity Search

Graph (G1)

Substructure

Query (Q)

�
If graph G contains

the major part of a query
graph Q, G should share
a number of common
features with Q

�
Given a relaxation ratio,

calculate the maximal
number of features that
can be missed !

At least one of them
should be contained

Graph (G2)

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Feature-Graph Matrix

10001f4
01100f5

1

0

0

G3

1

0

1

G4

1

1

1

G5

01f3

10f2

10f1

G2G1

Assume a query graph has 5 features and at most 2 features to
miss due to the relaxation threshold

��� � � !#"%$ &(' �*)+� ,-�-"/.

0 1
23 4
51
6

41

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Edge Relaxation – Feature Misses

� If we allow k edges to be relaxed, J is the
maximum number of features to be hit by k
edges� it becomes the maximum coverage
problem

� NP-complete
� A greedy algorithm exists

� We design a heuristic to refine the bound of feature
misses

J
k

J
k

⋅�
�

�

�
�
�
�

�

�
��

�

−−≥ 1
11greedy

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � !

Query Processing Framework

� Three steps in processing approximate graph
queries

Step 1. Index Construction
� Select small structures as features in a graph

database, and build the feature-graph matrix
between the features and the graphs in the
database.

42

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Framework (cont.)

Step 2. Feature Miss Estimation
� Determine the indexed features belonging to

the query graph
� Calculate the upper bound of the number of

features that can be missed for an
approximate matching, denoted by J
� On the query graph, not the graph database

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Framework (cont.)

Step 3. Query Processing
� Use the feature-graph matrix to calculate

the difference in the number of features
between graph G and query Q, FG – FQ

� If FG – FQ > J, discard G. The remaining
graphs constitute a candidate answer set

43

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Performance Study
� Database

� Chemical compounds of Anti-Aids Drug from NCI/NIH,
randomly select 10,000 compounds

� Query
� Randomly select 30 graphs with 16 and 20 edges as

query graphs
� Competitive algorithms

� Grafil: Graph Filter � our algorithm
� Edge: use edges only
� All: use all the features

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Comparison of the Three Algorithms

edge relaxation

10

100

1000

10000

1 2 3 4

Grafil
Edge
All

o

f
ca

n
d

id
at

es

44

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Outline

� Scalable pattern mining in graph data sets
� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining computer systems: bug isolation & performance tuning

� Conclusions and future work

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Biological Networks

� Protein-protein interaction network
� Metabolic network
� Transcriptional regulatory network
� Co-expression network
� Genetic Interaction network
� …

45

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Identify frequent co-expression clusters across multiple
microarray data sets

c1 c2… cm

g1 .1 .2… .2
g2 .4 .3… .4
…

c1 c2… cm

g1 .8 .6… .2
g2 .2 .3… .4
…

c1 c2… cm

g1 .9 .4… .1
g2 .7 .3… .5
…

c1 c2… cm

g1 .2 .5… .8
g2 .7 .1… .3
…

...
a

b

c

d

e

f

g

h

i

j

k

a

b

c

d

e

f

g

h

i

j

k

a

b

c

d

e
f

g

h

i

j

k

a

b
d

e

f

g

h

i

j

k

c

...
a

b

c

d

e

f

g

h

i

j

k

a

b

c

d

e

f

g

h

i

j

k

a

b

c

d

e

f

g

h

i

j

k

a

b
d

e

f

g

h

i

j

k

c

...

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Our Solution

We develop a novel algorithm, called CODENSE, to mine

frequent coherent dense subgraphs.

The target subgraphs have three characteristics:

(1) All edges occur in >= k graphs (frequency)

(2) All edges should exhibit correlated occurrences in the given

graph set (coherency)

(3) The subgraph is dense, where density d is higher than a

threshold γ and d=2m/(n(n-1)) (density)

m: #edges, n: #nodes

46

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

…………………

111000e-f

011100c-i

111000c-h

111010c-f

111100c-e

G6G5G4G3G2G1E

edge occurrence profiles

c

e

f
h

e

g

h

i Step 4Step 5

Sub(G)

a

b
d

e

g

h

i

c
f

a

b
c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

d

e

f

g

h

i

c a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

G1 G3G2

G6G5G4

c-f

c-h

c-e

e-h

e-f

f-h

c-i

e-i

e-g g-i

h-i

second-order graph S

g-h
f-i

Step 1

Step 3

summary graph �

e

g

h

i

c
f

Sub(� �

Step 2

c-f

c-h

c-e

e-h

e-f

f-h

e-i

e-g g-i

h-i

Sub(S)

g-h

Step 6

� � � � � ! ! " # $ %

� � � � �& ' (%) * '
+-, . !� � � � �

CODENSE: Mine coherent dense subgraphs

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � /

ATP17

ATP12

MRPL38

MRPL37

MRPL39

FMC1MRPS18

MRPL32

ACN9

MRPL51

MRP49YDR115W

PHB1

PET100

47

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

ATP17

ATP12

MRPL38

MRPL39

FMC1MRPS18

MRPL32

ACN9

MRPL51

MRP49

YDR115W

PHB1

PET100

Yellow: YDR115W, FMC1, ATP12,MRPL37,MRPS18

GO:0019538(protein metabolism; pvalue = 0.001122)

PET100

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Red:PHB1,ATP17,MRPL51,MRPL39, MRPL49, MRPL51,PET100

GO:0006091(generation of precursor metabolites and energy; pvalue=0. 001339)

ATP17

ATP12

MRPL38

MRPL37

MRPL39

FMC1MRPS18

MRPL32

ACN9

MRPL51

MRP49YDR115W

PHB1

PET100

48

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Outline

� Scalable pattern mining in graph data sets
� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining computer systems: bug isolation & performance tuning

� Conclusions and future work

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Bug Isolation by Program Flow Analysis

1

3

4

5

2

1:
makepat

2:
 esc

3:
 addstr

4:
 getccl

5:
 dodash

6: in_set_2

7:
 stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2)
 (3)

PROGRAM CALLER/CALLEE GRAPH

49

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Frequent Pattern-Based Classification
� Each program execution generates a (dynamic)

caller/callee graph
� Extract frequent calling substructures from the

correct and incorrect executions
� Use these substructures as features to classify

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Watching the Boost of Classification Accuracy
� Bug detection based on the boost of classification

accuracy
� Check the change of classification error at the

entrance and at the exit of functions

� Compare their difference

� �����! #" $��&%�'�����! !" $��(%

)�*,+.- /�*10#)2/,030546- /,0!7

)986: +;/,030546- /10!7

50

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � �

Example: Bug Isolation by Data Mining

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

Outline

� Scalable pattern mining in graph data sets
� Frequent subgraph pattern mining
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining
� Biological and social network analysis
� Mining software systems: bug isolation & performance tuning

� Conclusions and future work

51

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

Conclusions

� Graph mining has wide applications
� Frequent and closed subgraph mining methods

� gSpan and CloseGraph: pattern-growth depth-first search approach
� Graph indexing techniques

� Frequent and discirminative subgraphs are high-quality indexing features
� Similarity search in graph databases

� Indexing and feature-based matching
� Biological network analysis

� Mining coherent, dense, multiple biological networks
� Program flow analysis

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

References (1)

� T. Asai, et al. “Efficient substructure discovery from large semi-structured data”, SDM'02
� C. Borgelt and M. R. Berthold, “Mining molecular fragments: Finding relevant substructures of

molecules”, ICDM'02
� D. Cai, Z. Shao, X. He, X. Yan, and J. Han, “Community Mining from Multi-Relational Networks”,

PKDD'05.
� M. Deshpande, M. Kuramochi, and G. Karypis, “Frequent Sub-structure Based Approaches for

Classifying Chemical Compounds”, ICDM 2003
� M. Deshpande, M. Kuramochi, and G. Karypis. “Automated approaches for classifying structures”,

BIOKDD'02
� L. Dehaspe, H. Toivonen, and R. King. “Finding frequent substructures in chemical compounds”,

KDD'98
� C. Faloutsos, K. McCurley, and A. Tomkins, “Fast Discovery of 'Connection Subgraphs”, KDD'04
� H. Fröhlich, J. Wegner, F. Sieker, and A. Zell, “Optimal Assignment Kernels For Attributed Molecular

Graphs”, ICML’05
� T. Gärtner, P. Flach, and S. Wrobel, “On Graph Kernels: Hardness Results and Efficient Alternatives”,

COLT/Kernel’03
� L. Holder, D. Cook, and S. Djoko. “Substructure discovery in the subdue system”, KDD'94
� J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha. “Mining spatial motifs

from protein structure graphs”, RECOMB’04

52

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

References (2)

� J. Huan, W. Wang, and J. Prins. “Efficient mining of frequent subgraph in the presence of

isomorphism”, ICDM'03
� H. Hu, X. Yan, Yu, J. Han and X. J. Zhou, � Mining Coherent Dense Subgraphs across Massive

Biological Networks for Functional Discovery� , ISMB'05
� A. Inokuchi, T. Washio, and H. Motoda. “An apriori-based algorithm for mining frequent substructures

from graph data”, PKDD'00
� C. James, D. Weininger, and J. Delany. “Daylight Theory Manual Daylight Version 4.82”. Daylight

Chemical Information Systems, Inc., 2003.
� G. Jeh, and J. Widom, “Mining the Space of Graph Properties”, KDD'04
� H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized Kernels Between Labeled Graphs”, ICML’03

� M. Koyuturk, A. Grama, and W. Szpankowski. “An efficient algorithm for detecting frequent

subgraphs in biological networks”, Bioinformatics, 20:I200--I207, 2004.
� T. Kudo, E. Maeda, and Y. Matsumoto, “An Application of Boosting to Graph Classification”, NIPS’04

� M. Kuramochi and G. Karypis. “Frequent subgraph discovery”, ICDM'01
� M. Kuramochi and G. Karypis, “GREW: A Scalable Frequent Subgraph Discovery Algorithm”,

ICDM’04
� C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining Behavior Graphs for ‘Backtrace'' of Noncrashing

Bugs’'', SDM'05

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

References (3)

� P. Mahé, N. Ueda, T. Akutsu, J. Perret, and J. Vert, “Extensions of Marginalized Graph Kernels”,

ICML’04
� B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45--87, 1981.
� S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. KDD'04
� J. Prins, J. Yang, J. Huan, and W. Wang. “Spin: Mining maximal frequent subgraphs from graph

databases”. KDD'04
� D. Shasha, J. T.-L. Wang, and R. Giugno. “Algorithmics and applications of tree and graph

searching”, PODS'02
� J. R. Ullmann. “An algorithm for subgraph isomorphism”, J. ACM, 23:31--42, 1976.
� N. Vanetik, E. Gudes, and S. E. Shimony. “Computing frequent graph patterns from semistructured

data”, ICDM'02
� C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. “Scalable mining of large disk-base graph

databases”, KDD'04
� T. Washio and H. Motoda, “State of the art of graph-based data mining”, SIGKDD Explorations,

5:59-68, 2003
� X. Yan and J. Han, � gSpan: Graph-Based Substructure Pattern Mining � , ICDM'02
� X. Yan and J. Han, � CloseGraph: Mining Closed Frequent Graph Patterns � , KDD'03

53

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

References (4)

� X. Yan, P. S. Yu, and J. Han, � Graph Indexing: A Frequent Structure-based Approach � , SIGMOD'04
� X. Yan, X. J. Zhou, and J. Han, “Mining Closed Relational Graphs with Connectivity Constraints”,

KDD'05
� X. Yan, P. S. Yu, and J. Han, “Substructure Similarity Search in Graph Databases”, SIGMOD'05
� X. Yan, F. Zhu, J. Han, and P. S. Yu, “Searching Substructures with Superimposed Distance”,

ICDE'06
� M. J. Zaki. “Efficiently mining frequent trees in a forest”, KDD'02

� � � � � � � � � � � 	 �
 �
 � � �
 � � � �
 � � � � � � �
 �
 � � �
 � � � � � � � � � � �

