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Outline

Scalable pattern mining in graph data sets ==

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining
= Graph clustering, classification, and compression

Searching graph databases
= Graph indexing methods
= Similarity search in graph databases

Application and exploration with graph mining
= Biological and social network analysis
= Mining software systems: bug isolation & performance tuning

Conclusions and future work
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Why Graph Mining and Searching?

= Graphs are ubiquitous
= Chemical compounds (Cheminformatics)
= Protein structures, biological pathways/networks (Bioinformactics)
= Program control flow, traffic flow, and workflow analysis
= XML databases, Web, and social network analysis
= Graph is a general model
= Trees, lattices, sequences, and items are degenerated graphs
= Diversity of graphs
= Directed vs. undirected, labeled vs. unlabeled (edges & vertices),
weighted, with angles & geometry (topological vs. 2-D/3-D)

= Complexity of algorithms: many problems are of high complexity
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Graph, Graph, Everywhere

from H. Jeong et al Nature 411, 41 (2001)

Aspirin Yeast protein interaction network

March 28, 2006 Internet Mining, Indexing, and Similarity Search




Graph Pattern Mining

= Frequent subgraphs
= A (sub)graph is frequent if its support (occurrence frequency) in
a given dataset is no less than a minimum support threshold
= Applications of graph pattern mining
= Mining biochemical structures
= Program control flow analysis
= Mining XML structures or Web communities

= Building blocks for graph classification, clustering, compression,
comparison, and correlation analysis
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Example: Frequent Subgraphs

CHEMICAL COMPOUNDS i
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(a) caffeine (b) diurobromine (c) viagra

FREQUENT SUBGRAPH
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Example (Il)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)
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Graph Mining Algorithms

= Incomplete beam search — Greedy (Subdue)
= Inductive logic programming (WARMR)

= Graph theory based approaches
= Apriori-based approach

= Pattern-growth approach
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SUBDUE (Holder et al. KDD’94)

= Start with single vertices
= Expand best substructures with a new edge

= Limit the number of best substructures

= Substructures are evaluated based on their ability to compress
input graphs

= Using minimum description length (DL)

= Best substructure S in graph G minimizes: DL(S) + DL(G\S)

= Terminate until no new substructure is discovered
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WARMR (Dehaspe et al. KDD’98)

= Graphs are represented by Datalog facts

= atomel(C, Al, c), bond (C, Al, A2, BT), atomel(C, A2, c) : a
carbon atom bound to a carbon atom with bond type BT

= WARMR: the first general purpose ILP system
= Level-wise search

= Simulate Apriori for frequent pattern discovery
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Frequent Subgraph Mining Approaches

= Apriori-based approach
= AGM/AcGM: Inokuchi, et al. (PKDD’00)
= FSG: Kuramochi and Karypis (ICDM'01)
= PATH?*: Vanetik and Gudes (ICDM’'02, ICDM’'04)
= FFSM: Huan, et al. (ICDM’03)
= Pattern growth approach
= MoFa, Borgelt and Berthold (ICDM'02)
= gSpan: Yan and Han (ICDM'02)
= Gaston: Nijssen and Kok (KDD’'04)
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Properties of Graph Mining Algorithms

Search order
= breadth vs. depth

Generation of candidate subgraphs
= apriori vs. pattern growth

Elimination of duplicate subgraphs
= passive vs. active

Support calculation
= embedding store or not

= Discover order of patterns
= path > tree = graph
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Apriori-Based Approach

(k+1)-edge

k-edge
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Apriori-Based, Breadth-First Search

= Methodology: breadth-search, joining two graphs

= AGM (Inokuchi, et al. PKDD’00)
= generates new graphs with one more node

Sir-o B B

= FSG (Kuramochi and Karypis ICDM'01)
= generates new graphs with one more edge
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PATH (Vanetik and Gudes ICDM’02, '04)

= Apriori-based approach
= Building blocks: edge-disjoint path

A graph with 3 edge-disjoint

paths
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e construct frequent paths

e construct frequent graphs with
2 edge-disjoint paths

e construct graphs with k+1
edge-disjoint paths from
graphs with k edge-disjoint
paths

e repeat
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FFSM (Huan, et al. ICDM'03)
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= Represent graphs using canonical adjacency matrix

(CAM)

= Join two CAMs or extend a CAM to generate a new

graph

= Store the embeddings of CAMs
= All of the embeddings of a pattern in the database
= Can derive the embeddings of newly generated CAMs
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Pattern Growth Method I

o
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e detect duplicates
¢ avoid duplicates
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MoFa (Borgelt and Berthold ICDM’02)

= Extend graphs by adding a new edge

= Store embeddings of discovered frequent graphs
= Fast support calculation

= Also used in other later developed algorithms such as
FFSM and GASTON

= Expensive Memory usage
= Local structural pruning
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Duplicate Graphs

AN VVE £

10 edges &
March 28, 2006 Mining, Indexing, and Similarity Search 19
Free Extension 1
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Right-Most Extension I

start end { right-most path
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4 new graphs
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GSPAN (yan and Han ICDM'02)

Right-Most Extension

@)
O
©) 7

O O
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Theorem: Completeness

The Enumeration of Graphs
using Right-most Extension is
COMPLETE
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Graph Sequentialization I

Canonical labeling system: DFS coding

G— S

graph edge sequence

Goals: 1. any prefix of a canonical label is canonical
2. follow right most extension

Vse S, dte S, t+elem=s
& Vse S, Vt, tisaprefixof s,t €S
SVsg S, Vt, s+t& S
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DFS Coding & Labelling

DFS coding: flatten a graph into a sequence based
on depth-first search

5

O O N0
depth first search
(1,2) (2,3) (3,1) (34) (4,1) (3,5)

Jv
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DFS Lexicographic Order

= Let Z be the set of DFS codes of all graphs. Two DFS
codes a and b have the relation a<=b (DFS
Lexicographic Order in Z) if and only if one of the
following conditions is true. Let

a= (X Xy, ..., X,) and
b = (Yo Y11 -1 Vo)
(i) ifthere exists t, 0<=t <= min(m,n), x, =y, for all

K, s.t. k<t, and x, <y,
(i) x=y forall k, s.t. 0<=k<=mand m<=n.
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DFS Code Extension 1

= Let a be the minimum DFS code of a graph G and b be
a non-minimum DFS code of G. For any DFS code d
generated from b by one right-most extension,

0] d is not a minimum DFS code,
(i)  min_dfs(d) cannot be extended from b, and

(i)  min_dfs(d) is either less than a or can be extended from a.

THEOREM
The DFS code of a graph extended from a
Non-minimum DFS code is NOT MINIMUM

March 28, 2006 Mining, Indexing, and Similarity Search 26

13



GASTON (Nijssen and Kok KDD’04)

= Extend graphs directly
= Store embeddings

= Separate the discovery of different types of graphs
= path = tree = graph

= Simple structures are easier to mine and duplication detection is
much simpler
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Graph Pattern Explosion Problem

= If a graph is frequent, all of its subgraphs are frequent —
the Apriori property
= An n-edge frequent graph may have 2" subgraphs

= Among 423 chemical compounds which are confirmed to
be active in an AIDS antiviral screen dataset, there are
around 1,000,000 frequent graph patterns if the
minimum support is 5%
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Closed Frequent Graphs

= Motivation: Handling graph pattern explosion problem

= Closed frequent graph

= A frequent graph G is closed if there exists no supergraph of G

that carries the same support as G
= If some of G’s subgraphs have the same support, it is
unnecessary to output these subgraphs (nonclosed
graphs)
= Lossless compression: still ensures that the mining result

is complete
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CLOSEGRAPH (Yan & Han, KDD'03) I

A Pattern-Growth Approach

(k+1)-edge

At what condition, can we
stop searching their children
i.e., early termination?

If G and G’ are frequent, G is a
subgraph of G'. If in any part
of the graph in the dataset
where G occurs, G’ also
occurs, then we need not grow
G, since none of G’s children will
be closed except those of G'.
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Handling Tricky Exception Cases

0-2 @ b ®
(pattern 1)

b
a ® -
d a
(graph 1) (graph 2) :< ;

(pattern 2)
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Experimental Result

= The AIDS antiviral screen compound dataset
from NCI/NIH

s The dataset contains 43,905 chemical
compounds

= Among these 43,905 compounds, 423 of them
belong to CA, 1081 are of CM, and the
remainings are in class ClI
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Discovered Patterns

D 3
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20%
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Performance (1): Run Time

Run time per pattern
(msec)
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Memory usage (GB)
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Performance (2): Memory Usage
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Number of Patterns: Frequent vs. Closed

Q)
>

Number of patterns
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Runtime: Frequent vs. Closed
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Outline
= Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining =~ =<

= Graph clustering, classification, and compression
Searching graph databases

= Graph indexing methods

= Similarity search in graph databases

Application and exploration with graph mining
= Biological and social network analysis

= Mining computer systems: bug isolation & performance tuning

Conclusions and future work
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Constrained Patterns

Density
Diameter
Connectivity
Degree

Min, Max, Avg
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Constraint-Based Graph Pattern Mining

= Highly connected subgraphs in a large graph
usually are not artifacts (group, functionality)

SENENE

= Recurrent patterns discovered in multiple graphs
are more robust than the patterns mined from a
single graph
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No Downward Closure Property

Given two graphs Gand G, if G is a
subgraph of G’, it does not imply that the
connectivity of G is less than that of G’, and
vice versa.

7

G G’
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Minimum Degree Constraint

/Let G be a frequent graph and X be the set )
of edges which can be added to G such that
G U e (e € X) is connected and frequent.
Graph G U X is the maximal graph that can be
\Extended (one step) from the vertices belong to G/

/. /‘
// ’ /‘
G ‘L dux e

March 28, 2006 Mining, Indexing, and Similarity Search 42

21



Pattern-Growth Approach I

= Find a small frequent candidate graph

= Remove vertices (shadow graph) whose degree is
less than the connectivity

= Decompose it to extract the subgraphs satisfying the
connectivity constraint

= Stop decomposing when the subgraph has been
checked before

= Extend this candidate graph by adding new vertices and
edges

= Repeat
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Pattern-Reduction Approach 1

= Decompose the relational graphs according to the
connectivity constraint

1% W
&b v
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Pattern-Reduction Approach (cont.)

= Intersect them and decompose the resulting
subgraphs

final result
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Outline

Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining
= Graph clustering, classification, and compression =

Searching graph databases

= Graph indexing methods

= Similarity search in graph databases

Application and exploration with graph mining

= Biological and social network analysis

= Mining computer systems: bug isolation & performance tuning

Conclusions and future work
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Graph Clustering 1

I
= Graph similarity measure
= Feature-based similarity measure
= Each graph is represented as a feature vector

= The similarity is defined by the distance of their corresponding
vectors

= Frequent subgraphs can be used as features
= Structure-based similarity measure
= Maximal common subgraph
= Graph edit distance: insertion, deletion, and relabel

= Graph alignment distance
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Graph Classification

Local structure based approach

= Local structures in a graph, e.g., neighbors surrounding a
vertex, paths with fixed length

Graph pattern based approach
= Subgraph patterns from domain knowledge
= Subgraph patterns from data mining

Kernel-based approach

= Random walk (Gértner '02, Kashima et al. '02, ICML’03, Mahé
et al. ICML'04)

= Optimal local assignment (Fréhlich et al. ICML’05)
Boosting (Kudo et al. NIPS'04)
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Graph Pattern Based Classification

= Subgraph patterns from domain knowledge
= Molecular descriptors

= Subgraph patterns from data mining

s General idea

= Each graph is represented as a feature vector x = {X;, X5, ..., X},
where x;is the frequency of the i-th pattern in that graph

= Each vector is associated with a class label
= Classify these vectors in a vector space
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Subgraph Patterns from Data Mining

Sequence patterns (De Raedt and Kramer IJCAI'01)
Frequent subgraphs (Deshpande et al, ICDM'03)

Coherent frequent subgraphs (Huan et al. RECOMB'04)

= A graph G is coherent if the mutual information between G and
each of its own subgraphs is above some threshold

p(Xg = 1) = frequency of G

p(Xa, Xar)
I(Ga G/) = p(XG7X ’)lOQ
XG%G, S (X e)p(Xen)

Closed frequent subgraphs (Liu et al. SDM'05)
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Kernel-based Classification

= Random walk

= Marginalized Kernels (Gartner '02, Kashima et al. '02,

ICML’03, Mahé et al. ICML’04)

K(G1,G2) = > p(h1)p(h2)K(I(h1),1(h2))
hy ho

« h1 and ho are paths in graphs G1 and G»

= p(h1) andp(hso)are probability distributions on paths

» K7 (I(h1),l(h2)) is akernel between paths, e.g.,

1 ifly =lI»,
O otherwise.

Kr(l1,12) = {
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Kernel-based Classification

= Optimal local assignment (Fréhlich et al. ICML’05)

V(G .
K(G. Gy = { mamwzi%l Mi(vs, o) | i V(@] 2 V(@)

maxy

I .
= k(vr;,v;) otherwise.

Can be extended to include neighborhood information
e.g. L
Enei(v, U/) = katom (v, UI) + Z AZRZ(Uav/)
1=0
where R; could be an RBF-kernel to measure the
similarity of neighborhoods of vertices v and v/,
Al is a damping parameter.
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Boosting in Graph Classification

= Decision stumps
= Simple classifiers in which the final decision is made by
single features. A rule is atuple <%,y > If a molecule
contains substructure ¢, itis classified as v .

h<t,y>(x) - { —y otherwise.

= Gain ' n

gain(< t,y >) = > yihaty>(x;)
i=1

= Applying boosting

n
gain(< t,y >) = > yiih<ry>(x)
=1
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Graph Compression 1

= Extract common subgraphs and simplify graphs by
condensing these subgraphs into nodes
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Outline

Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining
= Graph clustering, classification, and compression

Searching graph databases

= Graph indexing methods -

= Similarity search in graph databases

Application and exploration with graph mining
= Biological and social network analysis
= Mining computer systems: bug isolation & performance tuning

Conclusions and future work
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Graph Search

= Querying graph databases:

= Given a graph database and a query graph, find all
graphs containing this query graph

O

()
N|\/N

query graph graph database

L
O Liﬁ}'“
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Scalability Issue I

= Sequential scan
= Disk I/Os
= Subgraph isomorphism testing
= An indexing mechanism is needed
= DayLight: Daylight.com (commercial)
= GraphGrep: Dennis Shasha, et al. PODS'02
= Grace: Srinath Srinivasa, et al. ICDE'03
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Indexing Strategy 1

Query graph (Q)  Graph (G)

If graph G contains query
graph Q, G should contain

“ /I\./v any substructure of Q

Substructure

Remarks

= Index substructures of a query graph to prune
graphs that do not contain these substructures
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Indexing Framework

= Two steps in processing graph queries

Step 1. Index Construction

= Enumerate structures in the graph database, build
an inverted index between structures and graphs

Step 2. Query Processing
= Enumerate structures in the query graph

= Calculate the candidate graphs containing these
structures

= Prune the false positive answers by performing
subgraph isomorphism test
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Cost Analysis

QUERY RESPONSE TIME

T +\Cq\x(T. +T

index [ isomorphism__testing )

fetch index number of candidates

REMARK: make |C,| as small as possible
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Path-based Approach

GRAPH DATABASE

M —{ e K
N N o . / y ’ C Q N//”‘Q
(a) (b) (c)
PATHS
O-length: C, O, N, S
1-length: C-C, C-O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

o

Built an inverted index between paths and graphs

March 28, 2006 Mining, Indexing, and Similarity Search 61

Path-based Approach (cont.)

B

N\/N

QUERY GRAPH

0-edge: S.={a, b, c}, Sy={a, b, c}
l-edge: S ={a, b, ¢}, S \={a, b, c}
2-edge: Sc\c ={a, b}, ...

Intersect these sets, we obtain the candidate
answers - graph (a) and graph (b) - which may
contain this query graph.

March 28, 2006 Mining, Indexing, and Similarity Search 62

31



Problems: Path-based Approach

GRAPH DATABASE

¢—=¢C —C, Com.
e G e e \(:—t:: T \C— C/ C\J
u—C/ C'""""-C/ \C/C
(@) (b) ©

QUERY GRAPH

c Only graph (c) contains this query
G_C/ graph. However, if we only index

, 4 paths: C, C-C, C-C-C, C-C-C-C, we
o cannot prune graph (a) and (b).

C
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glndex: Indexing Graphs by Data Mining

= Our methodology on graph index:

= ldentify frequent structures in the database, the
frequent structures are subgraphs that appear quite

often in the graph database

T

= Prune redundant frequent structures to maintain a small

set of discriminative structures

= Create an inverted index between discriminative

frequent structures and graphs in the database
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IDEAS: Indexing with Two Constraints

| discriminative (~1os)é

frequent (~105)

structure (>109)
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Why Discriminative Subgraphs? 1
Sample database
L % O
Ty O oY
(a) (b) (c)

= All graphs contain structures: C, C-C, C-C-C

= Why bother indexing these redundant frequent
structures?

= Only index structures that provide more information
than existing structures
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Discriminative Structures I

= Pinpoint the most useful frequent structures

= Given a set of sturctures f, f,,... f, and a new structure X
we measure the extra indexing power provided by X,

P(Xf,, fpuee £, ) F O

When P is small enough, X is a discriminative structure and
should be included in the index

= Index discriminative frequent structures only
= Reduce the index size by an order of magnitude

March 28, 2006
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Why Frequent Structures? 1
= We cannot index (or even search) all of
substructures
= Large structures will likely be indexed well by their
substructures

m Size-increasing support threshold

1 minimum
support threshold

support

v

size
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Experimental Setting T

= The AIDS antiviral screen compound dataset from
NCI/NIH, containing 43,905 chemical compounds

= Query graphs are randomly extracted from the
dataset.

= GraphGrep: maximum length (edges) of paths is
set at 10

= glndex: maximum size (edges) of structures is set
at10
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Experiments: Index Size
1.4E+05
= Path
1.2E+05 1| -m-Frequent Structure o
()] —+— Discriminative Frequent Structure
LUl 1.0E+05 A
ad
E 8.0E+04 -
5 6.0E+04 -
LL
LL 4.0E+04 - u
@)
3+ 2.0E+04 -
0.0E+00 * * * * *

1k 2K 4k 8k 16k
DATABASE SIZE
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Experiments: Answer Set Size

0 140
Ll'_J 120 - —— GraphGrep
<DE 100 -m— gindex
o) 80 - —o— Actual Match
zZ
EE) 60 -
LL 40 |
St 20 -

0]

4 8 12 16 20 24
QUERY SIZE
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Experiments: Incremental Maintenance

80
P

; —
: =
N =

=

20
2K 4K 6k 8k 10k
l—’-From scratch —#—Incremental l

Frequent structures are stable to database updating
Index can be built based on a small portion of a graph
database, but being used for the whole database
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Outline 1

Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining

= Graph clustering, classification, and compression
Searching graph databases

= Graph indexing methods

= Similarity search in graph databases s

Application and exploration with graph mining
= Biological and social network analysis
= Mining software systems: bug isolation & performance tuning

Conclusions and future work
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Structure Similarity Search

* CHEMICAL COMPOUNDS |

(T
| | h

[ Pl
(a) caffeine (b) diurobromine (c) viagra
N
« QUERY GRAPH <,~ | \(
N N
o]
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Some “Straightforward” Methods

= Method1: Directly compute the similarity between the

graphs in the DB and the query graph {Nﬂ/w/

= Sequential scan y N
= Subgraph similarity computation I

= Method 2: Form a set of subgraph queries from the
original query graph and use the exact subgraph

search

= Costly: If we allow 3 edges to be missed in a 20-edge query
graph, it may generate 1,140 subgraphs
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Index: Precise vs. Approximate Search

= Precise Search
= Use frequent patterns as indexing features
= Select features in the database space based on their selectivity
= Build the index

= Approximate Search

= Hard to build indices covering similar subgraphs—explosive
number of subgraphs in databases

= ldea: (1) keep the index structure
(2) select features in the query space
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Substructure Similarity Measure

= Query relaxation measure

= The number of edges that can be relabeled or missed,;
but the position of these edges are not fixed

QUERY GRAPH T /(

/N N o
@gf </qu(\(
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Substructure Similarity Measure

= Feature-based similarity measure
= Each graph is represented as a feature vector X = {x,,
X5y vy Xp}
= The similarity is defined by the distance of their
corresponding vectors

= Advantages
« Easy to index
= Fast
« Rough measure
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Intuition: Feature-Based Similarity Search

————— Graph (G,) [ » If graph G contains

:I | the major part of a query
! ::I i—» graph Q, G should share
Query (Q/)", | a number of common
l l ! features with Q
| | Graph (Gy)
! | 2/> G . N
K ! iven a relaxation ratio,
| ./I\‘ :_’ calculate the maximal
S'pbstructu're number of features that
—————— ’ can be missed !
At least one of them
should be contained \_ J
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Feature-Graph Matrix 1
graphs in database
G, G, G, G, Gg
f, 0 1 0 1 1
o, |0 |t Jo J|o |1
|
.E f, |1 0 1 1 1
& [f, 1 0 0 0 1
f 0 0 1 1 0
> > >

Assume a query graph has 5 features and at most 2 features to
miss due to the relaxation threshold
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Edge Relaxation — Feature Misses

= If we allow k edges to be relaxed, Jis the
maximum number of features to be hit by k
edges—it becomes the maximum coverage

problem
= NP-complete
= A greedy algorithm exists

1 k
Ity 2 [1_(17) jm

= We design a heuristic to refine the bound of feature
misses

81
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Query Processing Framework

= Three steps in processing approximate graph
queries

Step 1. Index Construction
= Select small structures as features in a graph
database, and build the feature-graph matrix
between the features and the graphs in the
database.
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Framework (cont.)

-

S

.

tep 2. Feature Miss Estimation \

= Determine the indexed features belonging to
the query graph

= Calculate the upper bound of the number of
features that can be missed for an
approximate matching, denoted by J

= On the query graph, not the graph database

/
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Framework (cont.)

-

\_

Step 3. Query Processing

~

= Use the feature-graph matrix to calculate
the difference in the number of features
between graph G and query Q, Fs— Fj

w IfFg— Fo>J, discard G. The remaining
graphs constitute a candidate answer set

)
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Performance Study

s Database

= Chemical compounds of Anti-Aids Drug from NCI/NIH,
randomly select 10,000 compounds

= Query
= Randomly select 30 graphs with 16 and 20 edges as
qguery graphs
= Competitive algorithms
« Grafil: Graph Filter—our algorithm
« Edge: use edges only
= All: use all the features
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Comparison of the Three Algorithms
10000
=8 Grafil
8 -E-Edge
T 1000 | Z22A
=
©
C
©
(&) 100 A
©
3+
10

1 2 3 4

edge relaxation

March 28, 2006 Mining, Indexing, and Similarity Search 86




Outline

Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining
= Graph clustering, classification, and compression

Searching graph databases

= Graph indexing methods

= Similarity search in graph databases

Application and exploration with graph mining

= Biological and social network analysis il

= Mining computer systems: bug isolation & performance tuning

Conclusions and future work
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Biological Networks

Protein-protein interaction network
Metabolic network

Transcriptional regulatory network
Co-expression network

Genetic Interaction network
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Identify frequent co-expression clusters across multiple [
microarray data sets

f . .
T % @
1.2...2 b b k
9 [ ) 'k D g

9,4 3.4 g i dg i
f i f .
GGG R \hx
9,8 6. 2 [E— 3 . = B 3
g,.2 3. .4 =g dg i
€1 Cye.. Cpy f i f
9 4.1 .
[ § 3 > «
9,.7 3...5 dg i dg i
f f .
clcz CIT! h
5.8 | E—s B ; [E— N .
0.7 1.3 dy dy i
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Our Solution

We develop a novel algorithm, called CODENSE, to mine
frequent coherent dense subgraphs.

The target subgraphs have three characteristics:

@ All edges occur in >= k graphs (frequency)

@ All edges should exhibit correlated occurrences in the given
graph set (coherency)

@ The subgraph is dense, where density d is higher than a
threshold y and d=2m/(n(n-1)) (density)

m: #edges, n: #nodes
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CODENSE:

Mine coherent dense subgraphs I

a T f T
G ea S
4
TS ;&é PN f f
¢ ! 9 ! ¢ ! Step 1 h Step 2 h
G G G e
a . : Zf 3 . D b [E—
h a h ap o A h Add/Cut d g i MODES g i
A d g d g 5
G, Gs Ge ﬂ Step 3
¥ +h
\ % f-i
h
:! ei h-i ei h-i E Gl | 62| e | & G5 G6
e
Y—== Step6  Step 5 Step4g e oottt
eg o eg gl c-f 0 1 0 1 1 1
: ehy <:| eh, <:| c-h 0 0 0 1 1 1
f g MODES ' ‘ ci 0 o |11 1 0
c h Restore c f-h ¢ f-h
) Gand  of / o ‘n' ef oo |o] 1|1 ]| 1
MODES Ac_i s
c-e ce edge occurrence profiles
Sub(G) Sub(S) second-order graph S
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YDR115W MRP49
PHB RPL51
PET100 % i§ ATP12
ATP17 MRPL37
MRPL38 ACN9
MRPL32 MRPL39
MRPS18 FMC1
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ATP17  MRP49

MRPL51

PHB
PET100 % ﬁl ATP12
A PET100
YDR115W
MRPL38 (0¥ ACN9
MRPL32 MRPL39

MRPS18 EMC1
Yellow: YDR115W, FMC1, ATP12,MRPL37,MRPS18

G0:0019538(protein metabolism; pvalue = 0.001122)
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YDR115W

MRP49
PHB
b NN
PET100 7| LY 9 ATP12
X 2 , >
ATP17 & X MRPL37
X
MRPL38 amra, ACN9
' ' =

Red:PHB1,ATP17,MRPL51,MRPL39, MRPL49, MRPL51,PET100

GO0:0006091(generation of precursor metabolites and energy; pvalue=0. 001339)
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Outline

Scalable pattern mining in graph data sets

= Frequent subgraph pattern mining

= Constraint-based graph pattern mining

= Graph clustering, classification, and compression

Searching graph databases
= Graph indexing methods

= Similarity search in graph databases

Application and exploration with graph mining
= Biological and social network analysis

= Mining computer systems: bug isolation & performance tuning P

Conclusions and future work
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Bug Isolation by Program Flow Analysis 1

PROGRAM CALLER/CALLEE GRAPH
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Frequent Pattern-Based Classification

= Each program execution generates a (dynamic)
caller/callee graph

= Extract frequent calling substructures from the
correct and incorrect executions

= Use these substructures as features to classify
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I
Watching the Boost of Classification Accuracy

= Bug detection based on the boost of classification
accuracy

= Check the change of classification error at the
entrance and at the exit of functions

ﬂ entrance accuracy

function F E

ﬂ exit accuracy

= Compare their difference
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Example: Bug Isolation by Data Mining

‘main main
384e21 [0, 58.462]

\

a1

change
33,836, 58,4621

(RN
\
A\l
subline
[38.356, 56.138)
/ )

/ Y

change
[33.886, 58.462]

\

subline
[38.356, 56.138]

l

amatch
[38.356, 56.632] .

-
amach N
138356566321 )
F s St

&

- )
\ 7708, 577081 )\
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Outline

= Scalable pattern mining in graph data sets
= Frequent subgraph pattern mining
= Constraint-based graph pattern mining
= Graph clustering, classification, and compression
= Searching graph databases
= Graph indexing methods
= Similarity search in graph databases
= Application and exploration with graph mining
= Biological and social network analysis
= Mining software systems: bug isolation & performance tuning

s Conclusions and future work

%
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Conclusions

Graph mining has wide applications
Frequent and closed subgraph mining methods

= gSpan and CloseGraph: pattern-growth depth-first search approach
Graph indexing techniques

= Frequent and discirminative subgraphs are high-quality indexing features
Similarity search in graph databases

= |ndexing and feature-based matching
Biological network analysis

= Mining coherent, dense, multiple biological networks

Program flow analysis
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