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Outline
� Scalable pattern mining in graph data sets

� Frequent subgraph pattern mining 
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression 

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining 
� Biological and social network analysis
� Mining software systems: bug isolation & performance tuning

� Conclusions and future work
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Why Graph Mining and Searching?
� Graphs are ubiquitous

� Chemical compounds (Cheminformatics)
� Protein structures, biological pathways/networks (Bioinformactics)
� Program control flow, traffic flow, and workflow analysis 
� XML databases, Web, and social network analysis

� Graph is a general model
� Trees, lattices, sequences, and items are degenerated graphs

� Diversity of graphs
� Directed vs. undirected, labeled vs. unlabeled (edges & vertices), 

weighted, with angles & geometry (topological vs. 2-D/3-D) 

� Complexity of algorithms: many problems are of high complexity
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Graph, Graph, Everywhere
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Graph Pattern Mining

� Frequent subgraphs
� A (sub)graph is frequent if its support (occurrence frequency) in 

a given dataset is no less than a minimum support threshold

� Applications of graph pattern mining
� Mining biochemical structures
� Program control flow analysis
� Mining XML structures or Web communities
� Building blocks for graph classification, clustering, compression, 

comparison, and correlation analysis
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Example: Frequent Subgraphs

(a) caffeine (b) diurobromine (c) viagra

CHEMICAL COMPOUNDS

FREQUENT SUBGRAPH

…
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Example (II)

1

3

4

5

2
1:makepat
2: esc
3: addstr
4: getccl
5: dodash
6: in_set_2
7: stclose
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(2)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)
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Graph Mining Algorithms

� Incomplete beam search – Greedy (Subdue)
� Inductive logic programming (WARMR)
� Graph theory based approaches

� Apriori-based approach
� Pattern-growth approach
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SUBDUE (Holder et al. KDD’94)

� Start with single vertices
� Expand best substructures with a new edge
� Limit the number of best substructures

� Substructures are evaluated based on their ability to compress 

input graphs
� Using minimum description length (DL)
� Best substructure S in graph G minimizes: DL(S) + DL(G\S)

� Terminate until no new substructure is discovered
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WARMR (Dehaspe et al. KDD’98)

� Graphs are represented by Datalog facts
� atomel(C, A1, c), bond (C, A1, A2, BT), atomel(C, A2, c) : a 

carbon atom bound to a carbon atom with bond type BT

� WARMR: the first general purpose ILP system
� Level-wise search
� Simulate Apriori for frequent pattern discovery
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Frequent Subgraph Mining Approaches
� Apriori-based approach

� AGM/AcGM: Inokuchi, et al. (PKDD’00)
� FSG: Kuramochi and Karypis (ICDM’01)
� PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)
� FFSM: Huan, et al. (ICDM’03)

� Pattern growth approach
� MoFa, Borgelt and Berthold (ICDM’02)
� gSpan: Yan and Han (ICDM’02)
� Gaston: Nijssen and Kok (KDD’04)
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Properties of Graph Mining Algorithms

� Search order
� breadth vs. depth

� Generation of candidate subgraphs
� apriori vs. pattern growth

� Elimination of duplicate subgraphs
� passive vs. active

� Support calculation
� embedding store or not

� Discover order of patterns
� path 

�
tree 

�
graph
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Apriori-Based Approach
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Apriori-Based, Breadth-First Search

6 AGM (Inokuchi, et al. PKDD’00) 7 generates new graphs with one more node

+

6 Methodology: breadth-search, joining two graphs 

6 FSG (Kuramochi and Karypis ICDM’01)7 generates new graphs with one more edge

+
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PATH (Vanetik and Gudes ICDM’02, ’04)

� Apriori-based approach
� Building blocks: edge-disjoint path
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FFSM (Huan, et al. ICDM’03)

� Represent graphs using canonical adjacency matrix 
(CAM)

� Join two CAMs or extend a CAM to generate a new 
graph

� Store the embeddings of CAMs
U All of the embeddings of a pattern in the database
U Can derive the embeddings of newly generated CAMs
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Pattern Growth Method
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MoFa (Borgelt and Berthold ICDM’02)

3 Extend graphs by adding a new edge
3 Store embeddings of discovered frequent graphs

4 Fast support calculation
4 Also used in other later developed algorithms such as 

FFSM and GASTON
4 Expensive Memory usage 

3 Local structural pruning
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Duplicate Graphs
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Right-Most Extension

depth-first search
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GSPAN (Yan and Han ICDM’02)
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Graph Sequentialization
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DFS Coding & Labelling
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DFS Lexicographic Order

� Let Z be the set of DFS codes of all graphs.  Two DFS 
codes a and b have the relation a<=b (DFS 
Lexicographic Order in Z) if and only if one of the 
following conditions is true.  Let

a = (x0, x1, …, xn) and 
b = (y0, y1, …, yn),

xk=yk for all k, s.t.  0<= k<= m and m <= n.(ii)

if there exists t, 0<= t <= min(m,n), xk=yk for all 
k, s.t. k<t, and xt < yt

(i)
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DFS Code Extension

� Let a be the minimum DFS code of a graph G and b be 
a non-minimum DFS code of G.  For any DFS code d
generated from b by one right-most extension,

min_dfs(d) is either less than a or can be extended from a.(iii)

min_dfs(d) cannot be extended from b, and(ii)

d is not a minimum DFS code,(i)
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GASTON (Nijssen and Kok KDD’04)

� Extend graphs directly
� Store embeddings
� Separate the discovery of different types of graphs

� path 
�

tree 
�

graph
� Simple structures are easier to mine and duplication detection is 

much simpler
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Graph Pattern Explosion Problem

� If a graph is frequent, all of its subgraphs are frequent �

the Apriori property

� An n-edge frequent graph may have 2n subgraphs

� Among 423 chemical compounds which are confirmed to 

be active in an AIDS antiviral screen dataset, there are 

around 1,000,000 frequent graph patterns if the 

minimum support is 5%
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Closed Frequent Graphs

� Motivation:  Handling graph pattern explosion problem

� Closed frequent graph
� A frequent graph G is closed if there exists no supergraph of G 

that carries the same support as G

� If some of G’s subgraphs have the same support, it is 

unnecessary to output these subgraphs (nonclosed

graphs)

� Lossless compression: still ensures that the mining result 

is complete
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CLOSEGRAPH (Yan & Han, KDD’03)

�

A Pattern-Growth Approach
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Handling Tricky Exception Cases

(graph 1)

a

c

b

d

(pattern 2)

(pattern 1)

(graph 2)
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Experimental Result
� The AIDS antiviral screen compound dataset 

from NCI/NIH
� The dataset contains 43,905 chemical 

compounds
� Among these 43,905 compounds, 423 of them 

belong to CA, 1081 are of CM, and the 

remainings are in class CI
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Discovered Patterns
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Performance (1): Run Time
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Performance (2): Memory Usage
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Runtime: Frequent vs. Closed
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Outline
W Scalable pattern mining in graph data sets
X Frequent subgraph pattern mining 
X Constraint-based graph pattern miningX Graph clustering, classification, and compression 

W Searching graph databases
X Graph indexing methods
X Similarity search in graph databases

W Application and exploration with graph mining 
X Biological and social network analysis
X Mining computer systems: bug isolation & performance tuning

W Conclusions and future work



20

� � � � � � � � � � � 	 � 
 � 
 � � �  � � � � 
 � � � � � � � 
 � 
 � � � 
 � � � � � � � � � �

Constrained Patterns
� Density
� Diameter
� Connectivity
� Degree
� Min, Max, Avg
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Constraint-Based Graph Pattern Mining
� Highly connected subgraphs in a large graph 

usually are not artifacts (group, functionality)

� Recurrent patterns discovered in multiple graphs 
are more robust than the patterns mined from a 
single graph
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No Downward Closure Property

Given two graphs G and G’, if G is a 

subgraph of  G’, it does not imply that the 

connectivity of G is less than that of G’, and 

vice versa.

G G’
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Minimum Degree Constraint

Let G be a frequent graph and X be the set
of edges which can be added to G such that
G U e (e � X) is connected and frequent. 
Graph G U X is the maximal graph that can be 
Extended (one step) from the vertices belong to G

G G U X 
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Pattern-Growth Approach
� Find a small frequent candidate graph

� Remove vertices (shadow graph) whose degree is 
less than the connectivity

� Decompose it to extract the subgraphs satisfying the 
connectivity constraint

� Stop decomposing when the subgraph has been 
checked before

� Extend this candidate graph by adding new vertices and 
edges

� Repeat
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Pattern-Reduction Approach

� Decompose the relational graphs according to the 
connectivity constraint
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Pattern-Reduction Approach (cont.)

� Intersect them and decompose the resulting 
subgraphs

intersect

inters
ect
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Outline
' Scalable pattern mining in graph data sets

( Frequent subgraph pattern mining 
( Constraint-based graph pattern mining
( Graph clustering, classification, and compression

' Searching graph databases
( Graph indexing methods
( Similarity search in graph databases

' Application and exploration with graph mining 
( Biological and social network analysis
( Mining computer systems: bug isolation & performance tuning

' Conclusions and future work
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Graph Clustering
� Graph similarity measure

� Feature-based similarity measure
� Each graph is represented as a feature vector 
� The similarity is defined by the distance of their corresponding

vectors
� Frequent subgraphs can be used as  features

� Structure-based similarity measure
� Maximal common subgraph
� Graph edit distance: insertion, deletion, and relabel
� Graph alignment distance
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Graph Classification
� Local structure based approach

� Local structures in a graph, e.g., neighbors surrounding a 
vertex, paths with fixed length

� Graph pattern based approach
� Subgraph patterns from domain knowledge
� Subgraph patterns from data mining

� Kernel-based approach
� Random walk (Gärtner ’02, Kashima et al. ’02, ICML’03, Mahé

et al. ICML’04)
� Optimal local assignment (Fröhlich et al. ICML’05)

� Boosting (Kudo et al. NIPS’04)
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Graph Pattern Based Classification

� Subgraph patterns from domain knowledge
� Molecular descriptors

� Subgraph patterns from data mining 
� General idea

� Each graph is represented as a feature vector x = {x1, x2, …, xn}, 
where xi is the frequency of the i-th pattern in that graph 

� Each vector is associated with a class label
� Classify these vectors in a vector space
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Subgraph Patterns from Data Mining

� Sequence patterns (De Raedt and Kramer IJCAI
�
01)

� Frequent subgraphs (Deshpande et al, ICDM’03)
� Coherent frequent subgraphs (Huan et al. RECOMB’04)

� A graph G is coherent if the mutual information between G and 
each of its own subgraphs is above some threshold

� Closed frequent subgraphs (Liu et al. SDM
�
05)
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Kernel-based Classification

� Random walk
� Marginalized Kernels (Gärtner ’02, Kashima et al. ’02, 

ICML’03, Mahé et al. ICML’04) 

� and       are paths in graphs       and 
� and          are probability distributions on paths 
� is a kernel between paths, e.g.,  
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Kernel-based Classification

� Optimal local assignment (Fröhlich et al. ICML’05)
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Boosting in Graph Classification
� Decision stumps

� Simple classifiers in which the final decision is made by 
single features. A rule is a tuple . If a molecule 
contains substructure    , it is classified as     .

� Gain

� Applying boosting
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Graph Compression

� Extract common subgraphs and simplify graphs by 
condensing these subgraphs into nodes
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Outline
� Scalable pattern mining in graph data sets

� Frequent subgraph pattern mining 
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression 

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining 
� Biological and social network analysis
� Mining computer systems: bug isolation & performance tuning

� Conclusions and future work
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Graph Search

� Querying graph databases: 
� Given a graph database and a query graph, find all 

graphs containing this query graph
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Scalability Issue

� Sequential scan
� Disk I/Os
� Subgraph isomorphism testing

� An indexing mechanism is needed
� DayLight:  Daylight.com (commercial)
� GraphGrep: Dennis Shasha, et al. PODS'02
� Grace: Srinath Srinivasa, et al. ICDE'03
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Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query 
graph Q, G should contain 
any substructure of Q

Remarks
� Index substructures of a query graph to prune 

graphs that do not contain these substructures
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Indexing Framework

� Two steps in processing graph queries
Step 1. Index Construction

� Enumerate structures in the graph database, build 
an inverted index between structures and graphs

Step 2. Query Processing
� Enumerate structures in the query graph 
� Calculate the candidate graphs containing these 

structures
� Prune the false positive answers by performing 

subgraph isomorphism test
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Cost Analysis

QUERY RESPONSE TIME

( )testingmisomorphisioqindex TTCT _+×+

REMARK: make |Cq| as small as possible
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Path-based Approach
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PATHS

0-length: C, O, N, S
1-length: C-C, C-O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs
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Path-based Approach (cont.)

NN

QUERY GRAPH

0-edge: SC={a, b, c}, SN={a, b, c}
1-edge: SC-C={a, b, c}, SC-N={a, b, c}
2-edge: SC-N-C = {a, b}, …
…

Intersect these sets, we obtain the candidate 
answers - graph (a) and graph (b) - which may 
contain this query graph.
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Problems: Path-based Approach

GRAPH DATABASE

(a) (b) (c)

QUERY GRAPH

Only graph (c) contains this query 
graph. However, if we only index 
paths: C, C-C, C-C-C, C-C-C-C, we 
cannot prune graph (a) and (b).
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gIndex: Indexing Graphs by Data Mining

� Our methodology on graph index:

� Identify frequent structures in the database, the 

frequent structures are subgraphs that appear quite 

often in the graph database

� Prune redundant frequent structures to maintain a small 

set of discriminative structures

� Create an inverted index between discriminative 

frequent structures and graphs in the database
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IDEAS: Indexing with Two Constraints
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Why Discriminative Subgraphs?

F All graphs contain structures: C, C-C, C-C-C
F Why bother indexing these redundant frequent 

structures?
G Only index structures that provide more information 

than existing structures
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Discriminative Structures

� Pinpoint the most useful frequent structures
� Given a set of sturctures and a new structure    , 

we measure the extra indexing power provided by     ,

When     is small enough,     is a discriminative structure and 
should be included in the index

� Index discriminative frequent structures only
� Reduce the index size by an order of magnitude

( ) .,,, 21 xffffxP in ⊂�

xnfff �,, 21

x

xP
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Why Frequent Structures?

� We cannot index (or even search) all of 
substructures� Large structures will likely be indexed well by their 
substructures� Size-increasing support threshold

���  "!
# $
%%&
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Experimental Setting

� The AIDS antiviral screen compound dataset from 

NCI/NIH, containing 43,905 chemical compounds
� Query graphs are randomly extracted from the 

dataset.
� GraphGrep: maximum length (edges) of paths is 

set at 10
� gIndex: maximum size (edges) of structures is set 

at 10
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Experiments: Index Size
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Experiments: Answer Set Size
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Experiments: Incremental Maintenance
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Frequent structures are stable to database updating
Index can be built based on a small portion of a graph 
database, but being used for the whole database
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Outline

� Scalable pattern mining in graph data sets
� Frequent subgraph pattern mining 
� Constraint-based graph pattern mining
� Graph clustering, classification, and compression 

� Searching graph databases
� Graph indexing methods
� Similarity search in graph databases

� Application and exploration with graph mining 
� Biological and social network analysis
� Mining software systems: bug isolation & performance tuning

� Conclusions and future work
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Structure Similarity Search

(a) caffeine (b) diurobromine (c) viagra

• CHEMICAL COMPOUNDS

• QUERY GRAPH
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Some “Straightforward” Methods

� Method1: Directly compute the similarity between the 

graphs in the DB and the query graph
� Sequential scan

� Subgraph similarity computation

� Method 2: Form a set of subgraph queries from the 

original query graph and use the exact subgraph

search 
� Costly: If we allow 3 edges to be missed in a 20-edge query 

graph, it may generate 1,140 subgraphs
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Index: Precise vs. Approximate Search
� Precise Search

� Use frequent patterns as indexing features
� Select features in the database space based on their selectivity
� Build the index

� Approximate Search
� Hard to build indices covering similar subgraphs� explosive 

number of subgraphs in databases
� Idea: (1) keep the index structure

(2) select features in the query space
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Substructure Similarity Measure
� Query relaxation measure
� The number of edges that can be relabeled or missed; 

but the position of these edges are not fixed  
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Substructure Similarity Measure
� Feature-based similarity measure
, Each graph is represented as a feature vector X = {x1, 

x2, …, xn}
, The similarity is defined by the distance of their 

corresponding vectors
, Advantages
- Easy to index
- Fast
- Rough measure
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Intuition: Feature-Based Similarity Search

Graph (G1)

Substructure

Query (Q)

�
If graph G contains 

the major part of a query 
graph Q, G should share 
a number of common 
features with Q

�
Given a relaxation ratio, 

calculate the maximal 
number of features that 
can be missed !

At least one of them 
should be contained

Graph (G2)
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Feature-Graph Matrix
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Edge Relaxation – Feature Misses

� If we allow k edges to be relaxed,  J is the 
maximum number of features to be hit by k 
edges� it becomes the maximum coverage 
problem

� NP-complete 
� A greedy algorithm exists

� We design a heuristic to refine the bound of feature 
misses
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Query Processing Framework

� Three steps in processing approximate graph 
queries

Step 1. Index Construction
� Select small structures as features in a graph 

database, and build the feature-graph matrix
between the features and the graphs in the 
database.
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Framework (cont.)

Step 2. Feature Miss Estimation
� Determine the indexed features belonging to 

the query graph
� Calculate the upper bound of the number of 

features that can be missed for an 
approximate matching, denoted by J
� On the query graph, not the graph database
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Framework (cont.)

Step 3. Query Processing
� Use the feature-graph matrix to calculate 

the difference in the number of features 
between graph G and query Q, FG – FQ

� If FG – FQ > J, discard G. The remaining 
graphs constitute a candidate answer set



43

� � � � � � � � � � � 	 � 
 � 
 � � �  � � � � 
 � � � � � � � 
 � 
 � � � 
 � � � � � � � � � �

Performance Study
� Database

� Chemical compounds of Anti-Aids Drug from NCI/NIH, 
randomly select 10,000 compounds

� Query
� Randomly select 30 graphs with 16 and 20 edges as 

query graphs
� Competitive algorithms

� Grafil: Graph Filter � our algorithm
� Edge: use edges only
� All: use all the features
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Comparison of the Three Algorithms
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Biological Networks

� Protein-protein interaction network 
� Metabolic network
� Transcriptional regulatory network
� Co-expression network
� Genetic Interaction network
� …
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Identify frequent co-expression clusters across multiple 
microarray data sets
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Our Solution

We develop a novel algorithm, called CODENSE, to mine 

frequent coherent dense subgraphs.  

The target subgraphs have three characteristics:

(1) All edges occur in >= k graphs (frequency)

(2) All edges should exhibit correlated occurrences in the given 

graph set (coherency)

(3) The subgraph is dense, where density d is higher than a 

threshold γ and d=2m/(n(n-1))  (density)

m: #edges, n: #nodes 
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Bug Isolation by Program Flow Analysis
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Frequent Pattern-Based Classification
� Each program execution generates a (dynamic) 

caller/callee graph
� Extract frequent calling substructures from the 

correct and incorrect executions
� Use these substructures as features to classify 
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Watching the Boost of Classification Accuracy
� Bug detection based on the boost of classification 

accuracy
� Check the change of classification error at the 

entrance and at the exit of functions

� Compare their difference
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Example: Bug Isolation by Data Mining
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Conclusions

� Graph mining has wide applications
� Frequent and closed subgraph mining methods

� gSpan and CloseGraph: pattern-growth depth-first search approach
� Graph indexing techniques

� Frequent and discirminative subgraphs are high-quality indexing features
� Similarity search in graph databases

� Indexing and feature-based matching 
� Biological network analysis

� Mining coherent, dense, multiple biological networks
� Program flow analysis
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