

March 28, 2006

Mining, Indexing, and Similarity Search

14

		Fea	ature-	Grap	h Ma	trix		I	
		gra	aphs i	n data	base				
		G ₁	G ₂	G ₃	G ₄	G ₅			
	f ₁	0	1	0	1	1			
features	f ₂	0	1	0	0	1			
	f ₃	1	0	1	1	1			
	f ₄	1	0	0	0	1			
	f ₅	0	0	1	1	0			
		\times	\times	\times					
Assume a query graph has 5 features and at most 2 features to miss due to the relaxation threshold									
March 28, 2006 Mining, Indexing, and Similarity Search							80		

	References (1)	I
T. As	ai, et al. "Efficient substructure discovery from large semi-structured data", SDM'02	
 C. Bo molect 	rgelt and M. R. Berthold, "Mining molecular fragments: Finding relevant substructures of ules", ICDM'02	
 D. Ca PKDE 	i, Z. Shao, X. He, X. Yan, and J. Han, "Community Mining from Multi-Relational Networks", 0'05.	
 M. De Class 	shpande, M. Kuramochi, and G. Karypis, "Frequent Sub-structure Based Approaches for ifying Chemical Compounds", ICDM 2003	
 M. De BIOKI 	shpande, M. Kuramochi, and G. Karypis. "Automated approaches for classifying structures", DD'02	
L. Del KDD's	haspe, H. Toivonen, and R. King. "Finding frequent substructures in chemical compounds", 38	
C. Fa	loutsos, K. McCurley, and A. Tomkins, "Fast Discovery of 'Connection Subgraphs", KDD'04	
 H. Frö Graph 	inlich, J. Wegner, F. Sieker, and A. Zell, "Optimal Assignment Kernels For Attributed Molecular ns", ICML'05	
 T. Gä COLT 	rtner, P. Flach, and S. Wrobel, "On Graph Kernels: Hardness Results and Efficient Alternatives" /Kernel'03	,
L. Hol	der, D. Cook, and S. Djoko. "Substructure discovery in the subdue system", KDD'94	
 J. Hua from p 	an, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha. "Mining spatial motifs protein structure graphs", RECOMB'04	
March 28, 2006	Mining, Indexing, and Similarity Search	102

